package router import ( "context" "fmt" "math" "math/big" "sort" "sync" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/hexutil" "github.com/status-im/status-go/errors" "github.com/status-im/status-go/params" "github.com/status-im/status-go/services/ens" "github.com/status-im/status-go/services/wallet/async" walletCommon "github.com/status-im/status-go/services/wallet/common" "github.com/status-im/status-go/services/wallet/router/pathprocessor" walletToken "github.com/status-im/status-go/services/wallet/token" "github.com/status-im/status-go/signal" ) var ( routerTask = async.TaskType{ ID: 1, Policy: async.ReplacementPolicyCancelOld, } ) var ( supportedNetworks = map[uint64]bool{ walletCommon.EthereumMainnet: true, walletCommon.OptimismMainnet: true, walletCommon.ArbitrumMainnet: true, } supportedTestNetworks = map[uint64]bool{ walletCommon.EthereumSepolia: true, walletCommon.OptimismSepolia: true, walletCommon.ArbitrumSepolia: true, } ) type RouteInputParams struct { Uuid string `json:"uuid"` SendType SendType `json:"sendType" validate:"required"` AddrFrom common.Address `json:"addrFrom" validate:"required"` AddrTo common.Address `json:"addrTo" validate:"required"` AmountIn *hexutil.Big `json:"amountIn" validate:"required"` AmountOut *hexutil.Big `json:"amountOut"` TokenID string `json:"tokenID" validate:"required"` ToTokenID string `json:"toTokenID"` DisabledFromChainIDs []uint64 `json:"disabledFromChainIDs"` DisabledToChainIDs []uint64 `json:"disabledToChainIDs"` GasFeeMode GasFeeMode `json:"gasFeeMode" validate:"required"` FromLockedAmount map[uint64]*hexutil.Big `json:"fromLockedAmount"` testnetMode bool // For send types like EnsRegister, EnsRelease, EnsSetPubKey, StickersBuy Username string `json:"username"` PublicKey string `json:"publicKey"` PackID *hexutil.Big `json:"packID"` // TODO: Remove two fields below once we implement a better solution for tests // Currently used for tests only testsMode bool testParams *routerTestParams } type routerTestParams struct { tokenFrom *walletToken.Token tokenPrices map[string]float64 estimationMap map[string]uint64 // [processor-name, estimated-value] bonderFeeMap map[string]*big.Int // [token-symbol, bonder-fee] suggestedFees *SuggestedFees baseFee *big.Int balanceMap map[string]*big.Int // [token-symbol, balance] approvalGasEstimation uint64 approvalL1Fee uint64 } func makeTestBalanceKey(chainID uint64, symbol string) string { return fmt.Sprintf("%d-%s", chainID, symbol) } func (rt routerTestParams) getTestBalance(chainID uint64, symbol string) *big.Int { if val, ok := rt.balanceMap[makeTestBalanceKey(chainID, symbol)]; ok { return val } return big.NewInt(0) } type PathV2 struct { ProcessorName string FromChain *params.Network // Source chain ToChain *params.Network // Destination chain FromToken *walletToken.Token // Source token ToToken *walletToken.Token // Destination token, set if applicable AmountIn *hexutil.Big // Amount that will be sent from the source chain AmountInLocked bool // Is the amount locked AmountOut *hexutil.Big // Amount that will be received on the destination chain SuggestedLevelsForMaxFeesPerGas *MaxFeesLevels // Suggested max fees for the transaction TxBaseFee *hexutil.Big // Base fee for the transaction TxPriorityFee *hexutil.Big // Priority fee for the transaction TxGasAmount uint64 // Gas used for the transaction TxBonderFees *hexutil.Big // Bonder fees for the transaction - used for Hop bridge TxTokenFees *hexutil.Big // Token fees for the transaction - used for bridges (represent the difference between the amount in and the amount out) TxL1Fee *hexutil.Big // L1 fee for the transaction - used for for transactions placed on L2 chains ApprovalRequired bool // Is approval required for the transaction ApprovalAmountRequired *hexutil.Big // Amount required for the approval transaction ApprovalContractAddress *common.Address // Address of the contract that needs to be approved ApprovalBaseFee *hexutil.Big // Base fee for the approval transaction ApprovalPriorityFee *hexutil.Big // Priority fee for the approval transaction ApprovalGasAmount uint64 // Gas used for the approval transaction ApprovalL1Fee *hexutil.Big // L1 fee for the approval transaction - used for for transactions placed on L2 chains EstimatedTime TransactionEstimation requiredTokenBalance *big.Int requiredNativeBalance *big.Int } func (p *PathV2) Equal(o *PathV2) bool { return p.FromChain.ChainID == o.FromChain.ChainID && p.ToChain.ChainID == o.ToChain.ChainID } type SuggestedRoutesV2 struct { Uuid string Best []*PathV2 Candidates []*PathV2 TokenPrice float64 NativeChainTokenPrice float64 } type ErrorResponseWithUUID struct { Uuid string ErrorResponse error } type GraphV2 []*NodeV2 type NodeV2 struct { Path *PathV2 Children GraphV2 } func newSuggestedRoutesV2( uuid string, amountIn *big.Int, candidates []*PathV2, fromLockedAmount map[uint64]*hexutil.Big, tokenPrice float64, nativeChainTokenPrice float64, ) (*SuggestedRoutesV2, [][]*PathV2) { suggestedRoutes := &SuggestedRoutesV2{ Uuid: uuid, Candidates: candidates, Best: candidates, TokenPrice: tokenPrice, NativeChainTokenPrice: nativeChainTokenPrice, } if len(candidates) == 0 { return suggestedRoutes, nil } node := &NodeV2{ Path: nil, Children: buildGraphV2(amountIn, candidates, 0, []uint64{}), } allRoutes := node.buildAllRoutesV2() allRoutes = filterRoutesV2(allRoutes, amountIn, fromLockedAmount) return suggestedRoutes, allRoutes } func newNodeV2(path *PathV2) *NodeV2 { return &NodeV2{Path: path, Children: make(GraphV2, 0)} } func buildGraphV2(AmountIn *big.Int, routes []*PathV2, level int, sourceChainIDs []uint64) GraphV2 { graph := make(GraphV2, 0) for _, route := range routes { found := false for _, chainID := range sourceChainIDs { if chainID == route.FromChain.ChainID { found = true break } } if found { continue } node := newNodeV2(route) newRoutes := make([]*PathV2, 0) for _, r := range routes { if route.Equal(r) { continue } newRoutes = append(newRoutes, r) } newAmountIn := new(big.Int).Sub(AmountIn, route.AmountIn.ToInt()) if newAmountIn.Sign() > 0 { newSourceChainIDs := make([]uint64, len(sourceChainIDs)) copy(newSourceChainIDs, sourceChainIDs) newSourceChainIDs = append(newSourceChainIDs, route.FromChain.ChainID) node.Children = buildGraphV2(newAmountIn, newRoutes, level+1, newSourceChainIDs) if len(node.Children) == 0 { continue } } graph = append(graph, node) } return graph } func (n NodeV2) buildAllRoutesV2() [][]*PathV2 { res := make([][]*PathV2, 0) if len(n.Children) == 0 && n.Path != nil { res = append(res, []*PathV2{n.Path}) } for _, node := range n.Children { for _, route := range node.buildAllRoutesV2() { extendedRoute := route if n.Path != nil { extendedRoute = append([]*PathV2{n.Path}, route...) } res = append(res, extendedRoute) } } return res } func findBestV2(routes [][]*PathV2, tokenPrice float64, nativeChainTokenPrice float64) []*PathV2 { var best []*PathV2 bestCost := big.NewFloat(math.Inf(1)) for _, route := range routes { currentCost := big.NewFloat(0) for _, path := range route { tokenDenominator := big.NewFloat(math.Pow(10, float64(path.FromToken.Decimals))) path.requiredTokenBalance = big.NewInt(0) path.requiredNativeBalance = big.NewInt(0) if path.FromToken.IsNative() { path.requiredNativeBalance.Add(path.requiredNativeBalance, path.AmountIn.ToInt()) } else { path.requiredTokenBalance.Add(path.requiredTokenBalance, path.AmountIn.ToInt()) } // ecaluate the cost of the path pathCost := big.NewFloat(0) nativeTokenPrice := new(big.Float).SetFloat64(nativeChainTokenPrice) if path.TxBaseFee != nil && path.TxPriorityFee != nil { feePerGas := new(big.Int).Add(path.TxBaseFee.ToInt(), path.TxPriorityFee.ToInt()) txFeeInWei := new(big.Int).Mul(feePerGas, big.NewInt(int64(path.TxGasAmount))) txFeeInEth := gweiToEth(weiToGwei(txFeeInWei)) path.requiredNativeBalance.Add(path.requiredNativeBalance, txFeeInWei) pathCost = new(big.Float).Mul(txFeeInEth, nativeTokenPrice) } if path.TxBonderFees != nil && path.TxBonderFees.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 { if path.FromToken.IsNative() { path.requiredNativeBalance.Add(path.requiredNativeBalance, path.TxBonderFees.ToInt()) } else { path.requiredTokenBalance.Add(path.requiredTokenBalance, path.TxBonderFees.ToInt()) } pathCost.Add(pathCost, new(big.Float).Mul( new(big.Float).Quo(new(big.Float).SetInt(path.TxBonderFees.ToInt()), tokenDenominator), new(big.Float).SetFloat64(tokenPrice))) } if path.TxL1Fee != nil && path.TxL1Fee.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 { l1FeeInWei := path.TxL1Fee.ToInt() l1FeeInEth := gweiToEth(weiToGwei(l1FeeInWei)) path.requiredNativeBalance.Add(path.requiredNativeBalance, l1FeeInWei) pathCost.Add(pathCost, new(big.Float).Mul(l1FeeInEth, nativeTokenPrice)) } if path.TxTokenFees != nil && path.TxTokenFees.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 && path.FromToken != nil { if path.FromToken.IsNative() { path.requiredNativeBalance.Add(path.requiredNativeBalance, path.TxTokenFees.ToInt()) } else { path.requiredTokenBalance.Add(path.requiredTokenBalance, path.TxTokenFees.ToInt()) } pathCost.Add(pathCost, new(big.Float).Mul( new(big.Float).Quo(new(big.Float).SetInt(path.TxTokenFees.ToInt()), tokenDenominator), new(big.Float).SetFloat64(tokenPrice))) } if path.ApprovalRequired { if path.ApprovalBaseFee != nil && path.ApprovalPriorityFee != nil { feePerGas := new(big.Int).Add(path.ApprovalBaseFee.ToInt(), path.ApprovalPriorityFee.ToInt()) txFeeInWei := new(big.Int).Mul(feePerGas, big.NewInt(int64(path.ApprovalGasAmount))) txFeeInEth := gweiToEth(weiToGwei(txFeeInWei)) path.requiredNativeBalance.Add(path.requiredNativeBalance, txFeeInWei) pathCost.Add(pathCost, new(big.Float).Mul(txFeeInEth, nativeTokenPrice)) } if path.ApprovalL1Fee != nil { l1FeeInWei := path.ApprovalL1Fee.ToInt() l1FeeInEth := gweiToEth(weiToGwei(l1FeeInWei)) path.requiredNativeBalance.Add(path.requiredNativeBalance, l1FeeInWei) pathCost.Add(pathCost, new(big.Float).Mul(l1FeeInEth, nativeTokenPrice)) } } currentCost = new(big.Float).Add(currentCost, pathCost) } if currentCost.Cmp(bestCost) == -1 { best = route bestCost = currentCost } } return best } func validateInputData(input *RouteInputParams) error { if input.SendType == ENSRegister { if input.Username == "" || input.PublicKey == "" { return ErrENSRegisterRequiresUsernameAndPubKey } if input.testnetMode { if input.TokenID != pathprocessor.SttSymbol { return ErrENSRegisterTestnetSTTOnly } } else { if input.TokenID != pathprocessor.SntSymbol { return ErrENSRegisterMainnetSNTOnly } } return nil } if input.SendType == ENSRelease { if input.Username == "" { return ErrENSReleaseRequiresUsername } } if input.SendType == ENSSetPubKey { if input.Username == "" || input.PublicKey == "" { return ErrENSSetPubKeyRequiresUsernameAndPubKey } if ens.ValidateENSUsername(input.Username) != nil { return ErrENSSetPubKeyInvalidUsername } } if input.SendType == StickersBuy { if input.PackID == nil { return ErrStickersBuyRequiresPackID } } if input.SendType == Swap { if input.ToTokenID == "" { return ErrSwapRequiresToTokenID } if input.TokenID == input.ToTokenID { return ErrSwapTokenIDMustBeDifferent } if input.AmountIn != nil && input.AmountOut != nil && input.AmountIn.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 && input.AmountOut.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 { return ErrSwapAmountInAmountOutMustBeExclusive } if input.AmountIn != nil && input.AmountIn.ToInt().Sign() < 0 { return ErrSwapAmountInMustBePositive } if input.AmountOut != nil && input.AmountOut.ToInt().Sign() < 0 { return ErrSwapAmountOutMustBePositive } } return validateFromLockedAmount(input) } func validateFromLockedAmount(input *RouteInputParams) error { if input.FromLockedAmount == nil || len(input.FromLockedAmount) == 0 { return nil } var suppNetworks map[uint64]bool if input.testnetMode { suppNetworks = copyMap(supportedTestNetworks) } else { suppNetworks = copyMap(supportedNetworks) } totalLockedAmount := big.NewInt(0) excludedChainCount := 0 for chainID, amount := range input.FromLockedAmount { if containsNetworkChainID(chainID, input.DisabledFromChainIDs) { return ErrDisabledChainFoundAmongLockedNetworks } if input.testnetMode { if !supportedTestNetworks[chainID] { return ErrLockedAmountNotSupportedForNetwork } } else { if !supportedNetworks[chainID] { return ErrLockedAmountNotSupportedForNetwork } } if amount == nil || amount.ToInt().Sign() < 0 { return ErrLockedAmountNotNegative } if !(amount.ToInt().Sign() > 0) { excludedChainCount++ } delete(suppNetworks, chainID) totalLockedAmount = new(big.Int).Add(totalLockedAmount, amount.ToInt()) } if (!input.testnetMode && excludedChainCount == len(supportedNetworks)) || (input.testnetMode && excludedChainCount == len(supportedTestNetworks)) { return ErrLockedAmountExcludesAllSupported } if totalLockedAmount.Cmp(input.AmountIn.ToInt()) > 0 { return ErrLockedAmountExceedsTotalSendAmount } else if totalLockedAmount.Cmp(input.AmountIn.ToInt()) < 0 && len(suppNetworks) == 0 { return ErrLockedAmountLessThanSendAmountAllNetworks } return nil } func (r *Router) SuggestedRoutesV2Async(input *RouteInputParams) { r.scheduler.Enqueue(routerTask, func(ctx context.Context) (interface{}, error) { return r.SuggestedRoutesV2(ctx, input) }, func(result interface{}, taskType async.TaskType, err error) { if err != nil { errResponse := &ErrorResponseWithUUID{ Uuid: input.Uuid, ErrorResponse: errors.CreateErrorResponseFromError(err), } signal.SendWalletEvent(signal.SuggestedRoutes, errResponse) return } signal.SendWalletEvent(signal.SuggestedRoutes, result) }) } func (r *Router) StopSuggestedRoutesV2AsyncCalcualtion() { r.scheduler.Stop() } func (r *Router) SuggestedRoutesV2(ctx context.Context, input *RouteInputParams) (*SuggestedRoutesV2, error) { testnetMode, err := r.rpcClient.NetworkManager.GetTestNetworksEnabled() if err != nil { return nil, errors.CreateErrorResponseFromError(err) } input.testnetMode = testnetMode // clear all processors for _, processor := range r.pathProcessors { if clearable, ok := processor.(pathprocessor.PathProcessorClearable); ok { clearable.Clear() } } err = validateInputData(input) if err != nil { return nil, errors.CreateErrorResponseFromError(err) } candidates, err := r.resolveCandidates(ctx, input) if err != nil { return nil, errors.CreateErrorResponseFromError(err) } return r.resolveRoutes(ctx, input, candidates) } func (r *Router) resolveCandidates(ctx context.Context, input *RouteInputParams) (candidates []*PathV2, err error) { var ( testsMode = input.testsMode && input.testParams != nil networks []*params.Network ) networks, err = r.rpcClient.NetworkManager.Get(false) if err != nil { return nil, errors.CreateErrorResponseFromError(err) } var ( group = async.NewAtomicGroup(ctx) mu sync.Mutex ) for networkIdx := range networks { network := networks[networkIdx] if network.IsTest != input.testnetMode { continue } if containsNetworkChainID(network.ChainID, input.DisabledFromChainIDs) { continue } if !input.SendType.isAvailableFor(network) { continue } var ( token *walletToken.Token toToken *walletToken.Token ) if testsMode { token = input.testParams.tokenFrom } else { token = input.SendType.FindToken(r.tokenManager, r.collectiblesService, input.AddrFrom, network, input.TokenID) } if token == nil { continue } if input.SendType == Swap { toToken = input.SendType.FindToken(r.tokenManager, r.collectiblesService, common.Address{}, network, input.ToTokenID) } amountLocked := false amountToSend := input.AmountIn.ToInt() if lockedAmount, ok := input.FromLockedAmount[network.ChainID]; ok { amountToSend = lockedAmount.ToInt() amountLocked = true } else if len(input.FromLockedAmount) > 0 { for chainID, lockedAmount := range input.FromLockedAmount { if chainID == network.ChainID { continue } amountToSend = new(big.Int).Sub(amountToSend, lockedAmount.ToInt()) } } var fees *SuggestedFees if testsMode { fees = input.testParams.suggestedFees } else { fees, err = r.feesManager.SuggestedFees(ctx, network.ChainID) if err != nil { continue } } group.Add(func(c context.Context) error { for _, pProcessor := range r.pathProcessors { // With the condition below we're eliminating `Swap` as potential path that can participate in calculating the best route // once we decide to inlcude `Swap` in the calculation we need to update `canUseProcessor` function. // This also applies to including another (Celer) bridge in the calculation. // TODO: // this algorithm, includeing finding the best route, has to be updated to include more bridges and one (for now) or more swap options // it means that candidates should not be treated linearly, but improve the logic to have multiple routes with different processors of the same type. // Example: // Routes for sending SNT from Ethereum to Optimism can be: // 1. Swap SNT(mainnet) to ETH(mainnet); then bridge via Hop ETH(mainnet) to ETH(opt); then Swap ETH(opt) to SNT(opt); then send SNT (opt) to the destination // 2. Swap SNT(mainnet) to ETH(mainnet); then bridge via Celer ETH(mainnet) to ETH(opt); then Swap ETH(opt) to SNT(opt); then send SNT (opt) to the destination // 3. Swap SNT(mainnet) to USDC(mainnet); then bridge via Hop USDC(mainnet) to USDC(opt); then Swap USDC(opt) to SNT(opt); then send SNT (opt) to the destination // 4. Swap SNT(mainnet) to USDC(mainnet); then bridge via Celer USDC(mainnet) to USDC(opt); then Swap USDC(opt) to SNT(opt); then send SNT (opt) to the destination // 5. ... // 6. ... // // With the current routing algorithm atm we're not able to generate all possible routes. if !input.SendType.canUseProcessor(pProcessor) { continue } for _, dest := range networks { if dest.IsTest != input.testnetMode { continue } if !input.SendType.isAvailableFor(network) { continue } if !input.SendType.isAvailableBetween(network, dest) { continue } if containsNetworkChainID(dest.ChainID, input.DisabledToChainIDs) { continue } processorInputParams := pathprocessor.ProcessorInputParams{ FromChain: network, ToChain: dest, FromToken: token, ToToken: toToken, ToAddr: input.AddrTo, FromAddr: input.AddrFrom, AmountIn: amountToSend, AmountOut: input.AmountOut.ToInt(), Username: input.Username, PublicKey: input.PublicKey, PackID: input.PackID.ToInt(), } if input.testsMode { processorInputParams.TestsMode = input.testsMode processorInputParams.TestEstimationMap = input.testParams.estimationMap processorInputParams.TestBonderFeeMap = input.testParams.bonderFeeMap processorInputParams.TestApprovalGasEstimation = input.testParams.approvalGasEstimation processorInputParams.TestApprovalL1Fee = input.testParams.approvalL1Fee } can, err := pProcessor.AvailableFor(processorInputParams) if err != nil || !can { continue } bonderFees, tokenFees, err := pProcessor.CalculateFees(processorInputParams) if err != nil { continue } gasLimit, err := pProcessor.EstimateGas(processorInputParams) if err != nil { continue } approvalContractAddress, err := pProcessor.GetContractAddress(processorInputParams) if err != nil { continue } approvalRequired, approvalAmountRequired, approvalGasLimit, l1ApprovalFee, err := r.requireApproval(ctx, input.SendType, &approvalContractAddress, processorInputParams) if err != nil { continue } var l1FeeWei uint64 if input.SendType.needL1Fee() { txInputData, err := pProcessor.PackTxInputData(processorInputParams) if err != nil { continue } l1FeeWei, _ = r.feesManager.GetL1Fee(ctx, network.ChainID, txInputData) } amountOut, err := pProcessor.CalculateAmountOut(processorInputParams) if err != nil { continue } maxFeesPerGas := fees.feeFor(input.GasFeeMode) estimatedTime := r.feesManager.TransactionEstimatedTime(ctx, network.ChainID, maxFeesPerGas) if approvalRequired && estimatedTime < MoreThanFiveMinutes { estimatedTime += 1 } mu.Lock() candidates = append(candidates, &PathV2{ ProcessorName: pProcessor.Name(), FromChain: network, ToChain: dest, FromToken: token, ToToken: toToken, AmountIn: (*hexutil.Big)(amountToSend), AmountInLocked: amountLocked, AmountOut: (*hexutil.Big)(amountOut), SuggestedLevelsForMaxFeesPerGas: fees.MaxFeesLevels, TxBaseFee: (*hexutil.Big)(fees.BaseFee), TxPriorityFee: (*hexutil.Big)(fees.MaxPriorityFeePerGas), TxGasAmount: gasLimit, TxBonderFees: (*hexutil.Big)(bonderFees), TxTokenFees: (*hexutil.Big)(tokenFees), TxL1Fee: (*hexutil.Big)(big.NewInt(int64(l1FeeWei))), ApprovalRequired: approvalRequired, ApprovalAmountRequired: (*hexutil.Big)(approvalAmountRequired), ApprovalContractAddress: &approvalContractAddress, ApprovalBaseFee: (*hexutil.Big)(fees.BaseFee), ApprovalPriorityFee: (*hexutil.Big)(fees.MaxPriorityFeePerGas), ApprovalGasAmount: approvalGasLimit, ApprovalL1Fee: (*hexutil.Big)(big.NewInt(int64(l1ApprovalFee))), EstimatedTime: estimatedTime, }) mu.Unlock() } } return nil }) } group.Wait() return candidates, nil } func (r *Router) checkBalancesForTheBestRoute(ctx context.Context, bestRoute []*PathV2, input *RouteInputParams) (err error) { // check the best route for the required balances for _, path := range bestRoute { if path.requiredTokenBalance != nil && path.requiredTokenBalance.Cmp(pathprocessor.ZeroBigIntValue) > 0 { tokenBalance := big.NewInt(1) if input.testsMode { tokenBalance = input.testParams.getTestBalance(path.FromChain.ChainID, path.FromToken.Symbol) } else { if input.SendType == ERC1155Transfer { tokenBalance, err = r.getERC1155Balance(ctx, path.FromChain, path.FromToken, input.AddrFrom) if err != nil { return errors.CreateErrorResponseFromError(err) } } else if input.SendType != ERC721Transfer { tokenBalance, err = r.getBalance(ctx, path.FromChain, path.FromToken, input.AddrFrom) if err != nil { return errors.CreateErrorResponseFromError(err) } } } if tokenBalance.Cmp(path.requiredTokenBalance) == -1 { return ErrNotEnoughTokenBalance } } var nativeBalance *big.Int if input.testsMode { nativeBalance = input.testParams.getTestBalance(path.FromChain.ChainID, pathprocessor.EthSymbol) } else { nativeToken := r.tokenManager.FindToken(path.FromChain, path.FromChain.NativeCurrencySymbol) if nativeToken == nil { return ErrNativeTokenNotFound } nativeBalance, err = r.getBalance(ctx, path.FromChain, nativeToken, input.AddrFrom) if err != nil { return errors.CreateErrorResponseFromError(err) } } if nativeBalance.Cmp(path.requiredNativeBalance) == -1 { return ErrNotEnoughNativeBalance } } return nil } func removeBestRouteFromAllRouters(allRoutes [][]*PathV2, best []*PathV2) [][]*PathV2 { for i, route := range allRoutes { routeFound := true for _, p := range route { found := false for _, b := range best { if p.ProcessorName == b.ProcessorName && (p.FromChain == nil && b.FromChain == nil || p.FromChain.ChainID == b.FromChain.ChainID) && (p.ToChain == nil && b.ToChain == nil || p.ToChain.ChainID == b.ToChain.ChainID) && (p.FromToken == nil && b.FromToken == nil || p.FromToken.Symbol == b.FromToken.Symbol) { found = true break } } if !found { routeFound = false break } } if routeFound { return append(allRoutes[:i], allRoutes[i+1:]...) } } return nil } func (r *Router) resolveRoutes(ctx context.Context, input *RouteInputParams, candidates []*PathV2) (suggestedRoutes *SuggestedRoutesV2, err error) { var prices map[string]float64 if input.testsMode { prices = input.testParams.tokenPrices } else { prices, err = input.SendType.FetchPrices(r.marketManager, input.TokenID) if err != nil { return nil, errors.CreateErrorResponseFromError(err) } } tokenPrice := prices[input.TokenID] nativeChainTokenPrice := prices[pathprocessor.EthSymbol] var allRoutes [][]*PathV2 suggestedRoutes, allRoutes = newSuggestedRoutesV2(input.Uuid, input.AmountIn.ToInt(), candidates, input.FromLockedAmount, tokenPrice, nativeChainTokenPrice) for len(allRoutes) > 0 { best := findBestV2(allRoutes, tokenPrice, nativeChainTokenPrice) err := r.checkBalancesForTheBestRoute(ctx, best, input) if err != nil { // If it's about transfer or bridge and there is more routes, but on the best (cheapest) one there is not enugh balance // we shold check other routes even though there are not the cheapest ones if (input.SendType == Transfer || input.SendType == Bridge) && len(allRoutes) > 1 { allRoutes = removeBestRouteFromAllRouters(allRoutes, best) continue } else { return suggestedRoutes, errors.CreateErrorResponseFromError(err) } } if len(best) > 0 { sort.Slice(best, func(i, j int) bool { return best[i].AmountInLocked }) } suggestedRoutes.Best = best break } return suggestedRoutes, nil }