package server import ( "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/sha256" "crypto/tls" "crypto/x509" "crypto/x509/pkix" "encoding/asn1" "encoding/pem" "fmt" "math/big" "net" "net/url" "time" ) var globalCertificate *tls.Certificate = nil var globalPem string func makeRandomSerialNumber() (*big.Int, error) { serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128) return rand.Int(rand.Reader, serialNumberLimit) } func makeSerialNumberFromKey(pk *ecdsa.PrivateKey) *big.Int { h := sha256.New() h.Write(append(pk.D.Bytes(), append(pk.Y.Bytes(), pk.X.Bytes()...)...)) return new(big.Int).SetBytes(h.Sum(nil)) } func GenerateX509Cert(sn *big.Int, from, to time.Time, hostname string) *x509.Certificate { c := &x509.Certificate{ SerialNumber: sn, Subject: pkix.Name{Organization: []string{"Self-signed cert"}}, NotBefore: from, NotAfter: to, KeyUsage: x509.KeyUsageDigitalSignature | x509.KeyUsageCertSign, ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth}, BasicConstraintsValid: true, IsCA: true, } ip := net.ParseIP(hostname) if ip != nil { c.IPAddresses = []net.IP{ip} } else { c.DNSNames = []string{hostname} } return c } func GenerateX509PEMs(cert *x509.Certificate, key *ecdsa.PrivateKey) (certPem, keyPem []byte, err error) { derBytes, err := x509.CreateCertificate(rand.Reader, cert, cert, &key.PublicKey, key) if err != nil { return } certPem = pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: derBytes}) privBytes, err := x509.MarshalPKCS8PrivateKey(key) if err != nil { return } keyPem = pem.EncodeToMemory(&pem.Block{Type: "PRIVATE KEY", Bytes: privBytes}) return } func generateTLSCert() error { if globalCertificate != nil { return nil } priv, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) if err != nil { return err } notBefore := time.Now() notAfter := notBefore.Add(365 * 24 * time.Hour) sn, err := makeRandomSerialNumber() if err != nil { return err } cert := GenerateX509Cert(sn, notBefore, notAfter, localhost) certPem, keyPem, err := GenerateX509PEMs(cert, priv) if err != nil { return err } finalCert, err := tls.X509KeyPair(certPem, keyPem) if err != nil { return err } globalCertificate = &finalCert globalPem = string(certPem) return nil } func PublicTLSCert() (string, error) { err := generateTLSCert() if err != nil { return "", err } return globalPem, nil } func GenerateCertFromKey(pk *ecdsa.PrivateKey, from time.Time, hostname string) (tls.Certificate, []byte, error) { cert := GenerateX509Cert(makeSerialNumberFromKey(pk), from, from.Add(time.Hour), hostname) certPem, keyPem, err := GenerateX509PEMs(cert, pk) if err != nil { return tls.Certificate{}, nil, err } tlsCert, err := tls.X509KeyPair(certPem, keyPem) if err != nil { return tls.Certificate{}, nil, err } block, _ := pem.Decode(certPem) if block == nil { return tls.Certificate{}, nil, fmt.Errorf("failed to decode certPem") } leaf, err := x509.ParseCertificate(block.Bytes) if err != nil { return tls.Certificate{}, nil, err } tlsCert.Leaf = leaf return tlsCert, certPem, nil } // ToECDSA takes a []byte of D and uses it to create an ecdsa.PublicKey on the elliptic.P256 curve // this function is basically a P256 curve version of eth-node/crypto.ToECDSA without all the nice validation func ToECDSA(d []byte) *ecdsa.PrivateKey { k := new(ecdsa.PrivateKey) k.D = new(big.Int).SetBytes(d) k.PublicKey.Curve = elliptic.P256() k.PublicKey.X, k.PublicKey.Y = k.PublicKey.Curve.ScalarBaseMult(d) return k } // verifyCertPublicKey checks that the ecdsa.PublicKey using in a x509.Certificate matches a known ecdsa.PublicKey func verifyCertPublicKey(cert *x509.Certificate, publicKey *ecdsa.PublicKey) error { certKey, ok := cert.PublicKey.(*ecdsa.PublicKey) if !ok { return fmt.Errorf("unexpected public key type, expected ecdsa.PublicKey") } if !certKey.Equal(publicKey) { return fmt.Errorf("server certificate MUST match the given public key") } return nil } // verifyCertSig checks that a x509.Certificate's Signature verifies against x509.Certificate's PublicKey // If the x509.Certificate's PublicKey is not an ecdsa.PublicKey an error will be thrown func verifyCertSig(cert *x509.Certificate) (bool, error) { var esig struct { R, S *big.Int } if _, err := asn1.Unmarshal(cert.Signature, &esig); err != nil { return false, err } hash := sha256.New() hash.Write(cert.RawTBSCertificate) ecKey, ok := cert.PublicKey.(*ecdsa.PublicKey) if !ok { return false, fmt.Errorf("certificate public is not an ecdsa.PublicKey") } verified := ecdsa.Verify(ecKey, hash.Sum(nil), esig.R, esig.S) return verified, nil } // verifyCert verifies an x509.Certificate against a known ecdsa.PublicKey // combining the checks of verifyCertPublicKey and verifyCertSig. // If an x509.Certificate fails to verify an error is also thrown func verifyCert(cert *x509.Certificate, publicKey *ecdsa.PublicKey) error { err := verifyCertPublicKey(cert, publicKey) if err != nil { return err } verified, err := verifyCertSig(cert) if err != nil { return err } if !verified { return fmt.Errorf("server certificate signature MUST verify") } return nil } // getServerCert pings a given tls host, extracts and returns its x509.Certificate // the function expects there to be only 1 certificate func getServerCert(URL *url.URL) (*x509.Certificate, error) { conf := &tls.Config{ InsecureSkipVerify: true, // nolint: gosec // Only skip verify to get the server's TLS cert. DO NOT skip for any other reason. } conn, err := tls.Dial("tcp", URL.Host, conf) if err != nil { return nil, err } defer conn.Close() certs := conn.ConnectionState().PeerCertificates if len(certs) != 1 { return nil, fmt.Errorf("expected 1 TLS certificate, received '%d'", len(certs)) } return certs[0], nil }