/** * Matrix Algebra over an 8-bit Galois Field * * Copyright 2015, Klaus Post * Copyright 2015, Backblaze, Inc. */ package reedsolomon import ( "errors" "fmt" "strconv" "strings" ) // byte[row][col] type matrix [][]byte // newMatrix returns a matrix of zeros. func newMatrix(rows, cols int) (matrix, error) { if rows <= 0 { return nil, errInvalidRowSize } if cols <= 0 { return nil, errInvalidColSize } m := matrix(make([][]byte, rows)) for i := range m { m[i] = make([]byte, cols) } return m, nil } // NewMatrixData initializes a matrix with the given row-major data. // Note that data is not copied from input. func newMatrixData(data [][]byte) (matrix, error) { m := matrix(data) err := m.Check() if err != nil { return nil, err } return m, nil } // IdentityMatrix returns an identity matrix of the given size. func identityMatrix(size int) (matrix, error) { m, err := newMatrix(size, size) if err != nil { return nil, err } for i := range m { m[i][i] = 1 } return m, nil } // errInvalidRowSize will be returned if attempting to create a matrix with negative or zero row number. var errInvalidRowSize = errors.New("invalid row size") // errInvalidColSize will be returned if attempting to create a matrix with negative or zero column number. var errInvalidColSize = errors.New("invalid column size") // errColSizeMismatch is returned if the size of matrix columns mismatch. var errColSizeMismatch = errors.New("column size is not the same for all rows") func (m matrix) Check() error { rows := len(m) if rows == 0 { return errInvalidRowSize } cols := len(m[0]) if cols == 0 { return errInvalidColSize } for _, col := range m { if len(col) != cols { return errColSizeMismatch } } return nil } // String returns a human-readable string of the matrix contents. // // Example: [[1, 2], [3, 4]] func (m matrix) String() string { rowOut := make([]string, 0, len(m)) for _, row := range m { colOut := make([]string, 0, len(row)) for _, col := range row { colOut = append(colOut, strconv.Itoa(int(col))) } rowOut = append(rowOut, "["+strings.Join(colOut, ", ")+"]") } return "[" + strings.Join(rowOut, ", ") + "]" } // Multiply multiplies this matrix (the one on the left) by another // matrix (the one on the right) and returns a new matrix with the result. func (m matrix) Multiply(right matrix) (matrix, error) { if len(m[0]) != len(right) { return nil, fmt.Errorf("columns on left (%d) is different than rows on right (%d)", len(m[0]), len(right)) } result, _ := newMatrix(len(m), len(right[0])) for r, row := range result { for c := range row { var value byte for i := range m[0] { value ^= galMultiply(m[r][i], right[i][c]) } result[r][c] = value } } return result, nil } // Augment returns the concatenation of this matrix and the matrix on the right. func (m matrix) Augment(right matrix) (matrix, error) { if len(m) != len(right) { return nil, errMatrixSize } result, _ := newMatrix(len(m), len(m[0])+len(right[0])) for r, row := range m { for c := range row { result[r][c] = m[r][c] } cols := len(m[0]) for c := range right[0] { result[r][cols+c] = right[r][c] } } return result, nil } // errMatrixSize is returned if matrix dimensions are doesn't match. var errMatrixSize = errors.New("matrix sizes do not match") func (m matrix) SameSize(n matrix) error { if len(m) != len(n) { return errMatrixSize } for i := range m { if len(m[i]) != len(n[i]) { return errMatrixSize } } return nil } // SubMatrix returns a part of this matrix. Data is copied. func (m matrix) SubMatrix(rmin, cmin, rmax, cmax int) (matrix, error) { result, err := newMatrix(rmax-rmin, cmax-cmin) if err != nil { return nil, err } // OPTME: If used heavily, use copy function to copy slice for r := rmin; r < rmax; r++ { for c := cmin; c < cmax; c++ { result[r-rmin][c-cmin] = m[r][c] } } return result, nil } // SwapRows Exchanges two rows in the matrix. func (m matrix) SwapRows(r1, r2 int) error { if r1 < 0 || len(m) <= r1 || r2 < 0 || len(m) <= r2 { return errInvalidRowSize } m[r2], m[r1] = m[r1], m[r2] return nil } // IsSquare will return true if the matrix is square, otherwise false. func (m matrix) IsSquare() bool { return len(m) == len(m[0]) } // errSingular is returned if the matrix is singular and cannot be inversed var errSingular = errors.New("matrix is singular") // errNotSquare is returned if attempting to inverse a non-square matrix. var errNotSquare = errors.New("only square matrices can be inverted") // Invert returns the inverse of this matrix. // Returns ErrSingular when the matrix is singular and doesn't have an inverse. // The matrix must be square, otherwise ErrNotSquare is returned. func (m matrix) Invert() (matrix, error) { if !m.IsSquare() { return nil, errNotSquare } size := len(m) work, _ := identityMatrix(size) work, _ = m.Augment(work) err := work.gaussianElimination() if err != nil { return nil, err } return work.SubMatrix(0, size, size, size*2) } func (m matrix) gaussianElimination() error { rows := len(m) columns := len(m[0]) // Clear out the part below the main diagonal and scale the main // diagonal to be 1. for r := 0; r < rows; r++ { // If the element on the diagonal is 0, find a row below // that has a non-zero and swap them. if m[r][r] == 0 { for rowBelow := r + 1; rowBelow < rows; rowBelow++ { if m[rowBelow][r] != 0 { err := m.SwapRows(r, rowBelow) if err != nil { return err } break } } } // If we couldn't find one, the matrix is singular. if m[r][r] == 0 { return errSingular } // Scale to 1. if m[r][r] != 1 { scale := galOneOver(m[r][r]) for c := 0; c < columns; c++ { m[r][c] = galMultiply(m[r][c], scale) } } // Make everything below the 1 be a 0 by subtracting // a multiple of it. (Subtraction and addition are // both exclusive or in the Galois field.) for rowBelow := r + 1; rowBelow < rows; rowBelow++ { if m[rowBelow][r] != 0 { scale := m[rowBelow][r] for c := 0; c < columns; c++ { m[rowBelow][c] ^= galMultiply(scale, m[r][c]) } } } } // Now clear the part above the main diagonal. for d := 0; d < rows; d++ { for rowAbove := 0; rowAbove < d; rowAbove++ { if m[rowAbove][d] != 0 { scale := m[rowAbove][d] for c := 0; c < columns; c++ { m[rowAbove][c] ^= galMultiply(scale, m[d][c]) } } } } return nil } // Create a Vandermonde matrix, which is guaranteed to have the // property that any subset of rows that forms a square matrix // is invertible. func vandermonde(rows, cols int) (matrix, error) { result, err := newMatrix(rows, cols) if err != nil { return nil, err } for r, row := range result { for c := range row { result[r][c] = galExp(byte(r), c) } } return result, nil }