//go:build !noasm && !appengine && !gccgo && !nopshufb // Copyright 2015, Klaus Post, see LICENSE for details. // Copyright 2018, Minio, Inc. package reedsolomon const pshufb = true //go:noescape func galMulPpc(low, high, in, out []byte) //go:noescape func galMulPpcXor(low, high, in, out []byte) // This is what the assembler routines do in blocks of 16 bytes: /* func galMulPpc(low, high, in, out []byte) { for n, input := range in { l := input & 0xf h := input >> 4 out[n] = low[l] ^ high[h] } } func galMulPpcXor(low, high, in, out []byte) { for n, input := range in { l := input & 0xf h := input >> 4 out[n] ^= low[l] ^ high[h] } } */ func galMulSlice(c byte, in, out []byte, o *options) { if c == 1 { copy(out, in) return } done := (len(in) >> 4) << 4 if done > 0 { galMulPpc(mulTableLow[c][:], mulTableHigh[c][:], in[:done], out) } remain := len(in) - done if remain > 0 { mt := mulTable[c][:256] for i := done; i < len(in); i++ { out[i] = mt[in[i]] } } } func galMulSliceXor(c byte, in, out []byte, o *options) { if c == 1 { sliceXor(in, out, o) return } done := (len(in) >> 4) << 4 if done > 0 { galMulPpcXor(mulTableLow[c][:], mulTableHigh[c][:], in[:done], out) } remain := len(in) - done if remain > 0 { mt := mulTable[c][:256] for i := done; i < len(in); i++ { out[i] ^= mt[in[i]] } } } // 4-way butterfly func ifftDIT4(work [][]byte, dist int, log_m01, log_m23, log_m02 ffe, o *options) { ifftDIT4Ref(work, dist, log_m01, log_m23, log_m02, o) } // 4-way butterfly func ifftDIT48(work [][]byte, dist int, log_m01, log_m23, log_m02 ffe8, o *options) { ifftDIT4Ref8(work, dist, log_m01, log_m23, log_m02, o) } // 4-way butterfly func fftDIT4(work [][]byte, dist int, log_m01, log_m23, log_m02 ffe, o *options) { fftDIT4Ref(work, dist, log_m01, log_m23, log_m02, o) } // 4-way butterfly func fftDIT48(work [][]byte, dist int, log_m01, log_m23, log_m02 ffe8, o *options) { fftDIT4Ref8(work, dist, log_m01, log_m23, log_m02, o) } // 2-way butterfly forward func fftDIT2(x, y []byte, log_m ffe, o *options) { // Reference version: refMulAdd(x, y, log_m) sliceXorGo(x, y, o) } // 2-way butterfly forward func fftDIT28(x, y []byte, log_m ffe8, o *options) { // Reference version: mulAdd8(x, y, log_m, o) sliceXorGo(x, y, o) } // 2-way butterfly inverse func ifftDIT2(x, y []byte, log_m ffe, o *options) { // Reference version: sliceXorGo(x, y, o) refMulAdd(x, y, log_m) } // 2-way butterfly inverse func ifftDIT28(x, y []byte, log_m ffe8, o *options) { // Reference version: sliceXorGo(x, y, o) mulAdd8(x, y, log_m, o) } func mulgf16(x, y []byte, log_m ffe, o *options) { refMul(x, y, log_m) } func mulAdd8(out, in []byte, log_m ffe8, o *options) { t := &multiply256LUT8[log_m] galMulPpcXor(t[:16], t[16:32], in, out) done := (len(in) >> 4) << 4 in = in[done:] if len(in) > 0 { out = out[done:] refMulAdd8(in, out, log_m) } } func mulgf8(out, in []byte, log_m ffe8, o *options) { var done int t := &multiply256LUT8[log_m] galMulPpc(t[:16], t[16:32], in, out) done = (len(in) >> 4) << 4 remain := len(in) - done if remain > 0 { mt := mul8LUTs[log_m].Value[:] for i := done; i < len(in); i++ { out[i] ^= byte(mt[in[i]]) } } }