// uint256: Fixed size 256-bit math library // Copyright 2020 uint256 Authors // SPDX-License-Identifier: BSD-3-Clause package uint256 import ( "encoding/binary" "errors" "fmt" "io" "math/big" "math/bits" ) const ( maxWords = 256 / bits.UintSize // number of big.Words in 256-bit // The constants below work as compile-time checks: in case evaluated to // negative value it cannot be assigned to uint type and compilation fails. // These particular expressions check if maxWords either 4 or 8 matching // 32-bit and 64-bit architectures. _ uint = -(maxWords & (maxWords - 1)) // maxWords is power of two. _ uint = -(maxWords & ^(4 | 8)) // maxWords is 4 or 8. ) // ToBig returns a big.Int version of z. func (z *Int) ToBig() *big.Int { b := new(big.Int) switch maxWords { // Compile-time check. case 4: // 64-bit architectures. words := [4]big.Word{big.Word(z[0]), big.Word(z[1]), big.Word(z[2]), big.Word(z[3])} b.SetBits(words[:]) case 8: // 32-bit architectures. words := [8]big.Word{ big.Word(z[0]), big.Word(z[0] >> 32), big.Word(z[1]), big.Word(z[1] >> 32), big.Word(z[2]), big.Word(z[2] >> 32), big.Word(z[3]), big.Word(z[3] >> 32), } b.SetBits(words[:]) } return b } // FromBig is a convenience-constructor from big.Int. // Returns a new Int and whether overflow occurred. func FromBig(b *big.Int) (*Int, bool) { z := &Int{} overflow := z.SetFromBig(b) return z, overflow } // fromHex is the internal implementation of parsing a hex-string. func (z *Int) fromHex(hex string) error { if err := checkNumberS(hex); err != nil { return err } if len(hex) > 66 { return ErrBig256Range } end := len(hex) for i := 0; i < 4; i++ { start := end - 16 if start < 2 { start = 2 } for ri := start; ri < end; ri++ { nib := bintable[hex[ri]] if nib == badNibble { return ErrSyntax } z[i] = z[i] << 4 z[i] += uint64(nib) } end = start } return nil } // FromHex is a convenience-constructor to create an Int from // a hexadecimal string. The string is required to be '0x'-prefixed // Numbers larger than 256 bits are not accepted. func FromHex(hex string) (*Int, error) { var z Int if err := z.fromHex(hex); err != nil { return nil, err } return &z, nil } // UnmarshalText implements encoding.TextUnmarshaler func (z *Int) UnmarshalText(input []byte) error { return z.fromHex(string(input)) } // SetFromBig converts a big.Int to Int and sets the value to z. // TODO: Ensure we have sufficient testing, esp for negative bigints. func (z *Int) SetFromBig(b *big.Int) bool { z.Clear() words := b.Bits() overflow := len(words) > maxWords switch maxWords { // Compile-time check. case 4: // 64-bit architectures. if len(words) > 0 { z[0] = uint64(words[0]) if len(words) > 1 { z[1] = uint64(words[1]) if len(words) > 2 { z[2] = uint64(words[2]) if len(words) > 3 { z[3] = uint64(words[3]) } } } } case 8: // 32-bit architectures. numWords := len(words) if overflow { numWords = maxWords } for i := 0; i < numWords; i++ { if i%2 == 0 { z[i/2] = uint64(words[i]) } else { z[i/2] |= uint64(words[i]) << 32 } } } if b.Sign() == -1 { z.Neg(z) } return overflow } // Format implements fmt.Formatter. It accepts the formats // 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix), // 'd' (decimal), 'x' (lowercase hexadecimal), and // 'X' (uppercase hexadecimal). // Also supported are the full suite of package fmt's format // flags for integral types, including '+' and ' ' for sign // control, '#' for leading zero in octal and for hexadecimal, // a leading "0x" or "0X" for "%#x" and "%#X" respectively, // specification of minimum digits precision, output field // width, space or zero padding, and '-' for left or right // justification. // func (z *Int) Format(s fmt.State, ch rune) { z.ToBig().Format(s, ch) } // SetBytes8 is identical to SetBytes(in[:8]), but panics is input is too short func (z *Int) SetBytes8(in []byte) *Int { _ = in[7] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2], z[1] = 0, 0, 0 z[0] = binary.BigEndian.Uint64(in[0:8]) return z } // SetBytes16 is identical to SetBytes(in[:16]), but panics is input is too short func (z *Int) SetBytes16(in []byte) *Int { _ = in[15] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2] = 0, 0 z[1] = binary.BigEndian.Uint64(in[0:8]) z[0] = binary.BigEndian.Uint64(in[8:16]) return z } // SetBytes16 is identical to SetBytes(in[:24]), but panics is input is too short func (z *Int) SetBytes24(in []byte) *Int { _ = in[23] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = 0 z[2] = binary.BigEndian.Uint64(in[0:8]) z[1] = binary.BigEndian.Uint64(in[8:16]) z[0] = binary.BigEndian.Uint64(in[16:24]) return z } func (z *Int) SetBytes32(in []byte) *Int { _ = in[31] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = binary.BigEndian.Uint64(in[0:8]) z[2] = binary.BigEndian.Uint64(in[8:16]) z[1] = binary.BigEndian.Uint64(in[16:24]) z[0] = binary.BigEndian.Uint64(in[24:32]) return z } func (z *Int) SetBytes1(in []byte) *Int { z[3], z[2], z[1] = 0, 0, 0 z[0] = uint64(in[0]) return z } func (z *Int) SetBytes9(in []byte) *Int { _ = in[8] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2] = 0, 0 z[1] = uint64(in[0]) z[0] = binary.BigEndian.Uint64(in[1:9]) return z } func (z *Int) SetBytes17(in []byte) *Int { _ = in[16] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = 0 z[2] = uint64(in[0]) z[1] = binary.BigEndian.Uint64(in[1:9]) z[0] = binary.BigEndian.Uint64(in[9:17]) return z } func (z *Int) SetBytes25(in []byte) *Int { _ = in[24] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = uint64(in[0]) z[2] = binary.BigEndian.Uint64(in[1:9]) z[1] = binary.BigEndian.Uint64(in[9:17]) z[0] = binary.BigEndian.Uint64(in[17:25]) return z } func (z *Int) SetBytes2(in []byte) *Int { _ = in[1] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2], z[1] = 0, 0, 0 z[0] = uint64(binary.BigEndian.Uint16(in[0:2])) return z } func (z *Int) SetBytes10(in []byte) *Int { _ = in[9] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2] = 0, 0 z[1] = uint64(binary.BigEndian.Uint16(in[0:2])) z[0] = binary.BigEndian.Uint64(in[2:10]) return z } func (z *Int) SetBytes18(in []byte) *Int { _ = in[17] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = 0 z[2] = uint64(binary.BigEndian.Uint16(in[0:2])) z[1] = binary.BigEndian.Uint64(in[2:10]) z[0] = binary.BigEndian.Uint64(in[10:18]) return z } func (z *Int) SetBytes26(in []byte) *Int { _ = in[25] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = uint64(binary.BigEndian.Uint16(in[0:2])) z[2] = binary.BigEndian.Uint64(in[2:10]) z[1] = binary.BigEndian.Uint64(in[10:18]) z[0] = binary.BigEndian.Uint64(in[18:26]) return z } func (z *Int) SetBytes3(in []byte) *Int { _ = in[2] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2], z[1] = 0, 0, 0 z[0] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16 return z } func (z *Int) SetBytes11(in []byte) *Int { _ = in[10] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2] = 0, 0 z[1] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16 z[0] = binary.BigEndian.Uint64(in[3:11]) return z } func (z *Int) SetBytes19(in []byte) *Int { _ = in[18] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = 0 z[2] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16 z[1] = binary.BigEndian.Uint64(in[3:11]) z[0] = binary.BigEndian.Uint64(in[11:19]) return z } func (z *Int) SetBytes27(in []byte) *Int { _ = in[26] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16 z[2] = binary.BigEndian.Uint64(in[3:11]) z[1] = binary.BigEndian.Uint64(in[11:19]) z[0] = binary.BigEndian.Uint64(in[19:27]) return z } func (z *Int) SetBytes4(in []byte) *Int { _ = in[3] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2], z[1] = 0, 0, 0 z[0] = uint64(binary.BigEndian.Uint32(in[0:4])) return z } func (z *Int) SetBytes12(in []byte) *Int { _ = in[11] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2] = 0, 0 z[1] = uint64(binary.BigEndian.Uint32(in[0:4])) z[0] = binary.BigEndian.Uint64(in[4:12]) return z } func (z *Int) SetBytes20(in []byte) *Int { _ = in[19] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = 0 z[2] = uint64(binary.BigEndian.Uint32(in[0:4])) z[1] = binary.BigEndian.Uint64(in[4:12]) z[0] = binary.BigEndian.Uint64(in[12:20]) return z } func (z *Int) SetBytes28(in []byte) *Int { _ = in[27] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = uint64(binary.BigEndian.Uint32(in[0:4])) z[2] = binary.BigEndian.Uint64(in[4:12]) z[1] = binary.BigEndian.Uint64(in[12:20]) z[0] = binary.BigEndian.Uint64(in[20:28]) return z } func (z *Int) SetBytes5(in []byte) *Int { _ = in[4] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2], z[1] = 0, 0, 0 z[0] = bigEndianUint40(in[0:5]) return z } func (z *Int) SetBytes13(in []byte) *Int { _ = in[12] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2] = 0, 0 z[1] = bigEndianUint40(in[0:5]) z[0] = binary.BigEndian.Uint64(in[5:13]) return z } func (z *Int) SetBytes21(in []byte) *Int { _ = in[20] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = 0 z[2] = bigEndianUint40(in[0:5]) z[1] = binary.BigEndian.Uint64(in[5:13]) z[0] = binary.BigEndian.Uint64(in[13:21]) return z } func (z *Int) SetBytes29(in []byte) *Int { _ = in[23] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = bigEndianUint40(in[0:5]) z[2] = binary.BigEndian.Uint64(in[5:13]) z[1] = binary.BigEndian.Uint64(in[13:21]) z[0] = binary.BigEndian.Uint64(in[21:29]) return z } func (z *Int) SetBytes6(in []byte) *Int { _ = in[5] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2], z[1] = 0, 0, 0 z[0] = bigEndianUint48(in[0:6]) return z } func (z *Int) SetBytes14(in []byte) *Int { _ = in[13] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2] = 0, 0 z[1] = bigEndianUint48(in[0:6]) z[0] = binary.BigEndian.Uint64(in[6:14]) return z } func (z *Int) SetBytes22(in []byte) *Int { _ = in[21] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = 0 z[2] = bigEndianUint48(in[0:6]) z[1] = binary.BigEndian.Uint64(in[6:14]) z[0] = binary.BigEndian.Uint64(in[14:22]) return z } func (z *Int) SetBytes30(in []byte) *Int { _ = in[29] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = bigEndianUint48(in[0:6]) z[2] = binary.BigEndian.Uint64(in[6:14]) z[1] = binary.BigEndian.Uint64(in[14:22]) z[0] = binary.BigEndian.Uint64(in[22:30]) return z } func (z *Int) SetBytes7(in []byte) *Int { _ = in[6] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2], z[1] = 0, 0, 0 z[0] = bigEndianUint56(in[0:7]) return z } func (z *Int) SetBytes15(in []byte) *Int { _ = in[14] // bounds check hint to compiler; see golang.org/issue/14808 z[3], z[2] = 0, 0 z[1] = bigEndianUint56(in[0:7]) z[0] = binary.BigEndian.Uint64(in[7:15]) return z } func (z *Int) SetBytes23(in []byte) *Int { _ = in[22] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = 0 z[2] = bigEndianUint56(in[0:7]) z[1] = binary.BigEndian.Uint64(in[7:15]) z[0] = binary.BigEndian.Uint64(in[15:23]) return z } func (z *Int) SetBytes31(in []byte) *Int { _ = in[30] // bounds check hint to compiler; see golang.org/issue/14808 z[3] = bigEndianUint56(in[0:7]) z[2] = binary.BigEndian.Uint64(in[7:15]) z[1] = binary.BigEndian.Uint64(in[15:23]) z[0] = binary.BigEndian.Uint64(in[23:31]) return z } // Utility methods that are "missing" among the bigEndian.UintXX methods. func bigEndianUint40(b []byte) uint64 { _ = b[4] // bounds check hint to compiler; see golang.org/issue/14808 return uint64(b[4]) | uint64(b[3])<<8 | uint64(b[2])<<16 | uint64(b[1])<<24 | uint64(b[0])<<32 } func bigEndianUint48(b []byte) uint64 { _ = b[5] // bounds check hint to compiler; see golang.org/issue/14808 return uint64(b[5]) | uint64(b[4])<<8 | uint64(b[3])<<16 | uint64(b[2])<<24 | uint64(b[1])<<32 | uint64(b[0])<<40 } func bigEndianUint56(b []byte) uint64 { _ = b[6] // bounds check hint to compiler; see golang.org/issue/14808 return uint64(b[6]) | uint64(b[5])<<8 | uint64(b[4])<<16 | uint64(b[3])<<24 | uint64(b[2])<<32 | uint64(b[1])<<40 | uint64(b[0])<<48 } // EncodeRLP implements the rlp.Encoder interface from go-ethereum // and writes the RLP encoding of z to w. func (z *Int) EncodeRLP(w io.Writer) error { if z == nil { _, err := w.Write([]byte{0x80}) return err } nBits := z.BitLen() if nBits == 0 { _, err := w.Write([]byte{0x80}) return err } if nBits <= 7 { _, err := w.Write([]byte{byte(z[0])}) return err } nBytes := byte((nBits + 7) / 8) var b [33]byte binary.BigEndian.PutUint64(b[1:9], z[3]) binary.BigEndian.PutUint64(b[9:17], z[2]) binary.BigEndian.PutUint64(b[17:25], z[1]) binary.BigEndian.PutUint64(b[25:33], z[0]) b[32-nBytes] = 0x80 + nBytes _, err := w.Write(b[32-nBytes:]) return err } // MarshalText implements encoding.TextMarshaler func (z *Int) MarshalText() ([]byte, error) { return []byte(z.Hex()), nil } // UnmarshalJSON implements json.Unmarshaler. func (z *Int) UnmarshalJSON(input []byte) error { if len(input) < 2 || input[0] != '"' || input[len(input)-1] != '"' { return ErrNonString } return z.UnmarshalText(input[1 : len(input)-1]) } // String returns the hex encoding of b. func (z *Int) String() string { return z.Hex() } const ( hextable = "0123456789abcdef" bintable = "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x00\x01\x02\x03\x04\x05\x06\a\b\t\xff\xff\xff\xff\xff\xff\xff\n\v\f\r\x0e\x0f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\n\v\f\r\x0e\x0f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" badNibble = 0xff ) // Hex encodes z in 0x-prefixed hexadecimal form. func (z *Int) Hex() string { // This implementation is not optimal, it allocates a full // 66-byte output buffer which it fills. It could instead allocate a smaller // buffer, and omit the final crop-stage. output := make([]byte, 66) nibbles := (z.BitLen() + 3) / 4 // nibbles [0,64] if nibbles == 0 { nibbles = 1 } // Start with the most significant zWord := (nibbles - 1) / 16 for i := zWord; i >= 0; i-- { off := (3 - i) * 16 output[off+2] = hextable[byte(z[i]>>60)&0xf] output[off+3] = hextable[byte(z[i]>>56)&0xf] output[off+4] = hextable[byte(z[i]>>52)&0xf] output[off+5] = hextable[byte(z[i]>>48)&0xf] output[off+6] = hextable[byte(z[i]>>44)&0xf] output[off+7] = hextable[byte(z[i]>>40)&0xf] output[off+8] = hextable[byte(z[i]>>36)&0xf] output[off+9] = hextable[byte(z[i]>>32)&0xf] output[off+10] = hextable[byte(z[i]>>28)&0xf] output[off+11] = hextable[byte(z[i]>>24)&0xf] output[off+12] = hextable[byte(z[i]>>20)&0xf] output[off+13] = hextable[byte(z[i]>>16)&0xf] output[off+14] = hextable[byte(z[i]>>12)&0xf] output[off+15] = hextable[byte(z[i]>>8)&0xf] output[off+16] = hextable[byte(z[i]>>4)&0xf] output[off+17] = hextable[byte(z[i]&0xF)&0xf] } output[64-nibbles] = '0' output[65-nibbles] = 'x' return string(output[64-nibbles:]) } var ( ErrEmptyString = errors.New("empty hex string") ErrSyntax = errors.New("invalid hex string") ErrMissingPrefix = errors.New("hex string without 0x prefix") ErrEmptyNumber = errors.New("hex string \"0x\"") ErrLeadingZero = errors.New("hex number with leading zero digits") ErrBig256Range = errors.New("hex number > 256 bits") ErrNonString = errors.New("non-string") ) func checkNumberS(input string) error { l := len(input) if l == 0 { return ErrEmptyString } if l < 2 || input[0] != '0' || (input[1] != 'x' && input[1] != 'X') { return ErrMissingPrefix } if l == 2 { return ErrEmptyNumber } if len(input) > 3 && input[2] == '0' { return ErrLeadingZero } return nil }