This commit introduces the following changes:
- `local-notifications` require as body an interface complying with
`json.Marshaler`
- removed unmarshaling of `Notifications` as not used (we only Marshal
notifications)
- `protocol/messenger.go` creates directly a `Notification` instead of
having an intermediate format
- add community notifications on request to join
- move parsing of text in status-go for notifications
* Migrations in place, how to run them?
* Remove down migrations and touch database.go
* Database and Database Test package in place, added functions to get and store app metrics
* make generate output
* Minor bug fix on app metrics insert and select
* Add a validation layer to restrict what can be saved in the database
* Make validation more terse, throw error if schema doesn't exist, expose appmetrics service
* service updates
* Compute all errors before sending them out
* Trying to bring a closjure to appmetrics go
* Expose appmetrics via an api, skip fancy
* Address value as Jason Dawt Rawmasage to ease parsing
* Introduce a buffered chan with magic cap of 8 to minimize writes to DB. Tests for service and API. Also expose GetAppMetrics function.
* Lint issues
* Remove autoincrement, undo waku.json changes, fix error being shadowed, return nil where nil ought to be returned, get rid of buffered channel
* Bump migration number
* Fix API factory usage
* Add comment re:json.RawMessage instead of strings
* Get rid of test vars, throw save error inside the loop
* Update version
Co-authored-by: Samuel Hawksby-Robinson <samuel@samyoul.com>
This commit expands the confirmation mechanism to allow private group
chat messages to be confirmed:
Changes:
- Added a separate table for message confirmations as group chat
messages have same messageID but multiple datasyncID
- Removed DataSyncID from raw message (I haven't removed the column name
as it can't be done in sqlite without copying over the table)
There was a bug on status-react where it would save filters that were
not listened to.
This commit adds a task to clean up those filters as they might result
in long syncing times.
This commit also returns topics/ranges/mailserves from messenger in
order to make the initialization of the app simpler and start moving
logic to status-go.
It also removes whisper from vendor.
In some instances the communities migration would be skipped but not
marked as `dirty`.
This commit addresses the issue by:
- Making sure that if dirty is set the migration is not skipped but
replayed
- If the version is on the communities migration and dirty is false, we
check for the presence of the communities table. If not present we
replay the communities migration.
- Make community_id field in user_messages nullable
It also removes all the `down` migration, as we can't use them
effectively, as explained in the README.md added.
This commit changes the behavior so that when the image is updated it
will be published on the contact code topic.
If that does not happen because we are offline, it will be scheduled for
the next time we are online.
There was an issue in using the `Wallet` flag when checking accounts to
watch for transactions.
`Wallet` indicates that it's the default wallet, not whether is a wallet
account.
That can only be checked by looking at the type (and the `Wallet` flag).
If the type is `generated`, `key` or `seed` it should be watched for
transactions.
* fix: close resultsets so we don't leak them
* Refactor browsers/database
To implement PR suggestions and improve code quality.
* Refactor services/permissions/database
To implement PR suggestions and improve code quality.
Co-authored-by: Samuel Hawksby-Robinson <samuel@samyoul.com>
* Add status-option code
This commits changes the behavior of waku introducing a new status-code,
`2`, that replaces the current single options codes.
* linting
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes