Add destructive tests (#646)

Network disconnect is introduced by removing default gateway, easily reversible condition.

On my local machine it takes 30 seconds for peers to reconnect after connectivity is restored. As you guess this is not an accident, and there is 30 seconds timeout for dial expiration. This dial expiration is used in p2p.Server to guarantee that peers are not dialed too often.

Additionally I added small script to Makefile to run such tests in docker environment, usage example:

```
make docker-test ARGS="./t/destructive/ -v -network=4"
```
This commit is contained in:
Dmitry Shulyak 2018-02-19 17:32:58 +02:00 committed by GitHub
parent 87b12ddced
commit b2580c79d7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
80 changed files with 15658 additions and 5 deletions

17
Gopkg.lock generated
View File

@ -309,6 +309,21 @@
]
revision = "b89cc31ef7977104127d34c1bd31ebd1a9db2199"
[[projects]]
branch = "master"
name = "github.com/vishvananda/netlink"
packages = [
".",
"nl"
]
revision = "d35d6b58e1cb692b27b94fc403170bf44058ac3e"
[[projects]]
branch = "master"
name = "github.com/vishvananda/netns"
packages = ["."]
revision = "be1fbeda19366dea804f00efff2dd73a1642fdcc"
[[projects]]
branch = "master"
name = "golang.org/x/crypto"
@ -412,6 +427,6 @@
[solve-meta]
analyzer-name = "dep"
analyzer-version = 1
inputs-digest = "15f735a948b26a34148ed3fa3a1d21cb1a3c45d0b87eb490a2ca1a514e4b1250"
inputs-digest = "74c0b717b81bb33bc09218c02f1077d366c5aa4b8294607695d36dc1cf94adc9"
solver-name = "gps-cdcl"
solver-version = 1

View File

@ -131,3 +131,7 @@ ignored = ["github.com/ethereum/go-ethereum/whisper/notifications"]
[[override]]
name = "github.com/syndtr/goleveldb"
revision = "b89cc31ef7977104127d34c1bd31ebd1a9db2199"
[[constraint]]
branch = "master"
name = "github.com/vishvananda/netlink"

View File

@ -19,7 +19,10 @@ XGOIMAGEIOSSIM = statusteam/xgo-ios-simulator:$(XGOVERSION)
DOCKER_IMAGE_NAME ?= status-go
UNIT_TEST_PACKAGES := $(shell go list ./... | grep -v /vendor | grep -v /t/e2e | grep -v /cmd | grep -v /lib)
DOCKER_TEST_WORKDIR = /go/src/github.com/status-im/status-go/
DOCKER_TEST_IMAGE = golang:1.9
UNIT_TEST_PACKAGES := $(shell go list ./... | grep -v /vendor | grep -v /t/e2e | grep -v /t/destructive | grep -v /cmd | grep -v /lib)
# This is a code for automatic help generator.
# It supports ANSI colors and categories.
@ -119,6 +122,9 @@ mock: ##@other Regenerate mocks
mockgen -source=geth/notification/fcm/client.go -destination=geth/notification/fcm/client_mock.go -package=fcm -imports fcm=github.com/NaySoftware/go-fcm
mockgen -source=geth/transactions/fake/txservice.go -destination=geth/transactions/fake/mock.go -package=fake
docker-test: ##@tests Run tests in a docker container with golang.
docker run --privileged --rm -it -v "$(shell pwd):$(DOCKER_TEST_WORKDIR)" -w "$(DOCKER_TEST_WORKDIR)" $(DOCKER_TEST_IMAGE) go test ${ARGS}
test: test-unit-coverage ##@tests Run basic, short tests during development
test-unit: ##@tests Run unit and integration tests

View File

@ -53,7 +53,7 @@ func NewStatusBackend() *StatusBackend {
}
// NodeManager returns reference to node manager
func (b *StatusBackend) NodeManager() common.NodeManager {
func (b *StatusBackend) NodeManager() *node.NodeManager {
return b.nodeManager
}

View File

@ -200,6 +200,36 @@ func (m *NodeManager) populateStaticPeers() error {
return nil
}
func (m *NodeManager) removeStaticPeers() error {
if !m.config.BootClusterConfig.Enabled {
log.Info("Boot cluster is disabled")
return nil
}
server := m.node.Server()
if server == nil {
return ErrNoRunningNode
}
for _, enode := range m.config.BootClusterConfig.BootNodes {
err := m.removePeer(enode)
if err != nil {
log.Warn("Boot node deletion failed", "error", err)
return err
}
log.Info("Boot node deleted", "enode", enode)
}
return nil
}
// ReconnectStaticPeers removes and adds static peers to a server.
func (m *NodeManager) ReconnectStaticPeers() error {
m.mu.Lock()
defer m.mu.Unlock()
if err := m.removeStaticPeers(); err != nil {
return err
}
return m.populateStaticPeers()
}
// AddPeer adds new static peer node
func (m *NodeManager) AddPeer(url string) error {
m.mu.RLock()
@ -221,6 +251,15 @@ func (m *NodeManager) addPeer(url string) error {
return nil
}
func (m *NodeManager) removePeer(url string) error {
parsedNode, err := discover.ParseNode(url)
if err != nil {
return err
}
m.node.Server().RemovePeer(parsedNode)
return nil
}
// PeerCount returns the number of connected peers.
func (m *NodeManager) PeerCount() int {
if !m.IsNodeRunning() {

13
t/destructive/README.md Normal file
View File

@ -0,0 +1,13 @@
Destructive tests
=================
The goal is to test behaviour of status-go and underlying protocols under
erroneous conditions, such as losing network connection.
Test could cause unpredictable side effects, such as change of network configuration.
I don't advice to run them locally on your machine, just use docker container.
Also note that tests are relying on real data, such as number of peers.
```bash
make docker-test ARGS="./t/destructive/ -v -network=3"
```

106
t/destructive/peers_test.go Normal file
View File

@ -0,0 +1,106 @@
package destructive
import (
"errors"
"testing"
"time"
"github.com/status-im/status-go/geth/api"
"github.com/status-im/status-go/geth/log"
"github.com/status-im/status-go/t/e2e"
. "github.com/status-im/status-go/t/utils"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/stretchr/testify/suite"
)
const (
defaultTimeout = 40 * time.Second
)
func TestPeersSuiteLinkUpDown(t *testing.T) {
suite.Run(t, &PeersTestSuite{controller: new(NetworkConnectionController)})
}
type PeersTestSuite struct {
suite.Suite
backend *api.StatusBackend
controller *NetworkConnectionController
}
func (s *PeersTestSuite) SetupTest() {
s.backend = api.NewStatusBackend()
config, err := e2e.MakeTestNodeConfig(GetNetworkID())
s.Require().NoError(err)
// we need to enable atleast 1 protocol, otherwise peers won't connect
config.LightEthConfig.Enabled = false
config.WhisperConfig.Enabled = true
s.Require().NoError(s.backend.StartNode(config))
}
func (s *PeersTestSuite) TearDownTest() {
s.Require().NoError(s.backend.StopNode())
}
func consumeUntil(events <-chan *p2p.PeerEvent, f func(ev *p2p.PeerEvent) bool, timeout time.Duration) error {
timer := time.After(timeout)
for {
select {
case ev := <-events:
if f(ev) {
return nil
}
case <-timer:
return errors.New("timeout")
}
}
}
func (s *PeersTestSuite) TestStaticPeersReconnect() {
// both on rinkeby and ropsten we can expect atleast 2 peers connected
expectedPeersCount := 2
events := make(chan *p2p.PeerEvent, 10)
node, err := s.backend.NodeManager().Node()
s.Require().NoError(err)
subscription := node.Server().SubscribeEvents(events)
defer subscription.Unsubscribe()
peers := map[discover.NodeID]struct{}{}
before := time.Now()
s.Require().NoError(consumeUntil(events, func(ev *p2p.PeerEvent) bool {
log.Info("tests", "event", ev)
if ev.Type == p2p.PeerEventTypeAdd {
peers[ev.Peer] = struct{}{}
}
return len(peers) == expectedPeersCount
}, defaultTimeout))
s.WithinDuration(time.Now(), before, 5*time.Second)
s.Require().NoError(s.controller.Enable())
before = time.Now()
s.Require().NoError(consumeUntil(events, func(ev *p2p.PeerEvent) bool {
log.Info("tests", "event", ev)
if ev.Type == p2p.PeerEventTypeDrop {
delete(peers, ev.Peer)
}
return len(peers) == 0
}, defaultTimeout))
s.WithinDuration(time.Now(), before, 31*time.Second)
s.Require().NoError(s.controller.Disable())
before = time.Now()
go func() {
s.NoError(s.backend.NodeManager().ReconnectStaticPeers())
}()
s.Require().NoError(consumeUntil(events, func(ev *p2p.PeerEvent) bool {
log.Info("tests", "event", ev)
if ev.Type == p2p.PeerEventTypeAdd {
peers[ev.Peer] = struct{}{}
}
return len(peers) == expectedPeersCount
}, defaultTimeout))
s.WithinDuration(time.Now(), before, 31*time.Second)
}

View File

@ -0,0 +1,33 @@
package destructive
import (
"github.com/vishvananda/netlink"
)
// NetworkConnectionController removes and restores network connection.
type NetworkConnectionController struct {
defRoute *netlink.Route
}
// Enable removes default route.
func (t *NetworkConnectionController) Enable() error {
link, err := netlink.LinkByName("eth0")
if err != nil {
return err
}
// order is determentistic, but we can remove all routes if necessary
routes, err := netlink.RouteList(link, 4)
if err != nil {
return err
}
t.defRoute = &routes[0]
return netlink.RouteDel(&routes[0])
}
// Disable removes default route.
func (t *NetworkConnectionController) Disable() error {
if t.defRoute != nil {
return netlink.RouteAdd(t.defRoute)
}
return nil
}

View File

@ -1,4 +1,4 @@
package t
package e2e
import (
"github.com/ethereum/go-ethereum/les"

View File

@ -1,4 +1,4 @@
package t
package e2e
import (
"context"

13
vendor/github.com/vishvananda/netlink/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,13 @@
language: go
before_script:
# make sure we keep path in tact when we sudo
- sudo sed -i -e 's/^Defaults\tsecure_path.*$//' /etc/sudoers
# modprobe ip_gre or else the first gre device can't be deleted
- sudo modprobe ip_gre
# modprobe nf_conntrack for the conntrack testing
- sudo modprobe nf_conntrack
- sudo modprobe nf_conntrack_netlink
- sudo modprobe nf_conntrack_ipv4
- sudo modprobe nf_conntrack_ipv6
install:
- go get github.com/vishvananda/netns

192
vendor/github.com/vishvananda/netlink/LICENSE generated vendored Normal file
View File

@ -0,0 +1,192 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
Copyright 2014 Vishvananda Ishaya.
Copyright 2014 Docker, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

30
vendor/github.com/vishvananda/netlink/Makefile generated vendored Normal file
View File

@ -0,0 +1,30 @@
DIRS := \
. \
nl
DEPS = \
github.com/vishvananda/netns \
golang.org/x/sys/unix
uniq = $(if $1,$(firstword $1) $(call uniq,$(filter-out $(firstword $1),$1)))
testdirs = $(call uniq,$(foreach d,$(1),$(dir $(wildcard $(d)/*_test.go))))
goroot = $(addprefix ../../../,$(1))
unroot = $(subst ../../../,,$(1))
fmt = $(addprefix fmt-,$(1))
all: test
$(call goroot,$(DEPS)):
go get $(call unroot,$@)
.PHONY: $(call testdirs,$(DIRS))
$(call testdirs,$(DIRS)):
go test -test.exec sudo -test.parallel 4 -timeout 60s -test.v github.com/vishvananda/netlink/$@
$(call fmt,$(call testdirs,$(DIRS))):
! gofmt -l $(subst fmt-,,$@)/*.go | grep -q .
.PHONY: fmt
fmt: $(call fmt,$(call testdirs,$(DIRS)))
test: fmt $(call goroot,$(DEPS)) $(call testdirs,$(DIRS))

92
vendor/github.com/vishvananda/netlink/README.md generated vendored Normal file
View File

@ -0,0 +1,92 @@
# netlink - netlink library for go #
[![Build Status](https://travis-ci.org/vishvananda/netlink.png?branch=master)](https://travis-ci.org/vishvananda/netlink) [![GoDoc](https://godoc.org/github.com/vishvananda/netlink?status.svg)](https://godoc.org/github.com/vishvananda/netlink)
The netlink package provides a simple netlink library for go. Netlink
is the interface a user-space program in linux uses to communicate with
the kernel. It can be used to add and remove interfaces, set ip addresses
and routes, and configure ipsec. Netlink communication requires elevated
privileges, so in most cases this code needs to be run as root. Since
low-level netlink messages are inscrutable at best, the library attempts
to provide an api that is loosely modeled on the CLI provided by iproute2.
Actions like `ip link add` will be accomplished via a similarly named
function like AddLink(). This library began its life as a fork of the
netlink functionality in
[docker/libcontainer](https://github.com/docker/libcontainer) but was
heavily rewritten to improve testability, performance, and to add new
functionality like ipsec xfrm handling.
## Local Build and Test ##
You can use go get command:
go get github.com/vishvananda/netlink
Testing dependencies:
go get github.com/vishvananda/netns
Testing (requires root):
sudo -E go test github.com/vishvananda/netlink
## Examples ##
Add a new bridge and add eth1 into it:
```go
package main
import (
"fmt"
"github.com/vishvananda/netlink"
)
func main() {
la := netlink.NewLinkAttrs()
la.Name = "foo"
mybridge := &netlink.Bridge{LinkAttrs: la}
err := netlink.LinkAdd(mybridge)
if err != nil {
fmt.Printf("could not add %s: %v\n", la.Name, err)
}
eth1, _ := netlink.LinkByName("eth1")
netlink.LinkSetMaster(eth1, mybridge)
}
```
Note `NewLinkAttrs` constructor, it sets default values in structure. For now
it sets only `TxQLen` to `-1`, so kernel will set default by itself. If you're
using simple initialization(`LinkAttrs{Name: "foo"}`) `TxQLen` will be set to
`0` unless you specify it like `LinkAttrs{Name: "foo", TxQLen: 1000}`.
Add a new ip address to loopback:
```go
package main
import (
"github.com/vishvananda/netlink"
)
func main() {
lo, _ := netlink.LinkByName("lo")
addr, _ := netlink.ParseAddr("169.254.169.254/32")
netlink.AddrAdd(lo, addr)
}
```
## Future Work ##
Many pieces of netlink are not yet fully supported in the high-level
interface. Aspects of virtually all of the high-level objects don't exist.
Many of the underlying primitives are there, so its a matter of putting
the right fields into the high-level objects and making sure that they
are serialized and deserialized correctly in the Add and List methods.
There are also a few pieces of low level netlink functionality that still
need to be implemented. Routing rules are not in place and some of the
more advanced link types. Hopefully there is decent structure and testing
in place to make these fairly straightforward to add.

56
vendor/github.com/vishvananda/netlink/addr.go generated vendored Normal file
View File

@ -0,0 +1,56 @@
package netlink
import (
"fmt"
"net"
"strings"
)
// Addr represents an IP address from netlink. Netlink ip addresses
// include a mask, so it stores the address as a net.IPNet.
type Addr struct {
*net.IPNet
Label string
Flags int
Scope int
Peer *net.IPNet
Broadcast net.IP
PreferedLft int
ValidLft int
}
// String returns $ip/$netmask $label
func (a Addr) String() string {
return strings.TrimSpace(fmt.Sprintf("%s %s", a.IPNet, a.Label))
}
// ParseAddr parses the string representation of an address in the
// form $ip/$netmask $label. The label portion is optional
func ParseAddr(s string) (*Addr, error) {
label := ""
parts := strings.Split(s, " ")
if len(parts) > 1 {
s = parts[0]
label = parts[1]
}
m, err := ParseIPNet(s)
if err != nil {
return nil, err
}
return &Addr{IPNet: m, Label: label}, nil
}
// Equal returns true if both Addrs have the same net.IPNet value.
func (a Addr) Equal(x Addr) bool {
sizea, _ := a.Mask.Size()
sizeb, _ := x.Mask.Size()
// ignore label for comparison
return a.IP.Equal(x.IP) && sizea == sizeb
}
func (a Addr) PeerEqual(x Addr) bool {
sizea, _ := a.Peer.Mask.Size()
sizeb, _ := x.Peer.Mask.Size()
// ignore label for comparison
return a.Peer.IP.Equal(x.Peer.IP) && sizea == sizeb
}

354
vendor/github.com/vishvananda/netlink/addr_linux.go generated vendored Normal file
View File

@ -0,0 +1,354 @@
package netlink
import (
"fmt"
"net"
"strings"
"syscall"
"github.com/vishvananda/netlink/nl"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
// IFA_FLAGS is a u32 attribute.
const IFA_FLAGS = 0x8
// AddrAdd will add an IP address to a link device.
// Equivalent to: `ip addr add $addr dev $link`
func AddrAdd(link Link, addr *Addr) error {
return pkgHandle.AddrAdd(link, addr)
}
// AddrAdd will add an IP address to a link device.
// Equivalent to: `ip addr add $addr dev $link`
func (h *Handle) AddrAdd(link Link, addr *Addr) error {
req := h.newNetlinkRequest(unix.RTM_NEWADDR, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
return h.addrHandle(link, addr, req)
}
// AddrReplace will replace (or, if not present, add) an IP address on a link device.
// Equivalent to: `ip addr replace $addr dev $link`
func AddrReplace(link Link, addr *Addr) error {
return pkgHandle.AddrReplace(link, addr)
}
// AddrReplace will replace (or, if not present, add) an IP address on a link device.
// Equivalent to: `ip addr replace $addr dev $link`
func (h *Handle) AddrReplace(link Link, addr *Addr) error {
req := h.newNetlinkRequest(unix.RTM_NEWADDR, unix.NLM_F_CREATE|unix.NLM_F_REPLACE|unix.NLM_F_ACK)
return h.addrHandle(link, addr, req)
}
// AddrDel will delete an IP address from a link device.
// Equivalent to: `ip addr del $addr dev $link`
func AddrDel(link Link, addr *Addr) error {
return pkgHandle.AddrDel(link, addr)
}
// AddrDel will delete an IP address from a link device.
// Equivalent to: `ip addr del $addr dev $link`
func (h *Handle) AddrDel(link Link, addr *Addr) error {
req := h.newNetlinkRequest(unix.RTM_DELADDR, unix.NLM_F_ACK)
return h.addrHandle(link, addr, req)
}
func (h *Handle) addrHandle(link Link, addr *Addr, req *nl.NetlinkRequest) error {
base := link.Attrs()
if addr.Label != "" && !strings.HasPrefix(addr.Label, base.Name) {
return fmt.Errorf("label must begin with interface name")
}
h.ensureIndex(base)
family := nl.GetIPFamily(addr.IP)
msg := nl.NewIfAddrmsg(family)
msg.Index = uint32(base.Index)
msg.Scope = uint8(addr.Scope)
prefixlen, masklen := addr.Mask.Size()
msg.Prefixlen = uint8(prefixlen)
req.AddData(msg)
var localAddrData []byte
if family == FAMILY_V4 {
localAddrData = addr.IP.To4()
} else {
localAddrData = addr.IP.To16()
}
localData := nl.NewRtAttr(unix.IFA_LOCAL, localAddrData)
req.AddData(localData)
var peerAddrData []byte
if addr.Peer != nil {
if family == FAMILY_V4 {
peerAddrData = addr.Peer.IP.To4()
} else {
peerAddrData = addr.Peer.IP.To16()
}
} else {
peerAddrData = localAddrData
}
addressData := nl.NewRtAttr(unix.IFA_ADDRESS, peerAddrData)
req.AddData(addressData)
if addr.Flags != 0 {
if addr.Flags <= 0xff {
msg.IfAddrmsg.Flags = uint8(addr.Flags)
} else {
b := make([]byte, 4)
native.PutUint32(b, uint32(addr.Flags))
flagsData := nl.NewRtAttr(IFA_FLAGS, b)
req.AddData(flagsData)
}
}
if family == FAMILY_V4 {
if addr.Broadcast == nil {
calcBroadcast := make(net.IP, masklen/8)
for i := range localAddrData {
calcBroadcast[i] = localAddrData[i] | ^addr.Mask[i]
}
addr.Broadcast = calcBroadcast
}
req.AddData(nl.NewRtAttr(unix.IFA_BROADCAST, addr.Broadcast))
if addr.Label != "" {
labelData := nl.NewRtAttr(unix.IFA_LABEL, nl.ZeroTerminated(addr.Label))
req.AddData(labelData)
}
}
// 0 is the default value for these attributes. However, 0 means "expired", while the least-surprising default
// value should be "forever". To compensate for that, only add the attributes if at least one of the values is
// non-zero, which means the caller has explicitly set them
if addr.ValidLft > 0 || addr.PreferedLft > 0 {
cachedata := nl.IfaCacheInfo{
IfaValid: uint32(addr.ValidLft),
IfaPrefered: uint32(addr.PreferedLft),
}
req.AddData(nl.NewRtAttr(unix.IFA_CACHEINFO, cachedata.Serialize()))
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// AddrList gets a list of IP addresses in the system.
// Equivalent to: `ip addr show`.
// The list can be filtered by link and ip family.
func AddrList(link Link, family int) ([]Addr, error) {
return pkgHandle.AddrList(link, family)
}
// AddrList gets a list of IP addresses in the system.
// Equivalent to: `ip addr show`.
// The list can be filtered by link and ip family.
func (h *Handle) AddrList(link Link, family int) ([]Addr, error) {
req := h.newNetlinkRequest(unix.RTM_GETADDR, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(family)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWADDR)
if err != nil {
return nil, err
}
indexFilter := 0
if link != nil {
base := link.Attrs()
h.ensureIndex(base)
indexFilter = base.Index
}
var res []Addr
for _, m := range msgs {
addr, msgFamily, ifindex, err := parseAddr(m)
if err != nil {
return res, err
}
if link != nil && ifindex != indexFilter {
// Ignore messages from other interfaces
continue
}
if family != FAMILY_ALL && msgFamily != family {
continue
}
res = append(res, addr)
}
return res, nil
}
func parseAddr(m []byte) (addr Addr, family, index int, err error) {
msg := nl.DeserializeIfAddrmsg(m)
family = -1
index = -1
attrs, err1 := nl.ParseRouteAttr(m[msg.Len():])
if err1 != nil {
err = err1
return
}
family = int(msg.Family)
index = int(msg.Index)
var local, dst *net.IPNet
for _, attr := range attrs {
switch attr.Attr.Type {
case unix.IFA_ADDRESS:
dst = &net.IPNet{
IP: attr.Value,
Mask: net.CIDRMask(int(msg.Prefixlen), 8*len(attr.Value)),
}
addr.Peer = dst
case unix.IFA_LOCAL:
local = &net.IPNet{
IP: attr.Value,
Mask: net.CIDRMask(int(msg.Prefixlen), 8*len(attr.Value)),
}
addr.IPNet = local
case unix.IFA_BROADCAST:
addr.Broadcast = attr.Value
case unix.IFA_LABEL:
addr.Label = string(attr.Value[:len(attr.Value)-1])
case IFA_FLAGS:
addr.Flags = int(native.Uint32(attr.Value[0:4]))
case nl.IFA_CACHEINFO:
ci := nl.DeserializeIfaCacheInfo(attr.Value)
addr.PreferedLft = int(ci.IfaPrefered)
addr.ValidLft = int(ci.IfaValid)
}
}
// IFA_LOCAL should be there but if not, fall back to IFA_ADDRESS
if local != nil {
addr.IPNet = local
} else {
addr.IPNet = dst
}
addr.Scope = int(msg.Scope)
return
}
type AddrUpdate struct {
LinkAddress net.IPNet
LinkIndex int
Flags int
Scope int
PreferedLft int
ValidLft int
NewAddr bool // true=added false=deleted
}
// AddrSubscribe takes a chan down which notifications will be sent
// when addresses change. Close the 'done' chan to stop subscription.
func AddrSubscribe(ch chan<- AddrUpdate, done <-chan struct{}) error {
return addrSubscribeAt(netns.None(), netns.None(), ch, done, nil, false)
}
// AddrSubscribeAt works like AddrSubscribe plus it allows the caller
// to choose the network namespace in which to subscribe (ns).
func AddrSubscribeAt(ns netns.NsHandle, ch chan<- AddrUpdate, done <-chan struct{}) error {
return addrSubscribeAt(ns, netns.None(), ch, done, nil, false)
}
// AddrSubscribeOptions contains a set of options to use with
// AddrSubscribeWithOptions.
type AddrSubscribeOptions struct {
Namespace *netns.NsHandle
ErrorCallback func(error)
ListExisting bool
}
// AddrSubscribeWithOptions work like AddrSubscribe but enable to
// provide additional options to modify the behavior. Currently, the
// namespace can be provided as well as an error callback.
func AddrSubscribeWithOptions(ch chan<- AddrUpdate, done <-chan struct{}, options AddrSubscribeOptions) error {
if options.Namespace == nil {
none := netns.None()
options.Namespace = &none
}
return addrSubscribeAt(*options.Namespace, netns.None(), ch, done, options.ErrorCallback, options.ListExisting)
}
func addrSubscribeAt(newNs, curNs netns.NsHandle, ch chan<- AddrUpdate, done <-chan struct{}, cberr func(error), listExisting bool) error {
s, err := nl.SubscribeAt(newNs, curNs, unix.NETLINK_ROUTE, unix.RTNLGRP_IPV4_IFADDR, unix.RTNLGRP_IPV6_IFADDR)
if err != nil {
return err
}
if done != nil {
go func() {
<-done
s.Close()
}()
}
if listExisting {
req := pkgHandle.newNetlinkRequest(unix.RTM_GETADDR,
unix.NLM_F_DUMP)
infmsg := nl.NewIfInfomsg(unix.AF_UNSPEC)
req.AddData(infmsg)
if err := s.Send(req); err != nil {
return err
}
}
go func() {
defer close(ch)
for {
msgs, err := s.Receive()
if err != nil {
if cberr != nil {
cberr(err)
}
return
}
for _, m := range msgs {
if m.Header.Type == unix.NLMSG_DONE {
continue
}
if m.Header.Type == unix.NLMSG_ERROR {
native := nl.NativeEndian()
error := int32(native.Uint32(m.Data[0:4]))
if error == 0 {
continue
}
if cberr != nil {
cberr(syscall.Errno(-error))
}
return
}
msgType := m.Header.Type
if msgType != unix.RTM_NEWADDR && msgType != unix.RTM_DELADDR {
if cberr != nil {
cberr(fmt.Errorf("bad message type: %d", msgType))
}
return
}
addr, _, ifindex, err := parseAddr(m.Data)
if err != nil {
if cberr != nil {
cberr(fmt.Errorf("could not parse address: %v", err))
}
return
}
ch <- AddrUpdate{LinkAddress: *addr.IPNet,
LinkIndex: ifindex,
NewAddr: msgType == unix.RTM_NEWADDR,
Flags: addr.Flags,
Scope: addr.Scope,
PreferedLft: addr.PreferedLft,
ValidLft: addr.ValidLft}
}
}
}()
return nil
}

53
vendor/github.com/vishvananda/netlink/bpf_linux.go generated vendored Normal file
View File

@ -0,0 +1,53 @@
package netlink
import (
"unsafe"
"golang.org/x/sys/unix"
)
type BpfProgType uint32
const (
BPF_PROG_TYPE_UNSPEC BpfProgType = iota
BPF_PROG_TYPE_SOCKET_FILTER
BPF_PROG_TYPE_KPROBE
BPF_PROG_TYPE_SCHED_CLS
BPF_PROG_TYPE_SCHED_ACT
BPF_PROG_TYPE_TRACEPOINT
BPF_PROG_TYPE_XDP
)
type BPFAttr struct {
ProgType uint32
InsnCnt uint32
Insns uintptr
License uintptr
LogLevel uint32
LogSize uint32
LogBuf uintptr
KernVersion uint32
}
// loadSimpleBpf loads a trivial bpf program for testing purposes.
func loadSimpleBpf(progType BpfProgType, ret uint32) (int, error) {
insns := []uint64{
0x00000000000000b7 | (uint64(ret) << 32),
0x0000000000000095,
}
license := []byte{'A', 'S', 'L', '2', '\x00'}
attr := BPFAttr{
ProgType: uint32(progType),
InsnCnt: uint32(len(insns)),
Insns: uintptr(unsafe.Pointer(&insns[0])),
License: uintptr(unsafe.Pointer(&license[0])),
}
fd, _, errno := unix.Syscall(unix.SYS_BPF,
5, /* bpf cmd */
uintptr(unsafe.Pointer(&attr)),
unsafe.Sizeof(attr))
if errno != 0 {
return 0, errno
}
return int(fd), nil
}

115
vendor/github.com/vishvananda/netlink/bridge_linux.go generated vendored Normal file
View File

@ -0,0 +1,115 @@
package netlink
import (
"fmt"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// BridgeVlanList gets a map of device id to bridge vlan infos.
// Equivalent to: `bridge vlan show`
func BridgeVlanList() (map[int32][]*nl.BridgeVlanInfo, error) {
return pkgHandle.BridgeVlanList()
}
// BridgeVlanList gets a map of device id to bridge vlan infos.
// Equivalent to: `bridge vlan show`
func (h *Handle) BridgeVlanList() (map[int32][]*nl.BridgeVlanInfo, error) {
req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(unix.AF_BRIDGE)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.IFLA_EXT_MASK, nl.Uint32Attr(uint32(nl.RTEXT_FILTER_BRVLAN))))
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWLINK)
if err != nil {
return nil, err
}
ret := make(map[int32][]*nl.BridgeVlanInfo)
for _, m := range msgs {
msg := nl.DeserializeIfInfomsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.IFLA_AF_SPEC:
//nested attr
nestAttrs, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, fmt.Errorf("failed to parse nested attr %v", err)
}
for _, nestAttr := range nestAttrs {
switch nestAttr.Attr.Type {
case nl.IFLA_BRIDGE_VLAN_INFO:
vlanInfo := nl.DeserializeBridgeVlanInfo(nestAttr.Value)
ret[msg.Index] = append(ret[msg.Index], vlanInfo)
}
}
}
}
}
return ret, nil
}
// BridgeVlanAdd adds a new vlan filter entry
// Equivalent to: `bridge vlan add dev DEV vid VID [ pvid ] [ untagged ] [ self ] [ master ]`
func BridgeVlanAdd(link Link, vid uint16, pvid, untagged, self, master bool) error {
return pkgHandle.BridgeVlanAdd(link, vid, pvid, untagged, self, master)
}
// BridgeVlanAdd adds a new vlan filter entry
// Equivalent to: `bridge vlan add dev DEV vid VID [ pvid ] [ untagged ] [ self ] [ master ]`
func (h *Handle) BridgeVlanAdd(link Link, vid uint16, pvid, untagged, self, master bool) error {
return h.bridgeVlanModify(unix.RTM_SETLINK, link, vid, pvid, untagged, self, master)
}
// BridgeVlanDel adds a new vlan filter entry
// Equivalent to: `bridge vlan del dev DEV vid VID [ pvid ] [ untagged ] [ self ] [ master ]`
func BridgeVlanDel(link Link, vid uint16, pvid, untagged, self, master bool) error {
return pkgHandle.BridgeVlanDel(link, vid, pvid, untagged, self, master)
}
// BridgeVlanDel adds a new vlan filter entry
// Equivalent to: `bridge vlan del dev DEV vid VID [ pvid ] [ untagged ] [ self ] [ master ]`
func (h *Handle) BridgeVlanDel(link Link, vid uint16, pvid, untagged, self, master bool) error {
return h.bridgeVlanModify(unix.RTM_DELLINK, link, vid, pvid, untagged, self, master)
}
func (h *Handle) bridgeVlanModify(cmd int, link Link, vid uint16, pvid, untagged, self, master bool) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(cmd, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_BRIDGE)
msg.Index = int32(base.Index)
req.AddData(msg)
br := nl.NewRtAttr(nl.IFLA_AF_SPEC, nil)
var flags uint16
if self {
flags |= nl.BRIDGE_FLAGS_SELF
}
if master {
flags |= nl.BRIDGE_FLAGS_MASTER
}
if flags > 0 {
nl.NewRtAttrChild(br, nl.IFLA_BRIDGE_FLAGS, nl.Uint16Attr(flags))
}
vlanInfo := &nl.BridgeVlanInfo{Vid: vid}
if pvid {
vlanInfo.Flags |= nl.BRIDGE_VLAN_INFO_PVID
}
if untagged {
vlanInfo.Flags |= nl.BRIDGE_VLAN_INFO_UNTAGGED
}
nl.NewRtAttrChild(br, nl.IFLA_BRIDGE_VLAN_INFO, vlanInfo.Serialize())
req.AddData(br)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
if err != nil {
return err
}
return nil
}

78
vendor/github.com/vishvananda/netlink/class.go generated vendored Normal file
View File

@ -0,0 +1,78 @@
package netlink
import (
"fmt"
)
type Class interface {
Attrs() *ClassAttrs
Type() string
}
// ClassAttrs represents a netlink class. A filter is associated with a link,
// has a handle and a parent. The root filter of a device should have a
// parent == HANDLE_ROOT.
type ClassAttrs struct {
LinkIndex int
Handle uint32
Parent uint32
Leaf uint32
}
func (q ClassAttrs) String() string {
return fmt.Sprintf("{LinkIndex: %d, Handle: %s, Parent: %s, Leaf: %d}", q.LinkIndex, HandleStr(q.Handle), HandleStr(q.Parent), q.Leaf)
}
type HtbClassAttrs struct {
// TODO handle all attributes
Rate uint64
Ceil uint64
Buffer uint32
Cbuffer uint32
Quantum uint32
Level uint32
Prio uint32
}
func (q HtbClassAttrs) String() string {
return fmt.Sprintf("{Rate: %d, Ceil: %d, Buffer: %d, Cbuffer: %d}", q.Rate, q.Ceil, q.Buffer, q.Cbuffer)
}
// HtbClass represents an Htb class
type HtbClass struct {
ClassAttrs
Rate uint64
Ceil uint64
Buffer uint32
Cbuffer uint32
Quantum uint32
Level uint32
Prio uint32
}
func (q HtbClass) String() string {
return fmt.Sprintf("{Rate: %d, Ceil: %d, Buffer: %d, Cbuffer: %d}", q.Rate, q.Ceil, q.Buffer, q.Cbuffer)
}
func (q *HtbClass) Attrs() *ClassAttrs {
return &q.ClassAttrs
}
func (q *HtbClass) Type() string {
return "htb"
}
// GenericClass classes represent types that are not currently understood
// by this netlink library.
type GenericClass struct {
ClassAttrs
ClassType string
}
func (class *GenericClass) Attrs() *ClassAttrs {
return &class.ClassAttrs
}
func (class *GenericClass) Type() string {
return class.ClassType
}

255
vendor/github.com/vishvananda/netlink/class_linux.go generated vendored Normal file
View File

@ -0,0 +1,255 @@
package netlink
import (
"errors"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// NOTE: function is in here because it uses other linux functions
func NewHtbClass(attrs ClassAttrs, cattrs HtbClassAttrs) *HtbClass {
mtu := 1600
rate := cattrs.Rate / 8
ceil := cattrs.Ceil / 8
buffer := cattrs.Buffer
cbuffer := cattrs.Cbuffer
if ceil == 0 {
ceil = rate
}
if buffer == 0 {
buffer = uint32(float64(rate)/Hz() + float64(mtu))
}
buffer = uint32(Xmittime(rate, buffer))
if cbuffer == 0 {
cbuffer = uint32(float64(ceil)/Hz() + float64(mtu))
}
cbuffer = uint32(Xmittime(ceil, cbuffer))
return &HtbClass{
ClassAttrs: attrs,
Rate: rate,
Ceil: ceil,
Buffer: buffer,
Cbuffer: cbuffer,
Quantum: 10,
Level: 0,
Prio: 0,
}
}
// ClassDel will delete a class from the system.
// Equivalent to: `tc class del $class`
func ClassDel(class Class) error {
return pkgHandle.ClassDel(class)
}
// ClassDel will delete a class from the system.
// Equivalent to: `tc class del $class`
func (h *Handle) ClassDel(class Class) error {
return h.classModify(unix.RTM_DELTCLASS, 0, class)
}
// ClassChange will change a class in place
// Equivalent to: `tc class change $class`
// The parent and handle MUST NOT be changed.
func ClassChange(class Class) error {
return pkgHandle.ClassChange(class)
}
// ClassChange will change a class in place
// Equivalent to: `tc class change $class`
// The parent and handle MUST NOT be changed.
func (h *Handle) ClassChange(class Class) error {
return h.classModify(unix.RTM_NEWTCLASS, 0, class)
}
// ClassReplace will replace a class to the system.
// quivalent to: `tc class replace $class`
// The handle MAY be changed.
// If a class already exist with this parent/handle pair, the class is changed.
// If a class does not already exist with this parent/handle, a new class is created.
func ClassReplace(class Class) error {
return pkgHandle.ClassReplace(class)
}
// ClassReplace will replace a class to the system.
// quivalent to: `tc class replace $class`
// The handle MAY be changed.
// If a class already exist with this parent/handle pair, the class is changed.
// If a class does not already exist with this parent/handle, a new class is created.
func (h *Handle) ClassReplace(class Class) error {
return h.classModify(unix.RTM_NEWTCLASS, unix.NLM_F_CREATE, class)
}
// ClassAdd will add a class to the system.
// Equivalent to: `tc class add $class`
func ClassAdd(class Class) error {
return pkgHandle.ClassAdd(class)
}
// ClassAdd will add a class to the system.
// Equivalent to: `tc class add $class`
func (h *Handle) ClassAdd(class Class) error {
return h.classModify(
unix.RTM_NEWTCLASS,
unix.NLM_F_CREATE|unix.NLM_F_EXCL,
class,
)
}
func (h *Handle) classModify(cmd, flags int, class Class) error {
req := h.newNetlinkRequest(cmd, flags|unix.NLM_F_ACK)
base := class.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Ifindex: int32(base.LinkIndex),
Handle: base.Handle,
Parent: base.Parent,
}
req.AddData(msg)
if cmd != unix.RTM_DELTCLASS {
if err := classPayload(req, class); err != nil {
return err
}
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func classPayload(req *nl.NetlinkRequest, class Class) error {
req.AddData(nl.NewRtAttr(nl.TCA_KIND, nl.ZeroTerminated(class.Type())))
options := nl.NewRtAttr(nl.TCA_OPTIONS, nil)
if htb, ok := class.(*HtbClass); ok {
opt := nl.TcHtbCopt{}
opt.Buffer = htb.Buffer
opt.Cbuffer = htb.Cbuffer
opt.Quantum = htb.Quantum
opt.Level = htb.Level
opt.Prio = htb.Prio
// TODO: Handle Debug properly. For now default to 0
/* Calculate {R,C}Tab and set Rate and Ceil */
cellLog := -1
ccellLog := -1
linklayer := nl.LINKLAYER_ETHERNET
mtu := 1600
var rtab [256]uint32
var ctab [256]uint32
tcrate := nl.TcRateSpec{Rate: uint32(htb.Rate)}
if CalcRtable(&tcrate, rtab[:], cellLog, uint32(mtu), linklayer) < 0 {
return errors.New("HTB: failed to calculate rate table")
}
opt.Rate = tcrate
tcceil := nl.TcRateSpec{Rate: uint32(htb.Ceil)}
if CalcRtable(&tcceil, ctab[:], ccellLog, uint32(mtu), linklayer) < 0 {
return errors.New("HTB: failed to calculate ceil rate table")
}
opt.Ceil = tcceil
nl.NewRtAttrChild(options, nl.TCA_HTB_PARMS, opt.Serialize())
nl.NewRtAttrChild(options, nl.TCA_HTB_RTAB, SerializeRtab(rtab))
nl.NewRtAttrChild(options, nl.TCA_HTB_CTAB, SerializeRtab(ctab))
}
req.AddData(options)
return nil
}
// ClassList gets a list of classes in the system.
// Equivalent to: `tc class show`.
// Generally returns nothing if link and parent are not specified.
func ClassList(link Link, parent uint32) ([]Class, error) {
return pkgHandle.ClassList(link, parent)
}
// ClassList gets a list of classes in the system.
// Equivalent to: `tc class show`.
// Generally returns nothing if link and parent are not specified.
func (h *Handle) ClassList(link Link, parent uint32) ([]Class, error) {
req := h.newNetlinkRequest(unix.RTM_GETTCLASS, unix.NLM_F_DUMP)
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Parent: parent,
}
if link != nil {
base := link.Attrs()
h.ensureIndex(base)
msg.Ifindex = int32(base.Index)
}
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWTCLASS)
if err != nil {
return nil, err
}
var res []Class
for _, m := range msgs {
msg := nl.DeserializeTcMsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
base := ClassAttrs{
LinkIndex: int(msg.Ifindex),
Handle: msg.Handle,
Parent: msg.Parent,
}
var class Class
classType := ""
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.TCA_KIND:
classType = string(attr.Value[:len(attr.Value)-1])
switch classType {
case "htb":
class = &HtbClass{}
default:
class = &GenericClass{ClassType: classType}
}
case nl.TCA_OPTIONS:
switch classType {
case "htb":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
_, err = parseHtbClassData(class, data)
if err != nil {
return nil, err
}
}
}
}
*class.Attrs() = base
res = append(res, class)
}
return res, nil
}
func parseHtbClassData(class Class, data []syscall.NetlinkRouteAttr) (bool, error) {
htb := class.(*HtbClass)
detailed := false
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_HTB_PARMS:
opt := nl.DeserializeTcHtbCopt(datum.Value)
htb.Rate = uint64(opt.Rate.Rate)
htb.Ceil = uint64(opt.Ceil.Rate)
htb.Buffer = opt.Buffer
htb.Cbuffer = opt.Cbuffer
htb.Quantum = opt.Quantum
htb.Level = opt.Level
htb.Prio = opt.Prio
}
}
return detailed, nil
}

View File

@ -0,0 +1,371 @@
package netlink
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"net"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// ConntrackTableType Conntrack table for the netlink operation
type ConntrackTableType uint8
const (
// ConntrackTable Conntrack table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK 1
ConntrackTable = 1
// ConntrackExpectTable Conntrack expect table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK_EXP 2
ConntrackExpectTable = 2
)
const (
// For Parsing Mark
TCP_PROTO = 6
UDP_PROTO = 17
)
const (
// backward compatibility with golang 1.6 which does not have io.SeekCurrent
seekCurrent = 1
)
// InetFamily Family type
type InetFamily uint8
// -L [table] [options] List conntrack or expectation table
// -G [table] parameters Get conntrack or expectation
// -I [table] parameters Create a conntrack or expectation
// -U [table] parameters Update a conntrack
// -E [table] [options] Show events
// -C [table] Show counter
// -S Show statistics
// ConntrackTableList returns the flow list of a table of a specific family
// conntrack -L [table] [options] List conntrack or expectation table
func ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
return pkgHandle.ConntrackTableList(table, family)
}
// ConntrackTableFlush flushes all the flows of a specified table
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func ConntrackTableFlush(table ConntrackTableType) error {
return pkgHandle.ConntrackTableFlush(table)
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter
// conntrack -D [table] parameters Delete conntrack or expectation
func ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
return pkgHandle.ConntrackDeleteFilter(table, family, filter)
}
// ConntrackTableList returns the flow list of a table of a specific family using the netlink handle passed
// conntrack -L [table] [options] List conntrack or expectation table
func (h *Handle) ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
res, err := h.dumpConntrackTable(table, family)
if err != nil {
return nil, err
}
// Deserialize all the flows
var result []*ConntrackFlow
for _, dataRaw := range res {
result = append(result, parseRawData(dataRaw))
}
return result, nil
}
// ConntrackTableFlush flushes all the flows of a specified table using the netlink handle passed
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func (h *Handle) ConntrackTableFlush(table ConntrackTableType) error {
req := h.newConntrackRequest(table, unix.AF_INET, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
_, err := req.Execute(unix.NETLINK_NETFILTER, 0)
return err
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter using the netlink handle passed
// conntrack -D [table] parameters Delete conntrack or expectation
func (h *Handle) ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
res, err := h.dumpConntrackTable(table, family)
if err != nil {
return 0, err
}
var matched uint
for _, dataRaw := range res {
flow := parseRawData(dataRaw)
if match := filter.MatchConntrackFlow(flow); match {
req2 := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
// skip the first 4 byte that are the netfilter header, the newConntrackRequest is adding it already
req2.AddRawData(dataRaw[4:])
req2.Execute(unix.NETLINK_NETFILTER, 0)
matched++
}
}
return matched, nil
}
func (h *Handle) newConntrackRequest(table ConntrackTableType, family InetFamily, operation, flags int) *nl.NetlinkRequest {
// Create the Netlink request object
req := h.newNetlinkRequest((int(table)<<8)|operation, flags)
// Add the netfilter header
msg := &nl.Nfgenmsg{
NfgenFamily: uint8(family),
Version: nl.NFNETLINK_V0,
ResId: 0,
}
req.AddData(msg)
return req
}
func (h *Handle) dumpConntrackTable(table ConntrackTableType, family InetFamily) ([][]byte, error) {
req := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_GET, unix.NLM_F_DUMP)
return req.Execute(unix.NETLINK_NETFILTER, 0)
}
// The full conntrack flow structure is very complicated and can be found in the file:
// http://git.netfilter.org/libnetfilter_conntrack/tree/include/internal/object.h
// For the time being, the structure below allows to parse and extract the base information of a flow
type ipTuple struct {
SrcIP net.IP
DstIP net.IP
Protocol uint8
SrcPort uint16
DstPort uint16
}
type ConntrackFlow struct {
FamilyType uint8
Forward ipTuple
Reverse ipTuple
Mark uint32
}
func (s *ConntrackFlow) String() string {
// conntrack cmd output:
// udp 17 src=127.0.0.1 dst=127.0.0.1 sport=4001 dport=1234 [UNREPLIED] src=127.0.0.1 dst=127.0.0.1 sport=1234 dport=4001 mark=0
return fmt.Sprintf("%s\t%d src=%s dst=%s sport=%d dport=%d\tsrc=%s dst=%s sport=%d dport=%d mark=%d",
nl.L4ProtoMap[s.Forward.Protocol], s.Forward.Protocol,
s.Forward.SrcIP.String(), s.Forward.DstIP.String(), s.Forward.SrcPort, s.Forward.DstPort,
s.Reverse.SrcIP.String(), s.Reverse.DstIP.String(), s.Reverse.SrcPort, s.Reverse.DstPort, s.Mark)
}
// This method parse the ip tuple structure
// The message structure is the following:
// <len, [CTA_IP_V4_SRC|CTA_IP_V6_SRC], 16 bytes for the IP>
// <len, [CTA_IP_V4_DST|CTA_IP_V6_DST], 16 bytes for the IP>
// <len, NLA_F_NESTED|nl.CTA_TUPLE_PROTO, 1 byte for the protocol, 3 bytes of padding>
// <len, CTA_PROTO_SRC_PORT, 2 bytes for the source port, 2 bytes of padding>
// <len, CTA_PROTO_DST_PORT, 2 bytes for the source port, 2 bytes of padding>
func parseIpTuple(reader *bytes.Reader, tpl *ipTuple) uint8 {
for i := 0; i < 2; i++ {
_, t, _, v := parseNfAttrTLV(reader)
switch t {
case nl.CTA_IP_V4_SRC, nl.CTA_IP_V6_SRC:
tpl.SrcIP = v
case nl.CTA_IP_V4_DST, nl.CTA_IP_V6_DST:
tpl.DstIP = v
}
}
// Skip the next 4 bytes nl.NLA_F_NESTED|nl.CTA_TUPLE_PROTO
reader.Seek(4, seekCurrent)
_, t, _, v := parseNfAttrTLV(reader)
if t == nl.CTA_PROTO_NUM {
tpl.Protocol = uint8(v[0])
}
// Skip some padding 3 bytes
reader.Seek(3, seekCurrent)
for i := 0; i < 2; i++ {
_, t, _ := parseNfAttrTL(reader)
switch t {
case nl.CTA_PROTO_SRC_PORT:
parseBERaw16(reader, &tpl.SrcPort)
case nl.CTA_PROTO_DST_PORT:
parseBERaw16(reader, &tpl.DstPort)
}
// Skip some padding 2 byte
reader.Seek(2, seekCurrent)
}
return tpl.Protocol
}
func parseNfAttrTLV(r *bytes.Reader) (isNested bool, attrType, len uint16, value []byte) {
isNested, attrType, len = parseNfAttrTL(r)
value = make([]byte, len)
binary.Read(r, binary.BigEndian, &value)
return isNested, attrType, len, value
}
func parseNfAttrTL(r *bytes.Reader) (isNested bool, attrType, len uint16) {
binary.Read(r, nl.NativeEndian(), &len)
len -= nl.SizeofNfattr
binary.Read(r, nl.NativeEndian(), &attrType)
isNested = (attrType & nl.NLA_F_NESTED) == nl.NLA_F_NESTED
attrType = attrType & (nl.NLA_F_NESTED - 1)
return isNested, attrType, len
}
func parseBERaw16(r *bytes.Reader, v *uint16) {
binary.Read(r, binary.BigEndian, v)
}
func parseRawData(data []byte) *ConntrackFlow {
s := &ConntrackFlow{}
var proto uint8
// First there is the Nfgenmsg header
// consume only the family field
reader := bytes.NewReader(data)
binary.Read(reader, nl.NativeEndian(), &s.FamilyType)
// skip rest of the Netfilter header
reader.Seek(3, seekCurrent)
// The message structure is the following:
// <len, NLA_F_NESTED|CTA_TUPLE_ORIG> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the forward flow
// <len, NLA_F_NESTED|CTA_TUPLE_REPLY> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the reverse flow
for reader.Len() > 0 {
nested, t, l := parseNfAttrTL(reader)
if nested && t == nl.CTA_TUPLE_ORIG {
if nested, t, _ = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
proto = parseIpTuple(reader, &s.Forward)
}
} else if nested && t == nl.CTA_TUPLE_REPLY {
if nested, t, _ = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
parseIpTuple(reader, &s.Reverse)
// Got all the useful information stop parsing
break
} else {
// Header not recognized skip it
reader.Seek(int64(l), seekCurrent)
}
}
}
if proto == TCP_PROTO {
reader.Seek(64, seekCurrent)
_, t, _, v := parseNfAttrTLV(reader)
if t == nl.CTA_MARK {
s.Mark = uint32(v[3])
}
} else if proto == UDP_PROTO {
reader.Seek(16, seekCurrent)
_, t, _, v := parseNfAttrTLV(reader)
if t == nl.CTA_MARK {
s.Mark = uint32(v[3])
}
}
return s
}
// Conntrack parameters and options:
// -n, --src-nat ip source NAT ip
// -g, --dst-nat ip destination NAT ip
// -j, --any-nat ip source or destination NAT ip
// -m, --mark mark Set mark
// -c, --secmark secmark Set selinux secmark
// -e, --event-mask eventmask Event mask, eg. NEW,DESTROY
// -z, --zero Zero counters while listing
// -o, --output type[,...] Output format, eg. xml
// -l, --label label[,...] conntrack labels
// Common parameters and options:
// -s, --src, --orig-src ip Source address from original direction
// -d, --dst, --orig-dst ip Destination address from original direction
// -r, --reply-src ip Source addres from reply direction
// -q, --reply-dst ip Destination address from reply direction
// -p, --protonum proto Layer 4 Protocol, eg. 'tcp'
// -f, --family proto Layer 3 Protocol, eg. 'ipv6'
// -t, --timeout timeout Set timeout
// -u, --status status Set status, eg. ASSURED
// -w, --zone value Set conntrack zone
// --orig-zone value Set zone for original direction
// --reply-zone value Set zone for reply direction
// -b, --buffer-size Netlink socket buffer size
// --mask-src ip Source mask address
// --mask-dst ip Destination mask address
// Filter types
type ConntrackFilterType uint8
const (
ConntrackOrigSrcIP = iota // -orig-src ip Source address from original direction
ConntrackOrigDstIP // -orig-dst ip Destination address from original direction
ConntrackNatSrcIP // -src-nat ip Source NAT ip
ConntrackNatDstIP // -dst-nat ip Destination NAT ip
ConntrackNatAnyIP // -any-nat ip Source or destination NAT ip
)
type CustomConntrackFilter interface {
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches
// the filter or false otherwise
MatchConntrackFlow(flow *ConntrackFlow) bool
}
type ConntrackFilter struct {
ipFilter map[ConntrackFilterType]net.IP
}
// AddIP adds an IP to the conntrack filter
func (f *ConntrackFilter) AddIP(tp ConntrackFilterType, ip net.IP) error {
if f.ipFilter == nil {
f.ipFilter = make(map[ConntrackFilterType]net.IP)
}
if _, ok := f.ipFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.ipFilter[tp] = ip
return nil
}
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches the filter
// false otherwise
func (f *ConntrackFilter) MatchConntrackFlow(flow *ConntrackFlow) bool {
if len(f.ipFilter) == 0 {
// empty filter always not match
return false
}
match := true
// -orig-src ip Source address from original direction
if elem, found := f.ipFilter[ConntrackOrigSrcIP]; found {
match = match && elem.Equal(flow.Forward.SrcIP)
}
// -orig-dst ip Destination address from original direction
if elem, found := f.ipFilter[ConntrackOrigDstIP]; match && found {
match = match && elem.Equal(flow.Forward.DstIP)
}
// -src-nat ip Source NAT ip
if elem, found := f.ipFilter[ConntrackNatSrcIP]; match && found {
match = match && elem.Equal(flow.Reverse.SrcIP)
}
// -dst-nat ip Destination NAT ip
if elem, found := f.ipFilter[ConntrackNatDstIP]; match && found {
match = match && elem.Equal(flow.Reverse.DstIP)
}
// -any-nat ip Source or destination NAT ip
if elem, found := f.ipFilter[ConntrackNatAnyIP]; match && found {
match = match && (elem.Equal(flow.Reverse.SrcIP) || elem.Equal(flow.Reverse.DstIP))
}
return match
}
var _ CustomConntrackFilter = (*ConntrackFilter)(nil)

View File

@ -0,0 +1,53 @@
// +build !linux
package netlink
// ConntrackTableType Conntrack table for the netlink operation
type ConntrackTableType uint8
// InetFamily Family type
type InetFamily uint8
// ConntrackFlow placeholder
type ConntrackFlow struct{}
// ConntrackFilter placeholder
type ConntrackFilter struct{}
// ConntrackTableList returns the flow list of a table of a specific family
// conntrack -L [table] [options] List conntrack or expectation table
func ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
return nil, ErrNotImplemented
}
// ConntrackTableFlush flushes all the flows of a specified table
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func ConntrackTableFlush(table ConntrackTableType) error {
return ErrNotImplemented
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter
// conntrack -D [table] parameters Delete conntrack or expectation
func ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter *ConntrackFilter) (uint, error) {
return 0, ErrNotImplemented
}
// ConntrackTableList returns the flow list of a table of a specific family using the netlink handle passed
// conntrack -L [table] [options] List conntrack or expectation table
func (h *Handle) ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
return nil, ErrNotImplemented
}
// ConntrackTableFlush flushes all the flows of a specified table using the netlink handle passed
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func (h *Handle) ConntrackTableFlush(table ConntrackTableType) error {
return ErrNotImplemented
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter using the netlink handle passed
// conntrack -D [table] parameters Delete conntrack or expectation
func (h *Handle) ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter *ConntrackFilter) (uint, error) {
return 0, ErrNotImplemented
}

288
vendor/github.com/vishvananda/netlink/filter.go generated vendored Normal file
View File

@ -0,0 +1,288 @@
package netlink
import (
"fmt"
)
type Filter interface {
Attrs() *FilterAttrs
Type() string
}
// FilterAttrs represents a netlink filter. A filter is associated with a link,
// has a handle and a parent. The root filter of a device should have a
// parent == HANDLE_ROOT.
type FilterAttrs struct {
LinkIndex int
Handle uint32
Parent uint32
Priority uint16 // lower is higher priority
Protocol uint16 // unix.ETH_P_*
}
func (q FilterAttrs) String() string {
return fmt.Sprintf("{LinkIndex: %d, Handle: %s, Parent: %s, Priority: %d, Protocol: %d}", q.LinkIndex, HandleStr(q.Handle), HandleStr(q.Parent), q.Priority, q.Protocol)
}
type TcAct int32
const (
TC_ACT_UNSPEC TcAct = -1
TC_ACT_OK TcAct = 0
TC_ACT_RECLASSIFY TcAct = 1
TC_ACT_SHOT TcAct = 2
TC_ACT_PIPE TcAct = 3
TC_ACT_STOLEN TcAct = 4
TC_ACT_QUEUED TcAct = 5
TC_ACT_REPEAT TcAct = 6
TC_ACT_REDIRECT TcAct = 7
TC_ACT_JUMP TcAct = 0x10000000
)
func (a TcAct) String() string {
switch a {
case TC_ACT_UNSPEC:
return "unspec"
case TC_ACT_OK:
return "ok"
case TC_ACT_RECLASSIFY:
return "reclassify"
case TC_ACT_SHOT:
return "shot"
case TC_ACT_PIPE:
return "pipe"
case TC_ACT_STOLEN:
return "stolen"
case TC_ACT_QUEUED:
return "queued"
case TC_ACT_REPEAT:
return "repeat"
case TC_ACT_REDIRECT:
return "redirect"
case TC_ACT_JUMP:
return "jump"
}
return fmt.Sprintf("0x%x", int32(a))
}
type TcPolAct int32
const (
TC_POLICE_UNSPEC TcPolAct = TcPolAct(TC_ACT_UNSPEC)
TC_POLICE_OK TcPolAct = TcPolAct(TC_ACT_OK)
TC_POLICE_RECLASSIFY TcPolAct = TcPolAct(TC_ACT_RECLASSIFY)
TC_POLICE_SHOT TcPolAct = TcPolAct(TC_ACT_SHOT)
TC_POLICE_PIPE TcPolAct = TcPolAct(TC_ACT_PIPE)
)
func (a TcPolAct) String() string {
switch a {
case TC_POLICE_UNSPEC:
return "unspec"
case TC_POLICE_OK:
return "ok"
case TC_POLICE_RECLASSIFY:
return "reclassify"
case TC_POLICE_SHOT:
return "shot"
case TC_POLICE_PIPE:
return "pipe"
}
return fmt.Sprintf("0x%x", int32(a))
}
type ActionAttrs struct {
Index int
Capab int
Action TcAct
Refcnt int
Bindcnt int
}
func (q ActionAttrs) String() string {
return fmt.Sprintf("{Index: %d, Capab: %x, Action: %s, Refcnt: %d, Bindcnt: %d}", q.Index, q.Capab, q.Action.String(), q.Refcnt, q.Bindcnt)
}
// Action represents an action in any supported filter.
type Action interface {
Attrs() *ActionAttrs
Type() string
}
type GenericAction struct {
ActionAttrs
}
func (action *GenericAction) Type() string {
return "generic"
}
func (action *GenericAction) Attrs() *ActionAttrs {
return &action.ActionAttrs
}
type BpfAction struct {
ActionAttrs
Fd int
Name string
}
func (action *BpfAction) Type() string {
return "bpf"
}
func (action *BpfAction) Attrs() *ActionAttrs {
return &action.ActionAttrs
}
type MirredAct uint8
func (a MirredAct) String() string {
switch a {
case TCA_EGRESS_REDIR:
return "egress redir"
case TCA_EGRESS_MIRROR:
return "egress mirror"
case TCA_INGRESS_REDIR:
return "ingress redir"
case TCA_INGRESS_MIRROR:
return "ingress mirror"
}
return "unknown"
}
const (
TCA_EGRESS_REDIR MirredAct = 1 /* packet redirect to EGRESS*/
TCA_EGRESS_MIRROR MirredAct = 2 /* mirror packet to EGRESS */
TCA_INGRESS_REDIR MirredAct = 3 /* packet redirect to INGRESS*/
TCA_INGRESS_MIRROR MirredAct = 4 /* mirror packet to INGRESS */
)
type MirredAction struct {
ActionAttrs
MirredAction MirredAct
Ifindex int
}
func (action *MirredAction) Type() string {
return "mirred"
}
func (action *MirredAction) Attrs() *ActionAttrs {
return &action.ActionAttrs
}
func NewMirredAction(redirIndex int) *MirredAction {
return &MirredAction{
ActionAttrs: ActionAttrs{
Action: TC_ACT_STOLEN,
},
MirredAction: TCA_EGRESS_REDIR,
Ifindex: redirIndex,
}
}
// Sel of the U32 filters that contains multiple TcU32Key. This is the copy
// and the frontend representation of nl.TcU32Sel. It is serialized into canonical
// nl.TcU32Sel with the appropriate endianness.
type TcU32Sel struct {
Flags uint8
Offshift uint8
Nkeys uint8
Pad uint8
Offmask uint16
Off uint16
Offoff int16
Hoff int16
Hmask uint32
Keys []TcU32Key
}
// TcU32Key contained of Sel in the U32 filters. This is the copy and the frontend
// representation of nl.TcU32Key. It is serialized into chanonical nl.TcU32Sel
// with the appropriate endianness.
type TcU32Key struct {
Mask uint32
Val uint32
Off int32
OffMask int32
}
// U32 filters on many packet related properties
type U32 struct {
FilterAttrs
ClassId uint32
RedirIndex int
Sel *TcU32Sel
Actions []Action
}
func (filter *U32) Attrs() *FilterAttrs {
return &filter.FilterAttrs
}
func (filter *U32) Type() string {
return "u32"
}
// MatchAll filters match all packets
type MatchAll struct {
FilterAttrs
ClassId uint32
Actions []Action
}
func (filter *MatchAll) Attrs() *FilterAttrs {
return &filter.FilterAttrs
}
func (filter *MatchAll) Type() string {
return "matchall"
}
type FilterFwAttrs struct {
ClassId uint32
InDev string
Mask uint32
Index uint32
Buffer uint32
Mtu uint32
Mpu uint16
Rate uint32
AvRate uint32
PeakRate uint32
Action TcPolAct
Overhead uint16
LinkLayer int
}
type BpfFilter struct {
FilterAttrs
ClassId uint32
Fd int
Name string
DirectAction bool
}
func (filter *BpfFilter) Type() string {
return "bpf"
}
func (filter *BpfFilter) Attrs() *FilterAttrs {
return &filter.FilterAttrs
}
// GenericFilter filters represent types that are not currently understood
// by this netlink library.
type GenericFilter struct {
FilterAttrs
FilterType string
}
func (filter *GenericFilter) Attrs() *FilterAttrs {
return &filter.FilterAttrs
}
func (filter *GenericFilter) Type() string {
return filter.FilterType
}

639
vendor/github.com/vishvananda/netlink/filter_linux.go generated vendored Normal file
View File

@ -0,0 +1,639 @@
package netlink
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"syscall"
"unsafe"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// Constants used in TcU32Sel.Flags.
const (
TC_U32_TERMINAL = nl.TC_U32_TERMINAL
TC_U32_OFFSET = nl.TC_U32_OFFSET
TC_U32_VAROFFSET = nl.TC_U32_VAROFFSET
TC_U32_EAT = nl.TC_U32_EAT
)
// Fw filter filters on firewall marks
// NOTE: this is in filter_linux because it refers to nl.TcPolice which
// is defined in nl/tc_linux.go
type Fw struct {
FilterAttrs
ClassId uint32
// TODO remove nl type from interface
Police nl.TcPolice
InDev string
// TODO Action
Mask uint32
AvRate uint32
Rtab [256]uint32
Ptab [256]uint32
}
func NewFw(attrs FilterAttrs, fattrs FilterFwAttrs) (*Fw, error) {
var rtab [256]uint32
var ptab [256]uint32
rcellLog := -1
pcellLog := -1
avrate := fattrs.AvRate / 8
police := nl.TcPolice{}
police.Rate.Rate = fattrs.Rate / 8
police.PeakRate.Rate = fattrs.PeakRate / 8
buffer := fattrs.Buffer
linklayer := nl.LINKLAYER_ETHERNET
if fattrs.LinkLayer != nl.LINKLAYER_UNSPEC {
linklayer = fattrs.LinkLayer
}
police.Action = int32(fattrs.Action)
if police.Rate.Rate != 0 {
police.Rate.Mpu = fattrs.Mpu
police.Rate.Overhead = fattrs.Overhead
if CalcRtable(&police.Rate, rtab[:], rcellLog, fattrs.Mtu, linklayer) < 0 {
return nil, errors.New("TBF: failed to calculate rate table")
}
police.Burst = uint32(Xmittime(uint64(police.Rate.Rate), uint32(buffer)))
}
police.Mtu = fattrs.Mtu
if police.PeakRate.Rate != 0 {
police.PeakRate.Mpu = fattrs.Mpu
police.PeakRate.Overhead = fattrs.Overhead
if CalcRtable(&police.PeakRate, ptab[:], pcellLog, fattrs.Mtu, linklayer) < 0 {
return nil, errors.New("POLICE: failed to calculate peak rate table")
}
}
return &Fw{
FilterAttrs: attrs,
ClassId: fattrs.ClassId,
InDev: fattrs.InDev,
Mask: fattrs.Mask,
Police: police,
AvRate: avrate,
Rtab: rtab,
Ptab: ptab,
}, nil
}
func (filter *Fw) Attrs() *FilterAttrs {
return &filter.FilterAttrs
}
func (filter *Fw) Type() string {
return "fw"
}
// FilterDel will delete a filter from the system.
// Equivalent to: `tc filter del $filter`
func FilterDel(filter Filter) error {
return pkgHandle.FilterDel(filter)
}
// FilterDel will delete a filter from the system.
// Equivalent to: `tc filter del $filter`
func (h *Handle) FilterDel(filter Filter) error {
req := h.newNetlinkRequest(unix.RTM_DELTFILTER, unix.NLM_F_ACK)
base := filter.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Ifindex: int32(base.LinkIndex),
Handle: base.Handle,
Parent: base.Parent,
Info: MakeHandle(base.Priority, nl.Swap16(base.Protocol)),
}
req.AddData(msg)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// FilterAdd will add a filter to the system.
// Equivalent to: `tc filter add $filter`
func FilterAdd(filter Filter) error {
return pkgHandle.FilterAdd(filter)
}
// FilterAdd will add a filter to the system.
// Equivalent to: `tc filter add $filter`
func (h *Handle) FilterAdd(filter Filter) error {
native = nl.NativeEndian()
req := h.newNetlinkRequest(unix.RTM_NEWTFILTER, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
base := filter.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Ifindex: int32(base.LinkIndex),
Handle: base.Handle,
Parent: base.Parent,
Info: MakeHandle(base.Priority, nl.Swap16(base.Protocol)),
}
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.TCA_KIND, nl.ZeroTerminated(filter.Type())))
options := nl.NewRtAttr(nl.TCA_OPTIONS, nil)
switch filter := filter.(type) {
case *U32:
// Convert TcU32Sel into nl.TcU32Sel as it is without copy.
sel := (*nl.TcU32Sel)(unsafe.Pointer(filter.Sel))
if sel == nil {
// match all
sel = &nl.TcU32Sel{
Nkeys: 1,
Flags: nl.TC_U32_TERMINAL,
}
sel.Keys = append(sel.Keys, nl.TcU32Key{})
}
if native != networkOrder {
// Copy TcU32Sel.
cSel := *sel
keys := make([]nl.TcU32Key, cap(sel.Keys))
copy(keys, sel.Keys)
cSel.Keys = keys
sel = &cSel
// Handle the endianness of attributes
sel.Offmask = native.Uint16(htons(sel.Offmask))
sel.Hmask = native.Uint32(htonl(sel.Hmask))
for i, key := range sel.Keys {
sel.Keys[i].Mask = native.Uint32(htonl(key.Mask))
sel.Keys[i].Val = native.Uint32(htonl(key.Val))
}
}
sel.Nkeys = uint8(len(sel.Keys))
nl.NewRtAttrChild(options, nl.TCA_U32_SEL, sel.Serialize())
if filter.ClassId != 0 {
nl.NewRtAttrChild(options, nl.TCA_U32_CLASSID, nl.Uint32Attr(filter.ClassId))
}
actionsAttr := nl.NewRtAttrChild(options, nl.TCA_U32_ACT, nil)
// backwards compatibility
if filter.RedirIndex != 0 {
filter.Actions = append([]Action{NewMirredAction(filter.RedirIndex)}, filter.Actions...)
}
if err := EncodeActions(actionsAttr, filter.Actions); err != nil {
return err
}
case *Fw:
if filter.Mask != 0 {
b := make([]byte, 4)
native.PutUint32(b, filter.Mask)
nl.NewRtAttrChild(options, nl.TCA_FW_MASK, b)
}
if filter.InDev != "" {
nl.NewRtAttrChild(options, nl.TCA_FW_INDEV, nl.ZeroTerminated(filter.InDev))
}
if (filter.Police != nl.TcPolice{}) {
police := nl.NewRtAttrChild(options, nl.TCA_FW_POLICE, nil)
nl.NewRtAttrChild(police, nl.TCA_POLICE_TBF, filter.Police.Serialize())
if (filter.Police.Rate != nl.TcRateSpec{}) {
payload := SerializeRtab(filter.Rtab)
nl.NewRtAttrChild(police, nl.TCA_POLICE_RATE, payload)
}
if (filter.Police.PeakRate != nl.TcRateSpec{}) {
payload := SerializeRtab(filter.Ptab)
nl.NewRtAttrChild(police, nl.TCA_POLICE_PEAKRATE, payload)
}
}
if filter.ClassId != 0 {
b := make([]byte, 4)
native.PutUint32(b, filter.ClassId)
nl.NewRtAttrChild(options, nl.TCA_FW_CLASSID, b)
}
case *BpfFilter:
var bpfFlags uint32
if filter.ClassId != 0 {
nl.NewRtAttrChild(options, nl.TCA_BPF_CLASSID, nl.Uint32Attr(filter.ClassId))
}
if filter.Fd >= 0 {
nl.NewRtAttrChild(options, nl.TCA_BPF_FD, nl.Uint32Attr((uint32(filter.Fd))))
}
if filter.Name != "" {
nl.NewRtAttrChild(options, nl.TCA_BPF_NAME, nl.ZeroTerminated(filter.Name))
}
if filter.DirectAction {
bpfFlags |= nl.TCA_BPF_FLAG_ACT_DIRECT
}
nl.NewRtAttrChild(options, nl.TCA_BPF_FLAGS, nl.Uint32Attr(bpfFlags))
case *MatchAll:
actionsAttr := nl.NewRtAttrChild(options, nl.TCA_MATCHALL_ACT, nil)
if err := EncodeActions(actionsAttr, filter.Actions); err != nil {
return err
}
if filter.ClassId != 0 {
nl.NewRtAttrChild(options, nl.TCA_MATCHALL_CLASSID, nl.Uint32Attr(filter.ClassId))
}
}
req.AddData(options)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// FilterList gets a list of filters in the system.
// Equivalent to: `tc filter show`.
// Generally returns nothing if link and parent are not specified.
func FilterList(link Link, parent uint32) ([]Filter, error) {
return pkgHandle.FilterList(link, parent)
}
// FilterList gets a list of filters in the system.
// Equivalent to: `tc filter show`.
// Generally returns nothing if link and parent are not specified.
func (h *Handle) FilterList(link Link, parent uint32) ([]Filter, error) {
req := h.newNetlinkRequest(unix.RTM_GETTFILTER, unix.NLM_F_DUMP)
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Parent: parent,
}
if link != nil {
base := link.Attrs()
h.ensureIndex(base)
msg.Ifindex = int32(base.Index)
}
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWTFILTER)
if err != nil {
return nil, err
}
var res []Filter
for _, m := range msgs {
msg := nl.DeserializeTcMsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
base := FilterAttrs{
LinkIndex: int(msg.Ifindex),
Handle: msg.Handle,
Parent: msg.Parent,
}
base.Priority, base.Protocol = MajorMinor(msg.Info)
base.Protocol = nl.Swap16(base.Protocol)
var filter Filter
filterType := ""
detailed := false
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.TCA_KIND:
filterType = string(attr.Value[:len(attr.Value)-1])
switch filterType {
case "u32":
filter = &U32{}
case "fw":
filter = &Fw{}
case "bpf":
filter = &BpfFilter{}
case "matchall":
filter = &MatchAll{}
default:
filter = &GenericFilter{FilterType: filterType}
}
case nl.TCA_OPTIONS:
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
switch filterType {
case "u32":
detailed, err = parseU32Data(filter, data)
if err != nil {
return nil, err
}
case "fw":
detailed, err = parseFwData(filter, data)
if err != nil {
return nil, err
}
case "bpf":
detailed, err = parseBpfData(filter, data)
if err != nil {
return nil, err
}
case "matchall":
detailed, err = parseMatchAllData(filter, data)
if err != nil {
return nil, err
}
default:
detailed = true
}
}
}
// only return the detailed version of the filter
if detailed {
*filter.Attrs() = base
res = append(res, filter)
}
}
return res, nil
}
func toTcGen(attrs *ActionAttrs, tcgen *nl.TcGen) {
tcgen.Index = uint32(attrs.Index)
tcgen.Capab = uint32(attrs.Capab)
tcgen.Action = int32(attrs.Action)
tcgen.Refcnt = int32(attrs.Refcnt)
tcgen.Bindcnt = int32(attrs.Bindcnt)
}
func toAttrs(tcgen *nl.TcGen, attrs *ActionAttrs) {
attrs.Index = int(tcgen.Index)
attrs.Capab = int(tcgen.Capab)
attrs.Action = TcAct(tcgen.Action)
attrs.Refcnt = int(tcgen.Refcnt)
attrs.Bindcnt = int(tcgen.Bindcnt)
}
func EncodeActions(attr *nl.RtAttr, actions []Action) error {
tabIndex := int(nl.TCA_ACT_TAB)
for _, action := range actions {
switch action := action.(type) {
default:
return fmt.Errorf("unknown action type %s", action.Type())
case *MirredAction:
table := nl.NewRtAttrChild(attr, tabIndex, nil)
tabIndex++
nl.NewRtAttrChild(table, nl.TCA_ACT_KIND, nl.ZeroTerminated("mirred"))
aopts := nl.NewRtAttrChild(table, nl.TCA_ACT_OPTIONS, nil)
mirred := nl.TcMirred{
Eaction: int32(action.MirredAction),
Ifindex: uint32(action.Ifindex),
}
toTcGen(action.Attrs(), &mirred.TcGen)
nl.NewRtAttrChild(aopts, nl.TCA_MIRRED_PARMS, mirred.Serialize())
case *BpfAction:
table := nl.NewRtAttrChild(attr, tabIndex, nil)
tabIndex++
nl.NewRtAttrChild(table, nl.TCA_ACT_KIND, nl.ZeroTerminated("bpf"))
aopts := nl.NewRtAttrChild(table, nl.TCA_ACT_OPTIONS, nil)
gen := nl.TcGen{}
toTcGen(action.Attrs(), &gen)
nl.NewRtAttrChild(aopts, nl.TCA_ACT_BPF_PARMS, gen.Serialize())
nl.NewRtAttrChild(aopts, nl.TCA_ACT_BPF_FD, nl.Uint32Attr(uint32(action.Fd)))
nl.NewRtAttrChild(aopts, nl.TCA_ACT_BPF_NAME, nl.ZeroTerminated(action.Name))
case *GenericAction:
table := nl.NewRtAttrChild(attr, tabIndex, nil)
tabIndex++
nl.NewRtAttrChild(table, nl.TCA_ACT_KIND, nl.ZeroTerminated("gact"))
aopts := nl.NewRtAttrChild(table, nl.TCA_ACT_OPTIONS, nil)
gen := nl.TcGen{}
toTcGen(action.Attrs(), &gen)
nl.NewRtAttrChild(aopts, nl.TCA_GACT_PARMS, gen.Serialize())
}
}
return nil
}
func parseActions(tables []syscall.NetlinkRouteAttr) ([]Action, error) {
var actions []Action
for _, table := range tables {
var action Action
var actionType string
aattrs, err := nl.ParseRouteAttr(table.Value)
if err != nil {
return nil, err
}
nextattr:
for _, aattr := range aattrs {
switch aattr.Attr.Type {
case nl.TCA_KIND:
actionType = string(aattr.Value[:len(aattr.Value)-1])
// only parse if the action is mirred or bpf
switch actionType {
case "mirred":
action = &MirredAction{}
case "bpf":
action = &BpfAction{}
case "gact":
action = &GenericAction{}
default:
break nextattr
}
case nl.TCA_OPTIONS:
adata, err := nl.ParseRouteAttr(aattr.Value)
if err != nil {
return nil, err
}
for _, adatum := range adata {
switch actionType {
case "mirred":
switch adatum.Attr.Type {
case nl.TCA_MIRRED_PARMS:
mirred := *nl.DeserializeTcMirred(adatum.Value)
toAttrs(&mirred.TcGen, action.Attrs())
action.(*MirredAction).ActionAttrs = ActionAttrs{}
action.(*MirredAction).Ifindex = int(mirred.Ifindex)
action.(*MirredAction).MirredAction = MirredAct(mirred.Eaction)
}
case "bpf":
switch adatum.Attr.Type {
case nl.TCA_ACT_BPF_PARMS:
gen := *nl.DeserializeTcGen(adatum.Value)
toAttrs(&gen, action.Attrs())
case nl.TCA_ACT_BPF_FD:
action.(*BpfAction).Fd = int(native.Uint32(adatum.Value[0:4]))
case nl.TCA_ACT_BPF_NAME:
action.(*BpfAction).Name = string(adatum.Value[:len(adatum.Value)-1])
}
case "gact":
switch adatum.Attr.Type {
case nl.TCA_GACT_PARMS:
gen := *nl.DeserializeTcGen(adatum.Value)
toAttrs(&gen, action.Attrs())
}
}
}
}
}
actions = append(actions, action)
}
return actions, nil
}
func parseU32Data(filter Filter, data []syscall.NetlinkRouteAttr) (bool, error) {
native = nl.NativeEndian()
u32 := filter.(*U32)
detailed := false
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_U32_SEL:
detailed = true
sel := nl.DeserializeTcU32Sel(datum.Value)
u32.Sel = (*TcU32Sel)(unsafe.Pointer(sel))
if native != networkOrder {
// Handle the endianness of attributes
u32.Sel.Offmask = native.Uint16(htons(sel.Offmask))
u32.Sel.Hmask = native.Uint32(htonl(sel.Hmask))
for i, key := range u32.Sel.Keys {
u32.Sel.Keys[i].Mask = native.Uint32(htonl(key.Mask))
u32.Sel.Keys[i].Val = native.Uint32(htonl(key.Val))
}
}
case nl.TCA_U32_ACT:
tables, err := nl.ParseRouteAttr(datum.Value)
if err != nil {
return detailed, err
}
u32.Actions, err = parseActions(tables)
if err != nil {
return detailed, err
}
for _, action := range u32.Actions {
if action, ok := action.(*MirredAction); ok {
u32.RedirIndex = int(action.Ifindex)
}
}
case nl.TCA_U32_CLASSID:
u32.ClassId = native.Uint32(datum.Value)
}
}
return detailed, nil
}
func parseFwData(filter Filter, data []syscall.NetlinkRouteAttr) (bool, error) {
native = nl.NativeEndian()
fw := filter.(*Fw)
detailed := true
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_FW_MASK:
fw.Mask = native.Uint32(datum.Value[0:4])
case nl.TCA_FW_CLASSID:
fw.ClassId = native.Uint32(datum.Value[0:4])
case nl.TCA_FW_INDEV:
fw.InDev = string(datum.Value[:len(datum.Value)-1])
case nl.TCA_FW_POLICE:
adata, _ := nl.ParseRouteAttr(datum.Value)
for _, aattr := range adata {
switch aattr.Attr.Type {
case nl.TCA_POLICE_TBF:
fw.Police = *nl.DeserializeTcPolice(aattr.Value)
case nl.TCA_POLICE_RATE:
fw.Rtab = DeserializeRtab(aattr.Value)
case nl.TCA_POLICE_PEAKRATE:
fw.Ptab = DeserializeRtab(aattr.Value)
}
}
}
}
return detailed, nil
}
func parseBpfData(filter Filter, data []syscall.NetlinkRouteAttr) (bool, error) {
native = nl.NativeEndian()
bpf := filter.(*BpfFilter)
detailed := true
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_BPF_FD:
bpf.Fd = int(native.Uint32(datum.Value[0:4]))
case nl.TCA_BPF_NAME:
bpf.Name = string(datum.Value[:len(datum.Value)-1])
case nl.TCA_BPF_CLASSID:
bpf.ClassId = native.Uint32(datum.Value[0:4])
case nl.TCA_BPF_FLAGS:
flags := native.Uint32(datum.Value[0:4])
if (flags & nl.TCA_BPF_FLAG_ACT_DIRECT) != 0 {
bpf.DirectAction = true
}
}
}
return detailed, nil
}
func parseMatchAllData(filter Filter, data []syscall.NetlinkRouteAttr) (bool, error) {
native = nl.NativeEndian()
matchall := filter.(*MatchAll)
detailed := true
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_MATCHALL_CLASSID:
matchall.ClassId = native.Uint32(datum.Value[0:4])
case nl.TCA_MATCHALL_ACT:
tables, err := nl.ParseRouteAttr(datum.Value)
if err != nil {
return detailed, err
}
matchall.Actions, err = parseActions(tables)
if err != nil {
return detailed, err
}
}
}
return detailed, nil
}
func AlignToAtm(size uint) uint {
var linksize, cells int
cells = int(size / nl.ATM_CELL_PAYLOAD)
if (size % nl.ATM_CELL_PAYLOAD) > 0 {
cells++
}
linksize = cells * nl.ATM_CELL_SIZE
return uint(linksize)
}
func AdjustSize(sz uint, mpu uint, linklayer int) uint {
if sz < mpu {
sz = mpu
}
switch linklayer {
case nl.LINKLAYER_ATM:
return AlignToAtm(sz)
default:
return sz
}
}
func CalcRtable(rate *nl.TcRateSpec, rtab []uint32, cellLog int, mtu uint32, linklayer int) int {
bps := rate.Rate
mpu := rate.Mpu
var sz uint
if mtu == 0 {
mtu = 2047
}
if cellLog < 0 {
cellLog = 0
for (mtu >> uint(cellLog)) > 255 {
cellLog++
}
}
for i := 0; i < 256; i++ {
sz = AdjustSize(uint((i+1)<<uint32(cellLog)), uint(mpu), linklayer)
rtab[i] = uint32(Xmittime(uint64(bps), uint32(sz)))
}
rate.CellAlign = -1
rate.CellLog = uint8(cellLog)
rate.Linklayer = uint8(linklayer & nl.TC_LINKLAYER_MASK)
return cellLog
}
func DeserializeRtab(b []byte) [256]uint32 {
var rtab [256]uint32
native := nl.NativeEndian()
r := bytes.NewReader(b)
_ = binary.Read(r, native, &rtab)
return rtab
}
func SerializeRtab(rtab [256]uint32) []byte {
native := nl.NativeEndian()
var w bytes.Buffer
_ = binary.Write(&w, native, rtab)
return w.Bytes()
}

21
vendor/github.com/vishvananda/netlink/fou.go generated vendored Normal file
View File

@ -0,0 +1,21 @@
package netlink
import (
"errors"
)
var (
// ErrAttrHeaderTruncated is returned when a netlink attribute's header is
// truncated.
ErrAttrHeaderTruncated = errors.New("attribute header truncated")
// ErrAttrBodyTruncated is returned when a netlink attribute's body is
// truncated.
ErrAttrBodyTruncated = errors.New("attribute body truncated")
)
type Fou struct {
Family int
Port int
Protocol int
EncapType int
}

215
vendor/github.com/vishvananda/netlink/fou_linux.go generated vendored Normal file
View File

@ -0,0 +1,215 @@
// +build linux
package netlink
import (
"encoding/binary"
"errors"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
const (
FOU_GENL_NAME = "fou"
)
const (
FOU_CMD_UNSPEC uint8 = iota
FOU_CMD_ADD
FOU_CMD_DEL
FOU_CMD_GET
FOU_CMD_MAX = FOU_CMD_GET
)
const (
FOU_ATTR_UNSPEC = iota
FOU_ATTR_PORT
FOU_ATTR_AF
FOU_ATTR_IPPROTO
FOU_ATTR_TYPE
FOU_ATTR_REMCSUM_NOPARTIAL
FOU_ATTR_MAX = FOU_ATTR_REMCSUM_NOPARTIAL
)
const (
FOU_ENCAP_UNSPEC = iota
FOU_ENCAP_DIRECT
FOU_ENCAP_GUE
FOU_ENCAP_MAX = FOU_ENCAP_GUE
)
var fouFamilyId int
func FouFamilyId() (int, error) {
if fouFamilyId != 0 {
return fouFamilyId, nil
}
fam, err := GenlFamilyGet(FOU_GENL_NAME)
if err != nil {
return -1, err
}
fouFamilyId = int(fam.ID)
return fouFamilyId, nil
}
func FouAdd(f Fou) error {
return pkgHandle.FouAdd(f)
}
func (h *Handle) FouAdd(f Fou) error {
fam_id, err := FouFamilyId()
if err != nil {
return err
}
// setting ip protocol conflicts with encapsulation type GUE
if f.EncapType == FOU_ENCAP_GUE && f.Protocol != 0 {
return errors.New("GUE encapsulation doesn't specify an IP protocol")
}
req := h.newNetlinkRequest(fam_id, unix.NLM_F_ACK)
// int to byte for port
bp := make([]byte, 2)
binary.BigEndian.PutUint16(bp[0:2], uint16(f.Port))
attrs := []*nl.RtAttr{
nl.NewRtAttr(FOU_ATTR_PORT, bp),
nl.NewRtAttr(FOU_ATTR_TYPE, []byte{uint8(f.EncapType)}),
nl.NewRtAttr(FOU_ATTR_AF, []byte{uint8(f.Family)}),
nl.NewRtAttr(FOU_ATTR_IPPROTO, []byte{uint8(f.Protocol)}),
}
raw := []byte{FOU_CMD_ADD, 1, 0, 0}
for _, a := range attrs {
raw = append(raw, a.Serialize()...)
}
req.AddRawData(raw)
_, err = req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return err
}
return nil
}
func FouDel(f Fou) error {
return pkgHandle.FouDel(f)
}
func (h *Handle) FouDel(f Fou) error {
fam_id, err := FouFamilyId()
if err != nil {
return err
}
req := h.newNetlinkRequest(fam_id, unix.NLM_F_ACK)
// int to byte for port
bp := make([]byte, 2)
binary.BigEndian.PutUint16(bp[0:2], uint16(f.Port))
attrs := []*nl.RtAttr{
nl.NewRtAttr(FOU_ATTR_PORT, bp),
nl.NewRtAttr(FOU_ATTR_AF, []byte{uint8(f.Family)}),
}
raw := []byte{FOU_CMD_DEL, 1, 0, 0}
for _, a := range attrs {
raw = append(raw, a.Serialize()...)
}
req.AddRawData(raw)
_, err = req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return err
}
return nil
}
func FouList(fam int) ([]Fou, error) {
return pkgHandle.FouList(fam)
}
func (h *Handle) FouList(fam int) ([]Fou, error) {
fam_id, err := FouFamilyId()
if err != nil {
return nil, err
}
req := h.newNetlinkRequest(fam_id, unix.NLM_F_DUMP)
attrs := []*nl.RtAttr{
nl.NewRtAttr(FOU_ATTR_AF, []byte{uint8(fam)}),
}
raw := []byte{FOU_CMD_GET, 1, 0, 0}
for _, a := range attrs {
raw = append(raw, a.Serialize()...)
}
req.AddRawData(raw)
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
fous := make([]Fou, 0, len(msgs))
for _, m := range msgs {
f, err := deserializeFouMsg(m)
if err != nil {
return fous, err
}
fous = append(fous, f)
}
return fous, nil
}
func deserializeFouMsg(msg []byte) (Fou, error) {
// we'll skip to byte 4 to first attribute
msg = msg[3:]
var shift int
fou := Fou{}
for {
// attribute header is at least 16 bits
if len(msg) < 4 {
return fou, ErrAttrHeaderTruncated
}
lgt := int(binary.BigEndian.Uint16(msg[0:2]))
if len(msg) < lgt+4 {
return fou, ErrAttrBodyTruncated
}
attr := binary.BigEndian.Uint16(msg[2:4])
shift = lgt + 3
switch attr {
case FOU_ATTR_AF:
fou.Family = int(msg[5])
case FOU_ATTR_PORT:
fou.Port = int(binary.BigEndian.Uint16(msg[5:7]))
// port is 2 bytes
shift = lgt + 2
case FOU_ATTR_IPPROTO:
fou.Protocol = int(msg[5])
case FOU_ATTR_TYPE:
fou.EncapType = int(msg[5])
}
msg = msg[shift:]
if len(msg) < 4 {
break
}
}
return fou, nil
}

View File

@ -0,0 +1,15 @@
// +build !linux
package netlink
func FouAdd(f Fou) error {
return ErrNotImplemented
}
func FouDel(f Fou) error {
return ErrNotImplemented
}
func FouList(fam int) ([]Fou, error) {
return nil, ErrNotImplemented
}

View File

@ -0,0 +1,168 @@
package netlink
import (
"fmt"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
type GenlOp struct {
ID uint32
Flags uint32
}
type GenlMulticastGroup struct {
ID uint32
Name string
}
type GenlFamily struct {
ID uint16
HdrSize uint32
Name string
Version uint32
MaxAttr uint32
Ops []GenlOp
Groups []GenlMulticastGroup
}
func parseOps(b []byte) ([]GenlOp, error) {
attrs, err := nl.ParseRouteAttr(b)
if err != nil {
return nil, err
}
ops := make([]GenlOp, 0, len(attrs))
for _, a := range attrs {
nattrs, err := nl.ParseRouteAttr(a.Value)
if err != nil {
return nil, err
}
var op GenlOp
for _, na := range nattrs {
switch na.Attr.Type {
case nl.GENL_CTRL_ATTR_OP_ID:
op.ID = native.Uint32(na.Value)
case nl.GENL_CTRL_ATTR_OP_FLAGS:
op.Flags = native.Uint32(na.Value)
}
}
ops = append(ops, op)
}
return ops, nil
}
func parseMulticastGroups(b []byte) ([]GenlMulticastGroup, error) {
attrs, err := nl.ParseRouteAttr(b)
if err != nil {
return nil, err
}
groups := make([]GenlMulticastGroup, 0, len(attrs))
for _, a := range attrs {
nattrs, err := nl.ParseRouteAttr(a.Value)
if err != nil {
return nil, err
}
var g GenlMulticastGroup
for _, na := range nattrs {
switch na.Attr.Type {
case nl.GENL_CTRL_ATTR_MCAST_GRP_NAME:
g.Name = nl.BytesToString(na.Value)
case nl.GENL_CTRL_ATTR_MCAST_GRP_ID:
g.ID = native.Uint32(na.Value)
}
}
groups = append(groups, g)
}
return groups, nil
}
func (f *GenlFamily) parseAttributes(attrs []syscall.NetlinkRouteAttr) error {
for _, a := range attrs {
switch a.Attr.Type {
case nl.GENL_CTRL_ATTR_FAMILY_NAME:
f.Name = nl.BytesToString(a.Value)
case nl.GENL_CTRL_ATTR_FAMILY_ID:
f.ID = native.Uint16(a.Value)
case nl.GENL_CTRL_ATTR_VERSION:
f.Version = native.Uint32(a.Value)
case nl.GENL_CTRL_ATTR_HDRSIZE:
f.HdrSize = native.Uint32(a.Value)
case nl.GENL_CTRL_ATTR_MAXATTR:
f.MaxAttr = native.Uint32(a.Value)
case nl.GENL_CTRL_ATTR_OPS:
ops, err := parseOps(a.Value)
if err != nil {
return err
}
f.Ops = ops
case nl.GENL_CTRL_ATTR_MCAST_GROUPS:
groups, err := parseMulticastGroups(a.Value)
if err != nil {
return err
}
f.Groups = groups
}
}
return nil
}
func parseFamilies(msgs [][]byte) ([]*GenlFamily, error) {
families := make([]*GenlFamily, 0, len(msgs))
for _, m := range msgs {
attrs, err := nl.ParseRouteAttr(m[nl.SizeofGenlmsg:])
if err != nil {
return nil, err
}
family := &GenlFamily{}
if err := family.parseAttributes(attrs); err != nil {
return nil, err
}
families = append(families, family)
}
return families, nil
}
func (h *Handle) GenlFamilyList() ([]*GenlFamily, error) {
msg := &nl.Genlmsg{
Command: nl.GENL_CTRL_CMD_GETFAMILY,
Version: nl.GENL_CTRL_VERSION,
}
req := h.newNetlinkRequest(nl.GENL_ID_CTRL, unix.NLM_F_DUMP)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
return parseFamilies(msgs)
}
func GenlFamilyList() ([]*GenlFamily, error) {
return pkgHandle.GenlFamilyList()
}
func (h *Handle) GenlFamilyGet(name string) (*GenlFamily, error) {
msg := &nl.Genlmsg{
Command: nl.GENL_CTRL_CMD_GETFAMILY,
Version: nl.GENL_CTRL_VERSION,
}
req := h.newNetlinkRequest(nl.GENL_ID_CTRL, 0)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_CTRL_ATTR_FAMILY_NAME, nl.ZeroTerminated(name)))
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
families, err := parseFamilies(msgs)
if len(families) != 1 {
return nil, fmt.Errorf("invalid response for GENL_CTRL_CMD_GETFAMILY")
}
return families[0], nil
}
func GenlFamilyGet(name string) (*GenlFamily, error) {
return pkgHandle.GenlFamilyGet(name)
}

View File

@ -0,0 +1,25 @@
// +build !linux
package netlink
type GenlOp struct{}
type GenlMulticastGroup struct{}
type GenlFamily struct{}
func (h *Handle) GenlFamilyList() ([]*GenlFamily, error) {
return nil, ErrNotImplemented
}
func GenlFamilyList() ([]*GenlFamily, error) {
return nil, ErrNotImplemented
}
func (h *Handle) GenlFamilyGet(name string) (*GenlFamily, error) {
return nil, ErrNotImplemented
}
func GenlFamilyGet(name string) (*GenlFamily, error) {
return nil, ErrNotImplemented
}

239
vendor/github.com/vishvananda/netlink/gtp_linux.go generated vendored Normal file
View File

@ -0,0 +1,239 @@
package netlink
import (
"fmt"
"net"
"strings"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
type PDP struct {
Version uint32
TID uint64
PeerAddress net.IP
MSAddress net.IP
Flow uint16
NetNSFD uint32
ITEI uint32
OTEI uint32
}
func (pdp *PDP) String() string {
elems := []string{}
elems = append(elems, fmt.Sprintf("Version: %d", pdp.Version))
if pdp.Version == 0 {
elems = append(elems, fmt.Sprintf("TID: %d", pdp.TID))
} else if pdp.Version == 1 {
elems = append(elems, fmt.Sprintf("TEI: %d/%d", pdp.ITEI, pdp.OTEI))
}
elems = append(elems, fmt.Sprintf("MS-Address: %s", pdp.MSAddress))
elems = append(elems, fmt.Sprintf("Peer-Address: %s", pdp.PeerAddress))
return fmt.Sprintf("{%s}", strings.Join(elems, " "))
}
func (p *PDP) parseAttributes(attrs []syscall.NetlinkRouteAttr) error {
for _, a := range attrs {
switch a.Attr.Type {
case nl.GENL_GTP_ATTR_VERSION:
p.Version = native.Uint32(a.Value)
case nl.GENL_GTP_ATTR_TID:
p.TID = native.Uint64(a.Value)
case nl.GENL_GTP_ATTR_PEER_ADDRESS:
p.PeerAddress = net.IP(a.Value)
case nl.GENL_GTP_ATTR_MS_ADDRESS:
p.MSAddress = net.IP(a.Value)
case nl.GENL_GTP_ATTR_FLOW:
p.Flow = native.Uint16(a.Value)
case nl.GENL_GTP_ATTR_NET_NS_FD:
p.NetNSFD = native.Uint32(a.Value)
case nl.GENL_GTP_ATTR_I_TEI:
p.ITEI = native.Uint32(a.Value)
case nl.GENL_GTP_ATTR_O_TEI:
p.OTEI = native.Uint32(a.Value)
}
}
return nil
}
func parsePDP(msgs [][]byte) ([]*PDP, error) {
pdps := make([]*PDP, 0, len(msgs))
for _, m := range msgs {
attrs, err := nl.ParseRouteAttr(m[nl.SizeofGenlmsg:])
if err != nil {
return nil, err
}
pdp := &PDP{}
if err := pdp.parseAttributes(attrs); err != nil {
return nil, err
}
pdps = append(pdps, pdp)
}
return pdps, nil
}
func (h *Handle) GTPPDPList() ([]*PDP, error) {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return nil, err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_GETPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), unix.NLM_F_DUMP)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
return parsePDP(msgs)
}
func GTPPDPList() ([]*PDP, error) {
return pkgHandle.GTPPDPList()
}
func gtpPDPGet(req *nl.NetlinkRequest) (*PDP, error) {
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
pdps, err := parsePDP(msgs)
if err != nil {
return nil, err
}
if len(pdps) != 1 {
return nil, fmt.Errorf("invalid reqponse for GENL_GTP_CMD_GETPDP")
}
return pdps[0], nil
}
func (h *Handle) GTPPDPByTID(link Link, tid int) (*PDP, error) {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return nil, err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_GETPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), 0)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(0)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_TID, nl.Uint64Attr(uint64(tid))))
return gtpPDPGet(req)
}
func GTPPDPByTID(link Link, tid int) (*PDP, error) {
return pkgHandle.GTPPDPByTID(link, tid)
}
func (h *Handle) GTPPDPByITEI(link Link, itei int) (*PDP, error) {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return nil, err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_GETPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), 0)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(1)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_I_TEI, nl.Uint32Attr(uint32(itei))))
return gtpPDPGet(req)
}
func GTPPDPByITEI(link Link, itei int) (*PDP, error) {
return pkgHandle.GTPPDPByITEI(link, itei)
}
func (h *Handle) GTPPDPByMSAddress(link Link, addr net.IP) (*PDP, error) {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return nil, err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_GETPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), 0)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(0)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_MS_ADDRESS, []byte(addr.To4())))
return gtpPDPGet(req)
}
func GTPPDPByMSAddress(link Link, addr net.IP) (*PDP, error) {
return pkgHandle.GTPPDPByMSAddress(link, addr)
}
func (h *Handle) GTPPDPAdd(link Link, pdp *PDP) error {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_NEWPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), unix.NLM_F_EXCL|unix.NLM_F_ACK)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(pdp.Version)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_PEER_ADDRESS, []byte(pdp.PeerAddress.To4())))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_MS_ADDRESS, []byte(pdp.MSAddress.To4())))
switch pdp.Version {
case 0:
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_TID, nl.Uint64Attr(pdp.TID)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_FLOW, nl.Uint16Attr(pdp.Flow)))
case 1:
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_I_TEI, nl.Uint32Attr(pdp.ITEI)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_O_TEI, nl.Uint32Attr(pdp.OTEI)))
default:
return fmt.Errorf("unsupported GTP version: %d", pdp.Version)
}
_, err = req.Execute(unix.NETLINK_GENERIC, 0)
return err
}
func GTPPDPAdd(link Link, pdp *PDP) error {
return pkgHandle.GTPPDPAdd(link, pdp)
}
func (h *Handle) GTPPDPDel(link Link, pdp *PDP) error {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_DELPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), unix.NLM_F_EXCL|unix.NLM_F_ACK)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(pdp.Version)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
switch pdp.Version {
case 0:
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_TID, nl.Uint64Attr(pdp.TID)))
case 1:
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_I_TEI, nl.Uint32Attr(pdp.ITEI)))
default:
return fmt.Errorf("unsupported GTP version: %d", pdp.Version)
}
_, err = req.Execute(unix.NETLINK_GENERIC, 0)
return err
}
func GTPPDPDel(link Link, pdp *PDP) error {
return pkgHandle.GTPPDPDel(link, pdp)
}

144
vendor/github.com/vishvananda/netlink/handle_linux.go generated vendored Normal file
View File

@ -0,0 +1,144 @@
package netlink
import (
"fmt"
"time"
"github.com/vishvananda/netlink/nl"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
// Empty handle used by the netlink package methods
var pkgHandle = &Handle{}
// Handle is an handle for the netlink requests on a
// specific network namespace. All the requests on the
// same netlink family share the same netlink socket,
// which gets released when the handle is deleted.
type Handle struct {
sockets map[int]*nl.SocketHandle
lookupByDump bool
}
// SupportsNetlinkFamily reports whether the passed netlink family is supported by this Handle
func (h *Handle) SupportsNetlinkFamily(nlFamily int) bool {
_, ok := h.sockets[nlFamily]
return ok
}
// NewHandle returns a netlink handle on the current network namespace.
// Caller may specify the netlink families the handle should support.
// If no families are specified, all the families the netlink package
// supports will be automatically added.
func NewHandle(nlFamilies ...int) (*Handle, error) {
return newHandle(netns.None(), netns.None(), nlFamilies...)
}
// SetSocketTimeout sets the send and receive timeout for each socket in the
// netlink handle. Although the socket timeout has granularity of one
// microsecond, the effective granularity is floored by the kernel timer tick,
// which default value is four milliseconds.
func (h *Handle) SetSocketTimeout(to time.Duration) error {
if to < time.Microsecond {
return fmt.Errorf("invalid timeout, minimul value is %s", time.Microsecond)
}
tv := unix.NsecToTimeval(to.Nanoseconds())
for _, sh := range h.sockets {
if err := sh.Socket.SetSendTimeout(&tv); err != nil {
return err
}
if err := sh.Socket.SetReceiveTimeout(&tv); err != nil {
return err
}
}
return nil
}
// SetSocketReceiveBufferSize sets the receive buffer size for each
// socket in the netlink handle. The maximum value is capped by
// /proc/sys/net/core/rmem_max.
func (h *Handle) SetSocketReceiveBufferSize(size int, force bool) error {
opt := unix.SO_RCVBUF
if force {
opt = unix.SO_RCVBUFFORCE
}
for _, sh := range h.sockets {
fd := sh.Socket.GetFd()
err := unix.SetsockoptInt(fd, unix.SOL_SOCKET, opt, size)
if err != nil {
return err
}
}
return nil
}
// GetSocketReceiveBufferSize gets the receiver buffer size for each
// socket in the netlink handle. The retrieved value should be the
// double to the one set for SetSocketReceiveBufferSize.
func (h *Handle) GetSocketReceiveBufferSize() ([]int, error) {
results := make([]int, len(h.sockets))
i := 0
for _, sh := range h.sockets {
fd := sh.Socket.GetFd()
size, err := unix.GetsockoptInt(fd, unix.SOL_SOCKET, unix.SO_RCVBUF)
if err != nil {
return nil, err
}
results[i] = size
i++
}
return results, nil
}
// NewHandle returns a netlink handle on the network namespace
// specified by ns. If ns=netns.None(), current network namespace
// will be assumed
func NewHandleAt(ns netns.NsHandle, nlFamilies ...int) (*Handle, error) {
return newHandle(ns, netns.None(), nlFamilies...)
}
// NewHandleAtFrom works as NewHandle but allows client to specify the
// new and the origin netns Handle.
func NewHandleAtFrom(newNs, curNs netns.NsHandle) (*Handle, error) {
return newHandle(newNs, curNs)
}
func newHandle(newNs, curNs netns.NsHandle, nlFamilies ...int) (*Handle, error) {
h := &Handle{sockets: map[int]*nl.SocketHandle{}}
fams := nl.SupportedNlFamilies
if len(nlFamilies) != 0 {
fams = nlFamilies
}
for _, f := range fams {
s, err := nl.GetNetlinkSocketAt(newNs, curNs, f)
if err != nil {
return nil, err
}
h.sockets[f] = &nl.SocketHandle{Socket: s}
}
return h, nil
}
// Delete releases the resources allocated to this handle
func (h *Handle) Delete() {
for _, sh := range h.sockets {
sh.Close()
}
h.sockets = nil
}
func (h *Handle) newNetlinkRequest(proto, flags int) *nl.NetlinkRequest {
// Do this so that package API still use nl package variable nextSeqNr
if h.sockets == nil {
return nl.NewNetlinkRequest(proto, flags)
}
return &nl.NetlinkRequest{
NlMsghdr: unix.NlMsghdr{
Len: uint32(unix.SizeofNlMsghdr),
Type: uint16(proto),
Flags: unix.NLM_F_REQUEST | uint16(flags),
},
Sockets: h.sockets,
}
}

View File

@ -0,0 +1,258 @@
// +build !linux
package netlink
import (
"net"
"time"
"github.com/vishvananda/netns"
)
type Handle struct{}
func NewHandle(nlFamilies ...int) (*Handle, error) {
return nil, ErrNotImplemented
}
func NewHandleAt(ns netns.NsHandle, nlFamilies ...int) (*Handle, error) {
return nil, ErrNotImplemented
}
func NewHandleAtFrom(newNs, curNs netns.NsHandle) (*Handle, error) {
return nil, ErrNotImplemented
}
func (h *Handle) Delete() {}
func (h *Handle) SupportsNetlinkFamily(nlFamily int) bool {
return false
}
func (h *Handle) SetSocketTimeout(to time.Duration) error {
return ErrNotImplemented
}
func (h *Handle) SetPromiscOn(link Link) error {
return ErrNotImplemented
}
func (h *Handle) SetPromiscOff(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetUp(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetDown(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetMTU(link Link, mtu int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetName(link Link, name string) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetAlias(link Link, name string) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetHardwareAddr(link Link, hwaddr net.HardwareAddr) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetVfHardwareAddr(link Link, vf int, hwaddr net.HardwareAddr) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetVfVlan(link Link, vf, vlan int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetVfTxRate(link Link, vf, rate int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetMaster(link Link, master *Bridge) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetNoMaster(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetMasterByIndex(link Link, masterIndex int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetNsPid(link Link, nspid int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetNsFd(link Link, fd int) error {
return ErrNotImplemented
}
func (h *Handle) LinkAdd(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkDel(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkByName(name string) (Link, error) {
return nil, ErrNotImplemented
}
func (h *Handle) LinkByAlias(alias string) (Link, error) {
return nil, ErrNotImplemented
}
func (h *Handle) LinkByIndex(index int) (Link, error) {
return nil, ErrNotImplemented
}
func (h *Handle) LinkList() ([]Link, error) {
return nil, ErrNotImplemented
}
func (h *Handle) LinkSetHairpin(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetGuard(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetFastLeave(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetLearning(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetRootBlock(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetFlood(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetTxQLen(link Link, qlen int) error {
return ErrNotImplemented
}
func (h *Handle) setProtinfoAttr(link Link, mode bool, attr int) error {
return ErrNotImplemented
}
func (h *Handle) AddrAdd(link Link, addr *Addr) error {
return ErrNotImplemented
}
func (h *Handle) AddrDel(link Link, addr *Addr) error {
return ErrNotImplemented
}
func (h *Handle) AddrList(link Link, family int) ([]Addr, error) {
return nil, ErrNotImplemented
}
func (h *Handle) ClassDel(class Class) error {
return ErrNotImplemented
}
func (h *Handle) ClassChange(class Class) error {
return ErrNotImplemented
}
func (h *Handle) ClassReplace(class Class) error {
return ErrNotImplemented
}
func (h *Handle) ClassAdd(class Class) error {
return ErrNotImplemented
}
func (h *Handle) ClassList(link Link, parent uint32) ([]Class, error) {
return nil, ErrNotImplemented
}
func (h *Handle) FilterDel(filter Filter) error {
return ErrNotImplemented
}
func (h *Handle) FilterAdd(filter Filter) error {
return ErrNotImplemented
}
func (h *Handle) FilterList(link Link, parent uint32) ([]Filter, error) {
return nil, ErrNotImplemented
}
func (h *Handle) NeighAdd(neigh *Neigh) error {
return ErrNotImplemented
}
func (h *Handle) NeighSet(neigh *Neigh) error {
return ErrNotImplemented
}
func (h *Handle) NeighAppend(neigh *Neigh) error {
return ErrNotImplemented
}
func (h *Handle) NeighDel(neigh *Neigh) error {
return ErrNotImplemented
}
func (h *Handle) NeighList(linkIndex, family int) ([]Neigh, error) {
return nil, ErrNotImplemented
}
func (h *Handle) NeighProxyList(linkIndex, family int) ([]Neigh, error) {
return nil, ErrNotImplemented
}
func (h *Handle) RouteAdd(route *Route) error {
return ErrNotImplemented
}
func (h *Handle) RouteDel(route *Route) error {
return ErrNotImplemented
}
func (h *Handle) RouteGet(destination net.IP) ([]Route, error) {
return nil, ErrNotImplemented
}
func (h *Handle) RouteList(link Link, family int) ([]Route, error) {
return nil, ErrNotImplemented
}
func (h *Handle) RouteListFiltered(family int, filter *Route, filterMask uint64) ([]Route, error) {
return nil, ErrNotImplemented
}
func (h *Handle) RouteReplace(route *Route) error {
return ErrNotImplemented
}
func (h *Handle) RuleAdd(rule *Rule) error {
return ErrNotImplemented
}
func (h *Handle) RuleDel(rule *Rule) error {
return ErrNotImplemented
}
func (h *Handle) RuleList(family int) ([]Rule, error) {
return nil, ErrNotImplemented
}

98
vendor/github.com/vishvananda/netlink/ioctl_linux.go generated vendored Normal file
View File

@ -0,0 +1,98 @@
package netlink
import (
"syscall"
"unsafe"
"golang.org/x/sys/unix"
)
// ioctl for statistics.
const (
// ETHTOOL_GSSET_INFO gets string set info
ETHTOOL_GSSET_INFO = 0x00000037
// SIOCETHTOOL is Ethtool interface
SIOCETHTOOL = 0x8946
// ETHTOOL_GSTRINGS gets specified string set
ETHTOOL_GSTRINGS = 0x0000001b
// ETHTOOL_GSTATS gets NIC-specific statistics
ETHTOOL_GSTATS = 0x0000001d
)
// string set id.
const (
// ETH_SS_TEST is self-test result names, for use with %ETHTOOL_TEST
ETH_SS_TEST = iota
// ETH_SS_STATS statistic names, for use with %ETHTOOL_GSTATS
ETH_SS_STATS
// ETH_SS_PRIV_FLAGS are driver private flag names
ETH_SS_PRIV_FLAGS
// _ETH_SS_NTUPLE_FILTERS is deprecated
_ETH_SS_NTUPLE_FILTERS
// ETH_SS_FEATURES are device feature names
ETH_SS_FEATURES
// ETH_SS_RSS_HASH_FUNCS is RSS hush function names
ETH_SS_RSS_HASH_FUNCS
)
// IfreqSlave is a struct for ioctl bond manipulation syscalls.
// It is used to assign slave to bond interface with Name.
type IfreqSlave struct {
Name [unix.IFNAMSIZ]byte
Slave [unix.IFNAMSIZ]byte
}
// Ifreq is a struct for ioctl ethernet manipulation syscalls.
type Ifreq struct {
Name [unix.IFNAMSIZ]byte
Data uintptr
}
// ethtoolSset is a string set information
type ethtoolSset struct {
cmd uint32
reserved uint32
mask uint64
data [1]uint32
}
// ethtoolGstrings is string set for data tagging
type ethtoolGstrings struct {
cmd uint32
stringSet uint32
length uint32
data [32]byte
}
type ethtoolStats struct {
cmd uint32
nStats uint32
data [1]uint64
}
// newIocltSlaveReq returns filled IfreqSlave with proper interface names
// It is used by ioctl to assign slave to bond master
func newIocltSlaveReq(slave, master string) *IfreqSlave {
ifreq := &IfreqSlave{}
copy(ifreq.Name[:unix.IFNAMSIZ-1], master)
copy(ifreq.Slave[:unix.IFNAMSIZ-1], slave)
return ifreq
}
// newIocltStringSetReq creates request to get interface string set
func newIocltStringSetReq(linkName string) (*Ifreq, *ethtoolSset) {
e := &ethtoolSset{
cmd: ETHTOOL_GSSET_INFO,
mask: 1 << ETH_SS_STATS,
}
ifreq := &Ifreq{Data: uintptr(unsafe.Pointer(e))}
copy(ifreq.Name[:unix.IFNAMSIZ-1], linkName)
return ifreq, e
}
// getSocketUDP returns file descriptor to new UDP socket
// It is used for communication with ioctl interface.
func getSocketUDP() (int, error) {
return syscall.Socket(unix.AF_INET, unix.SOCK_DGRAM, 0)
}

846
vendor/github.com/vishvananda/netlink/link.go generated vendored Normal file
View File

@ -0,0 +1,846 @@
package netlink
import (
"fmt"
"net"
"os"
)
// Link represents a link device from netlink. Shared link attributes
// like name may be retrieved using the Attrs() method. Unique data
// can be retrieved by casting the object to the proper type.
type Link interface {
Attrs() *LinkAttrs
Type() string
}
type (
NsPid int
NsFd int
)
// LinkAttrs represents data shared by most link types
type LinkAttrs struct {
Index int
MTU int
TxQLen int // Transmit Queue Length
Name string
HardwareAddr net.HardwareAddr
Flags net.Flags
RawFlags uint32
ParentIndex int // index of the parent link device
MasterIndex int // must be the index of a bridge
Namespace interface{} // nil | NsPid | NsFd
Alias string
Statistics *LinkStatistics
Promisc int
Xdp *LinkXdp
EncapType string
Protinfo *Protinfo
OperState LinkOperState
NetNsID int
NumTxQueues int
NumRxQueues int
}
// LinkOperState represents the values of the IFLA_OPERSTATE link
// attribute, which contains the RFC2863 state of the interface.
type LinkOperState uint8
const (
OperUnknown = iota // Status can't be determined.
OperNotPresent // Some component is missing.
OperDown // Down.
OperLowerLayerDown // Down due to state of lower layer.
OperTesting // In some test mode.
OperDormant // Not up but pending an external event.
OperUp // Up, ready to send packets.
)
func (s LinkOperState) String() string {
switch s {
case OperNotPresent:
return "not-present"
case OperDown:
return "down"
case OperLowerLayerDown:
return "lower-layer-down"
case OperTesting:
return "testing"
case OperDormant:
return "dormant"
case OperUp:
return "up"
default:
return "unknown"
}
}
// NewLinkAttrs returns LinkAttrs structure filled with default values
func NewLinkAttrs() LinkAttrs {
return LinkAttrs{
TxQLen: -1,
}
}
type LinkStatistics LinkStatistics64
/*
Ref: struct rtnl_link_stats {...}
*/
type LinkStatistics32 struct {
RxPackets uint32
TxPackets uint32
RxBytes uint32
TxBytes uint32
RxErrors uint32
TxErrors uint32
RxDropped uint32
TxDropped uint32
Multicast uint32
Collisions uint32
RxLengthErrors uint32
RxOverErrors uint32
RxCrcErrors uint32
RxFrameErrors uint32
RxFifoErrors uint32
RxMissedErrors uint32
TxAbortedErrors uint32
TxCarrierErrors uint32
TxFifoErrors uint32
TxHeartbeatErrors uint32
TxWindowErrors uint32
RxCompressed uint32
TxCompressed uint32
}
func (s32 LinkStatistics32) to64() *LinkStatistics64 {
return &LinkStatistics64{
RxPackets: uint64(s32.RxPackets),
TxPackets: uint64(s32.TxPackets),
RxBytes: uint64(s32.RxBytes),
TxBytes: uint64(s32.TxBytes),
RxErrors: uint64(s32.RxErrors),
TxErrors: uint64(s32.TxErrors),
RxDropped: uint64(s32.RxDropped),
TxDropped: uint64(s32.TxDropped),
Multicast: uint64(s32.Multicast),
Collisions: uint64(s32.Collisions),
RxLengthErrors: uint64(s32.RxLengthErrors),
RxOverErrors: uint64(s32.RxOverErrors),
RxCrcErrors: uint64(s32.RxCrcErrors),
RxFrameErrors: uint64(s32.RxFrameErrors),
RxFifoErrors: uint64(s32.RxFifoErrors),
RxMissedErrors: uint64(s32.RxMissedErrors),
TxAbortedErrors: uint64(s32.TxAbortedErrors),
TxCarrierErrors: uint64(s32.TxCarrierErrors),
TxFifoErrors: uint64(s32.TxFifoErrors),
TxHeartbeatErrors: uint64(s32.TxHeartbeatErrors),
TxWindowErrors: uint64(s32.TxWindowErrors),
RxCompressed: uint64(s32.RxCompressed),
TxCompressed: uint64(s32.TxCompressed),
}
}
/*
Ref: struct rtnl_link_stats64 {...}
*/
type LinkStatistics64 struct {
RxPackets uint64
TxPackets uint64
RxBytes uint64
TxBytes uint64
RxErrors uint64
TxErrors uint64
RxDropped uint64
TxDropped uint64
Multicast uint64
Collisions uint64
RxLengthErrors uint64
RxOverErrors uint64
RxCrcErrors uint64
RxFrameErrors uint64
RxFifoErrors uint64
RxMissedErrors uint64
TxAbortedErrors uint64
TxCarrierErrors uint64
TxFifoErrors uint64
TxHeartbeatErrors uint64
TxWindowErrors uint64
RxCompressed uint64
TxCompressed uint64
}
type LinkXdp struct {
Fd int
Attached bool
Flags uint32
ProgId uint32
}
// Device links cannot be created via netlink. These links
// are links created by udev like 'lo' and 'etho0'
type Device struct {
LinkAttrs
}
func (device *Device) Attrs() *LinkAttrs {
return &device.LinkAttrs
}
func (device *Device) Type() string {
return "device"
}
// Dummy links are dummy ethernet devices
type Dummy struct {
LinkAttrs
}
func (dummy *Dummy) Attrs() *LinkAttrs {
return &dummy.LinkAttrs
}
func (dummy *Dummy) Type() string {
return "dummy"
}
// Ifb links are advanced dummy devices for packet filtering
type Ifb struct {
LinkAttrs
}
func (ifb *Ifb) Attrs() *LinkAttrs {
return &ifb.LinkAttrs
}
func (ifb *Ifb) Type() string {
return "ifb"
}
// Bridge links are simple linux bridges
type Bridge struct {
LinkAttrs
MulticastSnooping *bool
HelloTime *uint32
}
func (bridge *Bridge) Attrs() *LinkAttrs {
return &bridge.LinkAttrs
}
func (bridge *Bridge) Type() string {
return "bridge"
}
// Vlan links have ParentIndex set in their Attrs()
type Vlan struct {
LinkAttrs
VlanId int
}
func (vlan *Vlan) Attrs() *LinkAttrs {
return &vlan.LinkAttrs
}
func (vlan *Vlan) Type() string {
return "vlan"
}
type MacvlanMode uint16
const (
MACVLAN_MODE_DEFAULT MacvlanMode = iota
MACVLAN_MODE_PRIVATE
MACVLAN_MODE_VEPA
MACVLAN_MODE_BRIDGE
MACVLAN_MODE_PASSTHRU
MACVLAN_MODE_SOURCE
)
// Macvlan links have ParentIndex set in their Attrs()
type Macvlan struct {
LinkAttrs
Mode MacvlanMode
// MACAddrs is only populated for Macvlan SOURCE links
MACAddrs []net.HardwareAddr
}
func (macvlan *Macvlan) Attrs() *LinkAttrs {
return &macvlan.LinkAttrs
}
func (macvlan *Macvlan) Type() string {
return "macvlan"
}
// Macvtap - macvtap is a virtual interfaces based on macvlan
type Macvtap struct {
Macvlan
}
func (macvtap Macvtap) Type() string {
return "macvtap"
}
type TuntapMode uint16
type TuntapFlag uint16
// Tuntap links created via /dev/tun/tap, but can be destroyed via netlink
type Tuntap struct {
LinkAttrs
Mode TuntapMode
Flags TuntapFlag
Queues int
Fds []*os.File
}
func (tuntap *Tuntap) Attrs() *LinkAttrs {
return &tuntap.LinkAttrs
}
func (tuntap *Tuntap) Type() string {
return "tuntap"
}
// Veth devices must specify PeerName on create
type Veth struct {
LinkAttrs
PeerName string // veth on create only
}
func (veth *Veth) Attrs() *LinkAttrs {
return &veth.LinkAttrs
}
func (veth *Veth) Type() string {
return "veth"
}
// GenericLink links represent types that are not currently understood
// by this netlink library.
type GenericLink struct {
LinkAttrs
LinkType string
}
func (generic *GenericLink) Attrs() *LinkAttrs {
return &generic.LinkAttrs
}
func (generic *GenericLink) Type() string {
return generic.LinkType
}
type Vxlan struct {
LinkAttrs
VxlanId int
VtepDevIndex int
SrcAddr net.IP
Group net.IP
TTL int
TOS int
Learning bool
Proxy bool
RSC bool
L2miss bool
L3miss bool
UDPCSum bool
UDP6ZeroCSumTx bool
UDP6ZeroCSumRx bool
NoAge bool
GBP bool
FlowBased bool
Age int
Limit int
Port int
PortLow int
PortHigh int
}
func (vxlan *Vxlan) Attrs() *LinkAttrs {
return &vxlan.LinkAttrs
}
func (vxlan *Vxlan) Type() string {
return "vxlan"
}
type IPVlanMode uint16
const (
IPVLAN_MODE_L2 IPVlanMode = iota
IPVLAN_MODE_L3
IPVLAN_MODE_L3S
IPVLAN_MODE_MAX
)
type IPVlan struct {
LinkAttrs
Mode IPVlanMode
}
func (ipvlan *IPVlan) Attrs() *LinkAttrs {
return &ipvlan.LinkAttrs
}
func (ipvlan *IPVlan) Type() string {
return "ipvlan"
}
// BondMode type
type BondMode int
func (b BondMode) String() string {
s, ok := bondModeToString[b]
if !ok {
return fmt.Sprintf("BondMode(%d)", b)
}
return s
}
// StringToBondMode returns bond mode, or uknonw is the s is invalid.
func StringToBondMode(s string) BondMode {
mode, ok := StringToBondModeMap[s]
if !ok {
return BOND_MODE_UNKNOWN
}
return mode
}
// Possible BondMode
const (
BOND_MODE_BALANCE_RR BondMode = iota
BOND_MODE_ACTIVE_BACKUP
BOND_MODE_BALANCE_XOR
BOND_MODE_BROADCAST
BOND_MODE_802_3AD
BOND_MODE_BALANCE_TLB
BOND_MODE_BALANCE_ALB
BOND_MODE_UNKNOWN
)
var bondModeToString = map[BondMode]string{
BOND_MODE_BALANCE_RR: "balance-rr",
BOND_MODE_ACTIVE_BACKUP: "active-backup",
BOND_MODE_BALANCE_XOR: "balance-xor",
BOND_MODE_BROADCAST: "broadcast",
BOND_MODE_802_3AD: "802.3ad",
BOND_MODE_BALANCE_TLB: "balance-tlb",
BOND_MODE_BALANCE_ALB: "balance-alb",
}
var StringToBondModeMap = map[string]BondMode{
"balance-rr": BOND_MODE_BALANCE_RR,
"active-backup": BOND_MODE_ACTIVE_BACKUP,
"balance-xor": BOND_MODE_BALANCE_XOR,
"broadcast": BOND_MODE_BROADCAST,
"802.3ad": BOND_MODE_802_3AD,
"balance-tlb": BOND_MODE_BALANCE_TLB,
"balance-alb": BOND_MODE_BALANCE_ALB,
}
// BondArpValidate type
type BondArpValidate int
// Possible BondArpValidate value
const (
BOND_ARP_VALIDATE_NONE BondArpValidate = iota
BOND_ARP_VALIDATE_ACTIVE
BOND_ARP_VALIDATE_BACKUP
BOND_ARP_VALIDATE_ALL
)
// BondPrimaryReselect type
type BondPrimaryReselect int
// Possible BondPrimaryReselect value
const (
BOND_PRIMARY_RESELECT_ALWAYS BondPrimaryReselect = iota
BOND_PRIMARY_RESELECT_BETTER
BOND_PRIMARY_RESELECT_FAILURE
)
// BondArpAllTargets type
type BondArpAllTargets int
// Possible BondArpAllTargets value
const (
BOND_ARP_ALL_TARGETS_ANY BondArpAllTargets = iota
BOND_ARP_ALL_TARGETS_ALL
)
// BondFailOverMac type
type BondFailOverMac int
// Possible BondFailOverMac value
const (
BOND_FAIL_OVER_MAC_NONE BondFailOverMac = iota
BOND_FAIL_OVER_MAC_ACTIVE
BOND_FAIL_OVER_MAC_FOLLOW
)
// BondXmitHashPolicy type
type BondXmitHashPolicy int
func (b BondXmitHashPolicy) String() string {
s, ok := bondXmitHashPolicyToString[b]
if !ok {
return fmt.Sprintf("XmitHashPolicy(%d)", b)
}
return s
}
// StringToBondXmitHashPolicy returns bond lacp arte, or uknonw is the s is invalid.
func StringToBondXmitHashPolicy(s string) BondXmitHashPolicy {
lacp, ok := StringToBondXmitHashPolicyMap[s]
if !ok {
return BOND_XMIT_HASH_POLICY_UNKNOWN
}
return lacp
}
// Possible BondXmitHashPolicy value
const (
BOND_XMIT_HASH_POLICY_LAYER2 BondXmitHashPolicy = iota
BOND_XMIT_HASH_POLICY_LAYER3_4
BOND_XMIT_HASH_POLICY_LAYER2_3
BOND_XMIT_HASH_POLICY_ENCAP2_3
BOND_XMIT_HASH_POLICY_ENCAP3_4
BOND_XMIT_HASH_POLICY_UNKNOWN
)
var bondXmitHashPolicyToString = map[BondXmitHashPolicy]string{
BOND_XMIT_HASH_POLICY_LAYER2: "layer2",
BOND_XMIT_HASH_POLICY_LAYER3_4: "layer3+4",
BOND_XMIT_HASH_POLICY_LAYER2_3: "layer2+3",
BOND_XMIT_HASH_POLICY_ENCAP2_3: "encap2+3",
BOND_XMIT_HASH_POLICY_ENCAP3_4: "encap3+4",
}
var StringToBondXmitHashPolicyMap = map[string]BondXmitHashPolicy{
"layer2": BOND_XMIT_HASH_POLICY_LAYER2,
"layer3+4": BOND_XMIT_HASH_POLICY_LAYER3_4,
"layer2+3": BOND_XMIT_HASH_POLICY_LAYER2_3,
"encap2+3": BOND_XMIT_HASH_POLICY_ENCAP2_3,
"encap3+4": BOND_XMIT_HASH_POLICY_ENCAP3_4,
}
// BondLacpRate type
type BondLacpRate int
func (b BondLacpRate) String() string {
s, ok := bondLacpRateToString[b]
if !ok {
return fmt.Sprintf("LacpRate(%d)", b)
}
return s
}
// StringToBondLacpRate returns bond lacp arte, or uknonw is the s is invalid.
func StringToBondLacpRate(s string) BondLacpRate {
lacp, ok := StringToBondLacpRateMap[s]
if !ok {
return BOND_LACP_RATE_UNKNOWN
}
return lacp
}
// Possible BondLacpRate value
const (
BOND_LACP_RATE_SLOW BondLacpRate = iota
BOND_LACP_RATE_FAST
BOND_LACP_RATE_UNKNOWN
)
var bondLacpRateToString = map[BondLacpRate]string{
BOND_LACP_RATE_SLOW: "slow",
BOND_LACP_RATE_FAST: "fast",
}
var StringToBondLacpRateMap = map[string]BondLacpRate{
"slow": BOND_LACP_RATE_SLOW,
"fast": BOND_LACP_RATE_FAST,
}
// BondAdSelect type
type BondAdSelect int
// Possible BondAdSelect value
const (
BOND_AD_SELECT_STABLE BondAdSelect = iota
BOND_AD_SELECT_BANDWIDTH
BOND_AD_SELECT_COUNT
)
// BondAdInfo represents ad info for bond
type BondAdInfo struct {
AggregatorId int
NumPorts int
ActorKey int
PartnerKey int
PartnerMac net.HardwareAddr
}
// Bond representation
type Bond struct {
LinkAttrs
Mode BondMode
ActiveSlave int
Miimon int
UpDelay int
DownDelay int
UseCarrier int
ArpInterval int
ArpIpTargets []net.IP
ArpValidate BondArpValidate
ArpAllTargets BondArpAllTargets
Primary int
PrimaryReselect BondPrimaryReselect
FailOverMac BondFailOverMac
XmitHashPolicy BondXmitHashPolicy
ResendIgmp int
NumPeerNotif int
AllSlavesActive int
MinLinks int
LpInterval int
PackersPerSlave int
LacpRate BondLacpRate
AdSelect BondAdSelect
// looking at iproute tool AdInfo can only be retrived. It can't be set.
AdInfo *BondAdInfo
AdActorSysPrio int
AdUserPortKey int
AdActorSystem net.HardwareAddr
TlbDynamicLb int
}
func NewLinkBond(atr LinkAttrs) *Bond {
return &Bond{
LinkAttrs: atr,
Mode: -1,
ActiveSlave: -1,
Miimon: -1,
UpDelay: -1,
DownDelay: -1,
UseCarrier: -1,
ArpInterval: -1,
ArpIpTargets: nil,
ArpValidate: -1,
ArpAllTargets: -1,
Primary: -1,
PrimaryReselect: -1,
FailOverMac: -1,
XmitHashPolicy: -1,
ResendIgmp: -1,
NumPeerNotif: -1,
AllSlavesActive: -1,
MinLinks: -1,
LpInterval: -1,
PackersPerSlave: -1,
LacpRate: -1,
AdSelect: -1,
AdActorSysPrio: -1,
AdUserPortKey: -1,
AdActorSystem: nil,
TlbDynamicLb: -1,
}
}
// Flag mask for bond options. Bond.Flagmask must be set to on for option to work.
const (
BOND_MODE_MASK uint64 = 1 << (1 + iota)
BOND_ACTIVE_SLAVE_MASK
BOND_MIIMON_MASK
BOND_UPDELAY_MASK
BOND_DOWNDELAY_MASK
BOND_USE_CARRIER_MASK
BOND_ARP_INTERVAL_MASK
BOND_ARP_VALIDATE_MASK
BOND_ARP_ALL_TARGETS_MASK
BOND_PRIMARY_MASK
BOND_PRIMARY_RESELECT_MASK
BOND_FAIL_OVER_MAC_MASK
BOND_XMIT_HASH_POLICY_MASK
BOND_RESEND_IGMP_MASK
BOND_NUM_PEER_NOTIF_MASK
BOND_ALL_SLAVES_ACTIVE_MASK
BOND_MIN_LINKS_MASK
BOND_LP_INTERVAL_MASK
BOND_PACKETS_PER_SLAVE_MASK
BOND_LACP_RATE_MASK
BOND_AD_SELECT_MASK
)
// Attrs implementation.
func (bond *Bond) Attrs() *LinkAttrs {
return &bond.LinkAttrs
}
// Type implementation fro Vxlan.
func (bond *Bond) Type() string {
return "bond"
}
// Gretap devices must specify LocalIP and RemoteIP on create
type Gretap struct {
LinkAttrs
IKey uint32
OKey uint32
EncapSport uint16
EncapDport uint16
Local net.IP
Remote net.IP
IFlags uint16
OFlags uint16
PMtuDisc uint8
Ttl uint8
Tos uint8
EncapType uint16
EncapFlags uint16
Link uint32
FlowBased bool
}
func (gretap *Gretap) Attrs() *LinkAttrs {
return &gretap.LinkAttrs
}
func (gretap *Gretap) Type() string {
if gretap.Local.To4() == nil {
return "ip6gretap"
}
return "gretap"
}
type Iptun struct {
LinkAttrs
Ttl uint8
Tos uint8
PMtuDisc uint8
Link uint32
Local net.IP
Remote net.IP
EncapSport uint16
EncapDport uint16
EncapType uint16
EncapFlags uint16
FlowBased bool
}
func (iptun *Iptun) Attrs() *LinkAttrs {
return &iptun.LinkAttrs
}
func (iptun *Iptun) Type() string {
return "ipip"
}
type Sittun struct {
LinkAttrs
Link uint32
Local net.IP
Remote net.IP
Ttl uint8
Tos uint8
PMtuDisc uint8
EncapType uint16
EncapFlags uint16
EncapSport uint16
EncapDport uint16
}
func (sittun *Sittun) Attrs() *LinkAttrs {
return &sittun.LinkAttrs
}
func (sittun *Sittun) Type() string {
return "sit"
}
type Vti struct {
LinkAttrs
IKey uint32
OKey uint32
Link uint32
Local net.IP
Remote net.IP
}
func (vti *Vti) Attrs() *LinkAttrs {
return &vti.LinkAttrs
}
func (iptun *Vti) Type() string {
return "vti"
}
type Gretun struct {
LinkAttrs
Link uint32
IFlags uint16
OFlags uint16
IKey uint32
OKey uint32
Local net.IP
Remote net.IP
Ttl uint8
Tos uint8
PMtuDisc uint8
EncapType uint16
EncapFlags uint16
EncapSport uint16
EncapDport uint16
}
func (gretun *Gretun) Attrs() *LinkAttrs {
return &gretun.LinkAttrs
}
func (gretun *Gretun) Type() string {
if gretun.Local.To4() == nil {
return "ip6gre"
}
return "gre"
}
type Vrf struct {
LinkAttrs
Table uint32
}
func (vrf *Vrf) Attrs() *LinkAttrs {
return &vrf.LinkAttrs
}
func (vrf *Vrf) Type() string {
return "vrf"
}
type GTP struct {
LinkAttrs
FD0 int
FD1 int
Role int
PDPHashsize int
}
func (gtp *GTP) Attrs() *LinkAttrs {
return &gtp.LinkAttrs
}
func (gtp *GTP) Type() string {
return "gtp"
}
// iproute2 supported devices;
// vlan | veth | vcan | dummy | ifb | macvlan | macvtap |
// bridge | bond | ipoib | ip6tnl | ipip | sit | vxlan |
// gre | gretap | ip6gre | ip6gretap | vti | nlmon |
// bond_slave | ipvlan
// LinkNotFoundError wraps the various not found errors when
// getting/reading links. This is intended for better error
// handling by dependent code so that "not found error" can
// be distinguished from other errors
type LinkNotFoundError struct {
error
}

2355
vendor/github.com/vishvananda/netlink/link_linux.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,14 @@
package netlink
// ideally golang.org/x/sys/unix would define IfReq but it only has
// IFNAMSIZ, hence this minimalistic implementation
const (
SizeOfIfReq = 40
IFNAMSIZ = 16
)
type ifReq struct {
Name [IFNAMSIZ]byte
Flags uint16
pad [SizeOfIfReq - IFNAMSIZ - 2]byte
}

25
vendor/github.com/vishvananda/netlink/neigh.go generated vendored Normal file
View File

@ -0,0 +1,25 @@
package netlink
import (
"fmt"
"net"
)
// Neigh represents a link layer neighbor from netlink.
type Neigh struct {
LinkIndex int
Family int
State int
Type int
Flags int
IP net.IP
HardwareAddr net.HardwareAddr
LLIPAddr net.IP //Used in the case of NHRP
Vlan int
VNI int
}
// String returns $ip/$hwaddr $label
func (neigh *Neigh) String() string {
return fmt.Sprintf("%s %s", neigh.IP, neigh.HardwareAddr)
}

289
vendor/github.com/vishvananda/netlink/neigh_linux.go generated vendored Normal file
View File

@ -0,0 +1,289 @@
package netlink
import (
"net"
"unsafe"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
const (
NDA_UNSPEC = iota
NDA_DST
NDA_LLADDR
NDA_CACHEINFO
NDA_PROBES
NDA_VLAN
NDA_PORT
NDA_VNI
NDA_IFINDEX
NDA_MAX = NDA_IFINDEX
)
// Neighbor Cache Entry States.
const (
NUD_NONE = 0x00
NUD_INCOMPLETE = 0x01
NUD_REACHABLE = 0x02
NUD_STALE = 0x04
NUD_DELAY = 0x08
NUD_PROBE = 0x10
NUD_FAILED = 0x20
NUD_NOARP = 0x40
NUD_PERMANENT = 0x80
)
// Neighbor Flags
const (
NTF_USE = 0x01
NTF_SELF = 0x02
NTF_MASTER = 0x04
NTF_PROXY = 0x08
NTF_ROUTER = 0x80
)
type Ndmsg struct {
Family uint8
Index uint32
State uint16
Flags uint8
Type uint8
}
func deserializeNdmsg(b []byte) *Ndmsg {
var dummy Ndmsg
return (*Ndmsg)(unsafe.Pointer(&b[0:unsafe.Sizeof(dummy)][0]))
}
func (msg *Ndmsg) Serialize() []byte {
return (*(*[unsafe.Sizeof(*msg)]byte)(unsafe.Pointer(msg)))[:]
}
func (msg *Ndmsg) Len() int {
return int(unsafe.Sizeof(*msg))
}
// NeighAdd will add an IP to MAC mapping to the ARP table
// Equivalent to: `ip neigh add ....`
func NeighAdd(neigh *Neigh) error {
return pkgHandle.NeighAdd(neigh)
}
// NeighAdd will add an IP to MAC mapping to the ARP table
// Equivalent to: `ip neigh add ....`
func (h *Handle) NeighAdd(neigh *Neigh) error {
return h.neighAdd(neigh, unix.NLM_F_CREATE|unix.NLM_F_EXCL)
}
// NeighSet will add or replace an IP to MAC mapping to the ARP table
// Equivalent to: `ip neigh replace....`
func NeighSet(neigh *Neigh) error {
return pkgHandle.NeighSet(neigh)
}
// NeighSet will add or replace an IP to MAC mapping to the ARP table
// Equivalent to: `ip neigh replace....`
func (h *Handle) NeighSet(neigh *Neigh) error {
return h.neighAdd(neigh, unix.NLM_F_CREATE|unix.NLM_F_REPLACE)
}
// NeighAppend will append an entry to FDB
// Equivalent to: `bridge fdb append...`
func NeighAppend(neigh *Neigh) error {
return pkgHandle.NeighAppend(neigh)
}
// NeighAppend will append an entry to FDB
// Equivalent to: `bridge fdb append...`
func (h *Handle) NeighAppend(neigh *Neigh) error {
return h.neighAdd(neigh, unix.NLM_F_CREATE|unix.NLM_F_APPEND)
}
// NeighAppend will append an entry to FDB
// Equivalent to: `bridge fdb append...`
func neighAdd(neigh *Neigh, mode int) error {
return pkgHandle.neighAdd(neigh, mode)
}
// NeighAppend will append an entry to FDB
// Equivalent to: `bridge fdb append...`
func (h *Handle) neighAdd(neigh *Neigh, mode int) error {
req := h.newNetlinkRequest(unix.RTM_NEWNEIGH, mode|unix.NLM_F_ACK)
return neighHandle(neigh, req)
}
// NeighDel will delete an IP address from a link device.
// Equivalent to: `ip addr del $addr dev $link`
func NeighDel(neigh *Neigh) error {
return pkgHandle.NeighDel(neigh)
}
// NeighDel will delete an IP address from a link device.
// Equivalent to: `ip addr del $addr dev $link`
func (h *Handle) NeighDel(neigh *Neigh) error {
req := h.newNetlinkRequest(unix.RTM_DELNEIGH, unix.NLM_F_ACK)
return neighHandle(neigh, req)
}
func neighHandle(neigh *Neigh, req *nl.NetlinkRequest) error {
var family int
if neigh.Family > 0 {
family = neigh.Family
} else {
family = nl.GetIPFamily(neigh.IP)
}
msg := Ndmsg{
Family: uint8(family),
Index: uint32(neigh.LinkIndex),
State: uint16(neigh.State),
Type: uint8(neigh.Type),
Flags: uint8(neigh.Flags),
}
req.AddData(&msg)
ipData := neigh.IP.To4()
if ipData == nil {
ipData = neigh.IP.To16()
}
dstData := nl.NewRtAttr(NDA_DST, ipData)
req.AddData(dstData)
if neigh.LLIPAddr != nil {
llIPData := nl.NewRtAttr(NDA_LLADDR, neigh.LLIPAddr.To4())
req.AddData(llIPData)
} else if neigh.Flags != NTF_PROXY || neigh.HardwareAddr != nil {
hwData := nl.NewRtAttr(NDA_LLADDR, []byte(neigh.HardwareAddr))
req.AddData(hwData)
}
if neigh.Vlan != 0 {
vlanData := nl.NewRtAttr(NDA_VLAN, nl.Uint16Attr(uint16(neigh.Vlan)))
req.AddData(vlanData)
}
if neigh.VNI != 0 {
vniData := nl.NewRtAttr(NDA_VNI, nl.Uint32Attr(uint32(neigh.VNI)))
req.AddData(vniData)
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// NeighList gets a list of IP-MAC mappings in the system (ARP table).
// Equivalent to: `ip neighbor show`.
// The list can be filtered by link and ip family.
func NeighList(linkIndex, family int) ([]Neigh, error) {
return pkgHandle.NeighList(linkIndex, family)
}
// NeighProxyList gets a list of neighbor proxies in the system.
// Equivalent to: `ip neighbor show proxy`.
// The list can be filtered by link and ip family.
func NeighProxyList(linkIndex, family int) ([]Neigh, error) {
return pkgHandle.NeighProxyList(linkIndex, family)
}
// NeighList gets a list of IP-MAC mappings in the system (ARP table).
// Equivalent to: `ip neighbor show`.
// The list can be filtered by link and ip family.
func (h *Handle) NeighList(linkIndex, family int) ([]Neigh, error) {
return h.neighList(linkIndex, family, 0)
}
// NeighProxyList gets a list of neighbor proxies in the system.
// Equivalent to: `ip neighbor show proxy`.
// The list can be filtered by link, ip family.
func (h *Handle) NeighProxyList(linkIndex, family int) ([]Neigh, error) {
return h.neighList(linkIndex, family, NTF_PROXY)
}
func (h *Handle) neighList(linkIndex, family, flags int) ([]Neigh, error) {
req := h.newNetlinkRequest(unix.RTM_GETNEIGH, unix.NLM_F_DUMP)
msg := Ndmsg{
Family: uint8(family),
Index: uint32(linkIndex),
Flags: uint8(flags),
}
req.AddData(&msg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWNEIGH)
if err != nil {
return nil, err
}
var res []Neigh
for _, m := range msgs {
ndm := deserializeNdmsg(m)
if linkIndex != 0 && int(ndm.Index) != linkIndex {
// Ignore messages from other interfaces
continue
}
neigh, err := NeighDeserialize(m)
if err != nil {
continue
}
res = append(res, *neigh)
}
return res, nil
}
func NeighDeserialize(m []byte) (*Neigh, error) {
msg := deserializeNdmsg(m)
neigh := Neigh{
LinkIndex: int(msg.Index),
Family: int(msg.Family),
State: int(msg.State),
Type: int(msg.Type),
Flags: int(msg.Flags),
}
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
// This should be cached for perfomance
// once per table dump
link, err := LinkByIndex(neigh.LinkIndex)
if err != nil {
return nil, err
}
encapType := link.Attrs().EncapType
for _, attr := range attrs {
switch attr.Attr.Type {
case NDA_DST:
neigh.IP = net.IP(attr.Value)
case NDA_LLADDR:
// BUG: Is this a bug in the netlink library?
// #define RTA_LENGTH(len) (RTA_ALIGN(sizeof(struct rtattr)) + (len))
// #define RTA_PAYLOAD(rta) ((int)((rta)->rta_len) - RTA_LENGTH(0))
attrLen := attr.Attr.Len - unix.SizeofRtAttr
if attrLen == 4 && (encapType == "ipip" ||
encapType == "sit" ||
encapType == "gre") {
neigh.LLIPAddr = net.IP(attr.Value)
} else if attrLen == 16 &&
encapType == "tunnel6" {
neigh.IP = net.IP(attr.Value)
} else {
neigh.HardwareAddr = net.HardwareAddr(attr.Value)
}
case NDA_VLAN:
neigh.Vlan = int(native.Uint16(attr.Value[0:2]))
case NDA_VNI:
neigh.VNI = int(native.Uint32(attr.Value[0:4]))
}
}
return &neigh, nil
}

39
vendor/github.com/vishvananda/netlink/netlink.go generated vendored Normal file
View File

@ -0,0 +1,39 @@
// Package netlink provides a simple library for netlink. Netlink is
// the interface a user-space program in linux uses to communicate with
// the kernel. It can be used to add and remove interfaces, set up ip
// addresses and routes, and confiugre ipsec. Netlink communication
// requires elevated privileges, so in most cases this code needs to
// be run as root. The low level primitives for netlink are contained
// in the nl subpackage. This package attempts to provide a high-level
// interface that is loosly modeled on the iproute2 cli.
package netlink
import (
"errors"
"net"
)
var (
// ErrNotImplemented is returned when a requested feature is not implemented.
ErrNotImplemented = errors.New("not implemented")
)
// ParseIPNet parses a string in ip/net format and returns a net.IPNet.
// This is valuable because addresses in netlink are often IPNets and
// ParseCIDR returns an IPNet with the IP part set to the base IP of the
// range.
func ParseIPNet(s string) (*net.IPNet, error) {
ip, ipNet, err := net.ParseCIDR(s)
if err != nil {
return nil, err
}
return &net.IPNet{IP: ip, Mask: ipNet.Mask}, nil
}
// NewIPNet generates an IPNet from an ip address using a netmask of 32 or 128.
func NewIPNet(ip net.IP) *net.IPNet {
if ip.To4() != nil {
return &net.IPNet{IP: ip, Mask: net.CIDRMask(32, 32)}
}
return &net.IPNet{IP: ip, Mask: net.CIDRMask(128, 128)}
}

11
vendor/github.com/vishvananda/netlink/netlink_linux.go generated vendored Normal file
View File

@ -0,0 +1,11 @@
package netlink
import "github.com/vishvananda/netlink/nl"
// Family type definitions
const (
FAMILY_ALL = nl.FAMILY_ALL
FAMILY_V4 = nl.FAMILY_V4
FAMILY_V6 = nl.FAMILY_V6
FAMILY_MPLS = nl.FAMILY_MPLS
)

View File

@ -0,0 +1,225 @@
// +build !linux
package netlink
import "net"
func LinkSetUp(link Link) error {
return ErrNotImplemented
}
func LinkSetDown(link Link) error {
return ErrNotImplemented
}
func LinkSetMTU(link Link, mtu int) error {
return ErrNotImplemented
}
func LinkSetMaster(link Link, master *Bridge) error {
return ErrNotImplemented
}
func LinkSetNsPid(link Link, nspid int) error {
return ErrNotImplemented
}
func LinkSetNsFd(link Link, fd int) error {
return ErrNotImplemented
}
func LinkSetName(link Link, name string) error {
return ErrNotImplemented
}
func LinkSetAlias(link Link, name string) error {
return ErrNotImplemented
}
func LinkSetHardwareAddr(link Link, hwaddr net.HardwareAddr) error {
return ErrNotImplemented
}
func LinkSetVfHardwareAddr(link Link, vf int, hwaddr net.HardwareAddr) error {
return ErrNotImplemented
}
func LinkSetVfVlan(link Link, vf, vlan int) error {
return ErrNotImplemented
}
func LinkSetVfTxRate(link Link, vf, rate int) error {
return ErrNotImplemented
}
func LinkSetNoMaster(link Link) error {
return ErrNotImplemented
}
func LinkSetMasterByIndex(link Link, masterIndex int) error {
return ErrNotImplemented
}
func LinkSetXdpFd(link Link, fd int) error {
return ErrNotImplemented
}
func LinkSetARPOff(link Link) error {
return ErrNotImplemented
}
func LinkSetARPOn(link Link) error {
return ErrNotImplemented
}
func LinkByName(name string) (Link, error) {
return nil, ErrNotImplemented
}
func LinkByAlias(alias string) (Link, error) {
return nil, ErrNotImplemented
}
func LinkByIndex(index int) (Link, error) {
return nil, ErrNotImplemented
}
func LinkSetHairpin(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetGuard(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetFastLeave(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetLearning(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetRootBlock(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetFlood(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetTxQLen(link Link, qlen int) error {
return ErrNotImplemented
}
func LinkAdd(link Link) error {
return ErrNotImplemented
}
func LinkDel(link Link) error {
return ErrNotImplemented
}
func SetHairpin(link Link, mode bool) error {
return ErrNotImplemented
}
func SetGuard(link Link, mode bool) error {
return ErrNotImplemented
}
func SetFastLeave(link Link, mode bool) error {
return ErrNotImplemented
}
func SetLearning(link Link, mode bool) error {
return ErrNotImplemented
}
func SetRootBlock(link Link, mode bool) error {
return ErrNotImplemented
}
func SetFlood(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkList() ([]Link, error) {
return nil, ErrNotImplemented
}
func AddrAdd(link Link, addr *Addr) error {
return ErrNotImplemented
}
func AddrDel(link Link, addr *Addr) error {
return ErrNotImplemented
}
func AddrList(link Link, family int) ([]Addr, error) {
return nil, ErrNotImplemented
}
func RouteAdd(route *Route) error {
return ErrNotImplemented
}
func RouteDel(route *Route) error {
return ErrNotImplemented
}
func RouteList(link Link, family int) ([]Route, error) {
return nil, ErrNotImplemented
}
func XfrmPolicyAdd(policy *XfrmPolicy) error {
return ErrNotImplemented
}
func XfrmPolicyDel(policy *XfrmPolicy) error {
return ErrNotImplemented
}
func XfrmPolicyList(family int) ([]XfrmPolicy, error) {
return nil, ErrNotImplemented
}
func XfrmStateAdd(policy *XfrmState) error {
return ErrNotImplemented
}
func XfrmStateDel(policy *XfrmState) error {
return ErrNotImplemented
}
func XfrmStateList(family int) ([]XfrmState, error) {
return nil, ErrNotImplemented
}
func NeighAdd(neigh *Neigh) error {
return ErrNotImplemented
}
func NeighSet(neigh *Neigh) error {
return ErrNotImplemented
}
func NeighAppend(neigh *Neigh) error {
return ErrNotImplemented
}
func NeighDel(neigh *Neigh) error {
return ErrNotImplemented
}
func NeighList(linkIndex, family int) ([]Neigh, error) {
return nil, ErrNotImplemented
}
func NeighDeserialize(m []byte) (*Neigh, error) {
return nil, ErrNotImplemented
}
func SocketGet(local, remote net.Addr) (*Socket, error) {
return nil, ErrNotImplemented
}

77
vendor/github.com/vishvananda/netlink/nl/addr_linux.go generated vendored Normal file
View File

@ -0,0 +1,77 @@
package nl
import (
"unsafe"
"golang.org/x/sys/unix"
)
type IfAddrmsg struct {
unix.IfAddrmsg
}
func NewIfAddrmsg(family int) *IfAddrmsg {
return &IfAddrmsg{
IfAddrmsg: unix.IfAddrmsg{
Family: uint8(family),
},
}
}
// struct ifaddrmsg {
// __u8 ifa_family;
// __u8 ifa_prefixlen; /* The prefix length */
// __u8 ifa_flags; /* Flags */
// __u8 ifa_scope; /* Address scope */
// __u32 ifa_index; /* Link index */
// };
// type IfAddrmsg struct {
// Family uint8
// Prefixlen uint8
// Flags uint8
// Scope uint8
// Index uint32
// }
// SizeofIfAddrmsg = 0x8
func DeserializeIfAddrmsg(b []byte) *IfAddrmsg {
return (*IfAddrmsg)(unsafe.Pointer(&b[0:unix.SizeofIfAddrmsg][0]))
}
func (msg *IfAddrmsg) Serialize() []byte {
return (*(*[unix.SizeofIfAddrmsg]byte)(unsafe.Pointer(msg)))[:]
}
func (msg *IfAddrmsg) Len() int {
return unix.SizeofIfAddrmsg
}
// struct ifa_cacheinfo {
// __u32 ifa_prefered;
// __u32 ifa_valid;
// __u32 cstamp; /* created timestamp, hundredths of seconds */
// __u32 tstamp; /* updated timestamp, hundredths of seconds */
// };
const IFA_CACHEINFO = 6
const SizeofIfaCacheInfo = 0x10
type IfaCacheInfo struct {
IfaPrefered uint32
IfaValid uint32
Cstamp uint32
Tstamp uint32
}
func (msg *IfaCacheInfo) Len() int {
return SizeofIfaCacheInfo
}
func DeserializeIfaCacheInfo(b []byte) *IfaCacheInfo {
return (*IfaCacheInfo)(unsafe.Pointer(&b[0:SizeofIfaCacheInfo][0]))
}
func (msg *IfaCacheInfo) Serialize() []byte {
return (*(*[SizeofIfaCacheInfo]byte)(unsafe.Pointer(msg)))[:]
}

View File

@ -0,0 +1,74 @@
package nl
import (
"fmt"
"unsafe"
)
const (
SizeofBridgeVlanInfo = 0x04
)
/* Bridge Flags */
const (
BRIDGE_FLAGS_MASTER = iota /* Bridge command to/from master */
BRIDGE_FLAGS_SELF /* Bridge command to/from lowerdev */
)
/* Bridge management nested attributes
* [IFLA_AF_SPEC] = {
* [IFLA_BRIDGE_FLAGS]
* [IFLA_BRIDGE_MODE]
* [IFLA_BRIDGE_VLAN_INFO]
* }
*/
const (
IFLA_BRIDGE_FLAGS = iota
IFLA_BRIDGE_MODE
IFLA_BRIDGE_VLAN_INFO
)
const (
BRIDGE_VLAN_INFO_MASTER = 1 << iota
BRIDGE_VLAN_INFO_PVID
BRIDGE_VLAN_INFO_UNTAGGED
BRIDGE_VLAN_INFO_RANGE_BEGIN
BRIDGE_VLAN_INFO_RANGE_END
)
// struct bridge_vlan_info {
// __u16 flags;
// __u16 vid;
// };
type BridgeVlanInfo struct {
Flags uint16
Vid uint16
}
func (b *BridgeVlanInfo) Serialize() []byte {
return (*(*[SizeofBridgeVlanInfo]byte)(unsafe.Pointer(b)))[:]
}
func DeserializeBridgeVlanInfo(b []byte) *BridgeVlanInfo {
return (*BridgeVlanInfo)(unsafe.Pointer(&b[0:SizeofBridgeVlanInfo][0]))
}
func (b *BridgeVlanInfo) PortVID() bool {
return b.Flags&BRIDGE_VLAN_INFO_PVID > 0
}
func (b *BridgeVlanInfo) EngressUntag() bool {
return b.Flags&BRIDGE_VLAN_INFO_UNTAGGED > 0
}
func (b *BridgeVlanInfo) String() string {
return fmt.Sprintf("%+v", *b)
}
/* New extended info filters for IFLA_EXT_MASK */
const (
RTEXT_FILTER_VF = 1 << iota
RTEXT_FILTER_BRVLAN
RTEXT_FILTER_BRVLAN_COMPRESSED
)

View File

@ -0,0 +1,189 @@
package nl
import "unsafe"
// Track the message sizes for the correct serialization/deserialization
const (
SizeofNfgenmsg = 4
SizeofNfattr = 4
SizeofNfConntrack = 376
SizeofNfctTupleHead = 52
)
var L4ProtoMap = map[uint8]string{
6: "tcp",
17: "udp",
}
// All the following constants are coming from:
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink_conntrack.h
// enum cntl_msg_types {
// IPCTNL_MSG_CT_NEW,
// IPCTNL_MSG_CT_GET,
// IPCTNL_MSG_CT_DELETE,
// IPCTNL_MSG_CT_GET_CTRZERO,
// IPCTNL_MSG_CT_GET_STATS_CPU,
// IPCTNL_MSG_CT_GET_STATS,
// IPCTNL_MSG_CT_GET_DYING,
// IPCTNL_MSG_CT_GET_UNCONFIRMED,
//
// IPCTNL_MSG_MAX
// };
const (
IPCTNL_MSG_CT_GET = 1
IPCTNL_MSG_CT_DELETE = 2
)
// #define NFNETLINK_V0 0
const (
NFNETLINK_V0 = 0
)
// #define NLA_F_NESTED (1 << 15)
const (
NLA_F_NESTED = (1 << 15)
)
// enum ctattr_type {
// CTA_UNSPEC,
// CTA_TUPLE_ORIG,
// CTA_TUPLE_REPLY,
// CTA_STATUS,
// CTA_PROTOINFO,
// CTA_HELP,
// CTA_NAT_SRC,
// #define CTA_NAT CTA_NAT_SRC /* backwards compatibility */
// CTA_TIMEOUT,
// CTA_MARK,
// CTA_COUNTERS_ORIG,
// CTA_COUNTERS_REPLY,
// CTA_USE,
// CTA_ID,
// CTA_NAT_DST,
// CTA_TUPLE_MASTER,
// CTA_SEQ_ADJ_ORIG,
// CTA_NAT_SEQ_ADJ_ORIG = CTA_SEQ_ADJ_ORIG,
// CTA_SEQ_ADJ_REPLY,
// CTA_NAT_SEQ_ADJ_REPLY = CTA_SEQ_ADJ_REPLY,
// CTA_SECMARK, /* obsolete */
// CTA_ZONE,
// CTA_SECCTX,
// CTA_TIMESTAMP,
// CTA_MARK_MASK,
// CTA_LABELS,
// CTA_LABELS_MASK,
// __CTA_MAX
// };
const (
CTA_TUPLE_ORIG = 1
CTA_TUPLE_REPLY = 2
CTA_STATUS = 3
CTA_TIMEOUT = 7
CTA_MARK = 8
CTA_PROTOINFO = 4
)
// enum ctattr_tuple {
// CTA_TUPLE_UNSPEC,
// CTA_TUPLE_IP,
// CTA_TUPLE_PROTO,
// CTA_TUPLE_ZONE,
// __CTA_TUPLE_MAX
// };
// #define CTA_TUPLE_MAX (__CTA_TUPLE_MAX - 1)
const (
CTA_TUPLE_IP = 1
CTA_TUPLE_PROTO = 2
)
// enum ctattr_ip {
// CTA_IP_UNSPEC,
// CTA_IP_V4_SRC,
// CTA_IP_V4_DST,
// CTA_IP_V6_SRC,
// CTA_IP_V6_DST,
// __CTA_IP_MAX
// };
// #define CTA_IP_MAX (__CTA_IP_MAX - 1)
const (
CTA_IP_V4_SRC = 1
CTA_IP_V4_DST = 2
CTA_IP_V6_SRC = 3
CTA_IP_V6_DST = 4
)
// enum ctattr_l4proto {
// CTA_PROTO_UNSPEC,
// CTA_PROTO_NUM,
// CTA_PROTO_SRC_PORT,
// CTA_PROTO_DST_PORT,
// CTA_PROTO_ICMP_ID,
// CTA_PROTO_ICMP_TYPE,
// CTA_PROTO_ICMP_CODE,
// CTA_PROTO_ICMPV6_ID,
// CTA_PROTO_ICMPV6_TYPE,
// CTA_PROTO_ICMPV6_CODE,
// __CTA_PROTO_MAX
// };
// #define CTA_PROTO_MAX (__CTA_PROTO_MAX - 1)
const (
CTA_PROTO_NUM = 1
CTA_PROTO_SRC_PORT = 2
CTA_PROTO_DST_PORT = 3
)
// enum ctattr_protoinfo {
// CTA_PROTOINFO_UNSPEC,
// CTA_PROTOINFO_TCP,
// CTA_PROTOINFO_DCCP,
// CTA_PROTOINFO_SCTP,
// __CTA_PROTOINFO_MAX
// };
// #define CTA_PROTOINFO_MAX (__CTA_PROTOINFO_MAX - 1)
const (
CTA_PROTOINFO_TCP = 1
)
// enum ctattr_protoinfo_tcp {
// CTA_PROTOINFO_TCP_UNSPEC,
// CTA_PROTOINFO_TCP_STATE,
// CTA_PROTOINFO_TCP_WSCALE_ORIGINAL,
// CTA_PROTOINFO_TCP_WSCALE_REPLY,
// CTA_PROTOINFO_TCP_FLAGS_ORIGINAL,
// CTA_PROTOINFO_TCP_FLAGS_REPLY,
// __CTA_PROTOINFO_TCP_MAX
// };
// #define CTA_PROTOINFO_TCP_MAX (__CTA_PROTOINFO_TCP_MAX - 1)
const (
CTA_PROTOINFO_TCP_STATE = 1
CTA_PROTOINFO_TCP_WSCALE_ORIGINAL = 2
CTA_PROTOINFO_TCP_WSCALE_REPLY = 3
CTA_PROTOINFO_TCP_FLAGS_ORIGINAL = 4
CTA_PROTOINFO_TCP_FLAGS_REPLY = 5
)
// /* General form of address family dependent message.
// */
// struct nfgenmsg {
// __u8 nfgen_family; /* AF_xxx */
// __u8 version; /* nfnetlink version */
// __be16 res_id; /* resource id */
// };
type Nfgenmsg struct {
NfgenFamily uint8
Version uint8
ResId uint16 // big endian
}
func (msg *Nfgenmsg) Len() int {
return SizeofNfgenmsg
}
func DeserializeNfgenmsg(b []byte) *Nfgenmsg {
return (*Nfgenmsg)(unsafe.Pointer(&b[0:SizeofNfgenmsg][0]))
}
func (msg *Nfgenmsg) Serialize() []byte {
return (*(*[SizeofNfgenmsg]byte)(unsafe.Pointer(msg)))[:]
}

View File

@ -0,0 +1,89 @@
package nl
import (
"unsafe"
)
const SizeofGenlmsg = 4
const (
GENL_ID_CTRL = 0x10
GENL_CTRL_VERSION = 2
GENL_CTRL_NAME = "nlctrl"
)
const (
GENL_CTRL_CMD_GETFAMILY = 3
)
const (
GENL_CTRL_ATTR_UNSPEC = iota
GENL_CTRL_ATTR_FAMILY_ID
GENL_CTRL_ATTR_FAMILY_NAME
GENL_CTRL_ATTR_VERSION
GENL_CTRL_ATTR_HDRSIZE
GENL_CTRL_ATTR_MAXATTR
GENL_CTRL_ATTR_OPS
GENL_CTRL_ATTR_MCAST_GROUPS
)
const (
GENL_CTRL_ATTR_OP_UNSPEC = iota
GENL_CTRL_ATTR_OP_ID
GENL_CTRL_ATTR_OP_FLAGS
)
const (
GENL_ADMIN_PERM = 1 << iota
GENL_CMD_CAP_DO
GENL_CMD_CAP_DUMP
GENL_CMD_CAP_HASPOL
)
const (
GENL_CTRL_ATTR_MCAST_GRP_UNSPEC = iota
GENL_CTRL_ATTR_MCAST_GRP_NAME
GENL_CTRL_ATTR_MCAST_GRP_ID
)
const (
GENL_GTP_VERSION = 0
GENL_GTP_NAME = "gtp"
)
const (
GENL_GTP_CMD_NEWPDP = iota
GENL_GTP_CMD_DELPDP
GENL_GTP_CMD_GETPDP
)
const (
GENL_GTP_ATTR_UNSPEC = iota
GENL_GTP_ATTR_LINK
GENL_GTP_ATTR_VERSION
GENL_GTP_ATTR_TID
GENL_GTP_ATTR_PEER_ADDRESS
GENL_GTP_ATTR_MS_ADDRESS
GENL_GTP_ATTR_FLOW
GENL_GTP_ATTR_NET_NS_FD
GENL_GTP_ATTR_I_TEI
GENL_GTP_ATTR_O_TEI
GENL_GTP_ATTR_PAD
)
type Genlmsg struct {
Command uint8
Version uint8
}
func (msg *Genlmsg) Len() int {
return SizeofGenlmsg
}
func DeserializeGenlmsg(b []byte) *Genlmsg {
return (*Genlmsg)(unsafe.Pointer(&b[0:SizeofGenlmsg][0]))
}
func (msg *Genlmsg) Serialize() []byte {
return (*(*[SizeofGenlmsg]byte)(unsafe.Pointer(msg)))[:]
}

573
vendor/github.com/vishvananda/netlink/nl/link_linux.go generated vendored Normal file
View File

@ -0,0 +1,573 @@
package nl
import (
"unsafe"
"golang.org/x/sys/unix"
)
const (
DEFAULT_CHANGE = 0xFFFFFFFF
// doesn't exist in syscall
IFLA_VFINFO_LIST = unix.IFLA_IFALIAS + 1 + iota
IFLA_STATS64
IFLA_VF_PORTS
IFLA_PORT_SELF
IFLA_AF_SPEC
IFLA_GROUP
IFLA_NET_NS_FD
IFLA_EXT_MASK
IFLA_PROMISCUITY
IFLA_NUM_TX_QUEUES
IFLA_NUM_RX_QUEUES
IFLA_CARRIER
IFLA_PHYS_PORT_ID
IFLA_CARRIER_CHANGES
IFLA_PHYS_SWITCH_ID
IFLA_LINK_NETNSID
IFLA_PHYS_PORT_NAME
IFLA_PROTO_DOWN
IFLA_GSO_MAX_SEGS
IFLA_GSO_MAX_SIZE
IFLA_PAD
IFLA_XDP
)
const (
IFLA_INFO_UNSPEC = iota
IFLA_INFO_KIND
IFLA_INFO_DATA
IFLA_INFO_XSTATS
IFLA_INFO_MAX = IFLA_INFO_XSTATS
)
const (
IFLA_VLAN_UNSPEC = iota
IFLA_VLAN_ID
IFLA_VLAN_FLAGS
IFLA_VLAN_EGRESS_QOS
IFLA_VLAN_INGRESS_QOS
IFLA_VLAN_PROTOCOL
IFLA_VLAN_MAX = IFLA_VLAN_PROTOCOL
)
const (
VETH_INFO_UNSPEC = iota
VETH_INFO_PEER
VETH_INFO_MAX = VETH_INFO_PEER
)
const (
IFLA_VXLAN_UNSPEC = iota
IFLA_VXLAN_ID
IFLA_VXLAN_GROUP
IFLA_VXLAN_LINK
IFLA_VXLAN_LOCAL
IFLA_VXLAN_TTL
IFLA_VXLAN_TOS
IFLA_VXLAN_LEARNING
IFLA_VXLAN_AGEING
IFLA_VXLAN_LIMIT
IFLA_VXLAN_PORT_RANGE
IFLA_VXLAN_PROXY
IFLA_VXLAN_RSC
IFLA_VXLAN_L2MISS
IFLA_VXLAN_L3MISS
IFLA_VXLAN_PORT
IFLA_VXLAN_GROUP6
IFLA_VXLAN_LOCAL6
IFLA_VXLAN_UDP_CSUM
IFLA_VXLAN_UDP_ZERO_CSUM6_TX
IFLA_VXLAN_UDP_ZERO_CSUM6_RX
IFLA_VXLAN_REMCSUM_TX
IFLA_VXLAN_REMCSUM_RX
IFLA_VXLAN_GBP
IFLA_VXLAN_REMCSUM_NOPARTIAL
IFLA_VXLAN_FLOWBASED
IFLA_VXLAN_MAX = IFLA_VXLAN_FLOWBASED
)
const (
BRIDGE_MODE_UNSPEC = iota
BRIDGE_MODE_HAIRPIN
)
const (
IFLA_BRPORT_UNSPEC = iota
IFLA_BRPORT_STATE
IFLA_BRPORT_PRIORITY
IFLA_BRPORT_COST
IFLA_BRPORT_MODE
IFLA_BRPORT_GUARD
IFLA_BRPORT_PROTECT
IFLA_BRPORT_FAST_LEAVE
IFLA_BRPORT_LEARNING
IFLA_BRPORT_UNICAST_FLOOD
IFLA_BRPORT_PROXYARP
IFLA_BRPORT_LEARNING_SYNC
IFLA_BRPORT_PROXYARP_WIFI
IFLA_BRPORT_MAX = IFLA_BRPORT_PROXYARP_WIFI
)
const (
IFLA_IPVLAN_UNSPEC = iota
IFLA_IPVLAN_MODE
IFLA_IPVLAN_MAX = IFLA_IPVLAN_MODE
)
const (
IFLA_MACVLAN_UNSPEC = iota
IFLA_MACVLAN_MODE
IFLA_MACVLAN_FLAGS
IFLA_MACVLAN_MACADDR_MODE
IFLA_MACVLAN_MACADDR
IFLA_MACVLAN_MACADDR_DATA
IFLA_MACVLAN_MACADDR_COUNT
IFLA_MACVLAN_MAX = IFLA_MACVLAN_FLAGS
)
const (
MACVLAN_MODE_PRIVATE = 1
MACVLAN_MODE_VEPA = 2
MACVLAN_MODE_BRIDGE = 4
MACVLAN_MODE_PASSTHRU = 8
MACVLAN_MODE_SOURCE = 16
)
const (
MACVLAN_MACADDR_ADD = iota
MACVLAN_MACADDR_DEL
MACVLAN_MACADDR_FLUSH
MACVLAN_MACADDR_SET
)
const (
IFLA_BOND_UNSPEC = iota
IFLA_BOND_MODE
IFLA_BOND_ACTIVE_SLAVE
IFLA_BOND_MIIMON
IFLA_BOND_UPDELAY
IFLA_BOND_DOWNDELAY
IFLA_BOND_USE_CARRIER
IFLA_BOND_ARP_INTERVAL
IFLA_BOND_ARP_IP_TARGET
IFLA_BOND_ARP_VALIDATE
IFLA_BOND_ARP_ALL_TARGETS
IFLA_BOND_PRIMARY
IFLA_BOND_PRIMARY_RESELECT
IFLA_BOND_FAIL_OVER_MAC
IFLA_BOND_XMIT_HASH_POLICY
IFLA_BOND_RESEND_IGMP
IFLA_BOND_NUM_PEER_NOTIF
IFLA_BOND_ALL_SLAVES_ACTIVE
IFLA_BOND_MIN_LINKS
IFLA_BOND_LP_INTERVAL
IFLA_BOND_PACKETS_PER_SLAVE
IFLA_BOND_AD_LACP_RATE
IFLA_BOND_AD_SELECT
IFLA_BOND_AD_INFO
IFLA_BOND_AD_ACTOR_SYS_PRIO
IFLA_BOND_AD_USER_PORT_KEY
IFLA_BOND_AD_ACTOR_SYSTEM
IFLA_BOND_TLB_DYNAMIC_LB
)
const (
IFLA_BOND_AD_INFO_UNSPEC = iota
IFLA_BOND_AD_INFO_AGGREGATOR
IFLA_BOND_AD_INFO_NUM_PORTS
IFLA_BOND_AD_INFO_ACTOR_KEY
IFLA_BOND_AD_INFO_PARTNER_KEY
IFLA_BOND_AD_INFO_PARTNER_MAC
)
const (
IFLA_BOND_SLAVE_UNSPEC = iota
IFLA_BOND_SLAVE_STATE
IFLA_BOND_SLAVE_MII_STATUS
IFLA_BOND_SLAVE_LINK_FAILURE_COUNT
IFLA_BOND_SLAVE_PERM_HWADDR
IFLA_BOND_SLAVE_QUEUE_ID
IFLA_BOND_SLAVE_AD_AGGREGATOR_ID
)
const (
IFLA_GRE_UNSPEC = iota
IFLA_GRE_LINK
IFLA_GRE_IFLAGS
IFLA_GRE_OFLAGS
IFLA_GRE_IKEY
IFLA_GRE_OKEY
IFLA_GRE_LOCAL
IFLA_GRE_REMOTE
IFLA_GRE_TTL
IFLA_GRE_TOS
IFLA_GRE_PMTUDISC
IFLA_GRE_ENCAP_LIMIT
IFLA_GRE_FLOWINFO
IFLA_GRE_FLAGS
IFLA_GRE_ENCAP_TYPE
IFLA_GRE_ENCAP_FLAGS
IFLA_GRE_ENCAP_SPORT
IFLA_GRE_ENCAP_DPORT
IFLA_GRE_COLLECT_METADATA
IFLA_GRE_MAX = IFLA_GRE_COLLECT_METADATA
)
const (
GRE_CSUM = 0x8000
GRE_ROUTING = 0x4000
GRE_KEY = 0x2000
GRE_SEQ = 0x1000
GRE_STRICT = 0x0800
GRE_REC = 0x0700
GRE_FLAGS = 0x00F8
GRE_VERSION = 0x0007
)
const (
IFLA_VF_INFO_UNSPEC = iota
IFLA_VF_INFO
IFLA_VF_INFO_MAX = IFLA_VF_INFO
)
const (
IFLA_VF_UNSPEC = iota
IFLA_VF_MAC /* Hardware queue specific attributes */
IFLA_VF_VLAN
IFLA_VF_TX_RATE /* Max TX Bandwidth Allocation */
IFLA_VF_SPOOFCHK /* Spoof Checking on/off switch */
IFLA_VF_LINK_STATE /* link state enable/disable/auto switch */
IFLA_VF_RATE /* Min and Max TX Bandwidth Allocation */
IFLA_VF_RSS_QUERY_EN /* RSS Redirection Table and Hash Key query
* on/off switch
*/
IFLA_VF_STATS /* network device statistics */
IFLA_VF_TRUST /* Trust state of VF */
IFLA_VF_MAX = IFLA_VF_TRUST
)
const (
IFLA_VF_LINK_STATE_AUTO = iota /* link state of the uplink */
IFLA_VF_LINK_STATE_ENABLE /* link always up */
IFLA_VF_LINK_STATE_DISABLE /* link always down */
IFLA_VF_LINK_STATE_MAX = IFLA_VF_LINK_STATE_DISABLE
)
const (
IFLA_VF_STATS_RX_PACKETS = iota
IFLA_VF_STATS_TX_PACKETS
IFLA_VF_STATS_RX_BYTES
IFLA_VF_STATS_TX_BYTES
IFLA_VF_STATS_BROADCAST
IFLA_VF_STATS_MULTICAST
IFLA_VF_STATS_MAX = IFLA_VF_STATS_MULTICAST
)
const (
SizeofVfMac = 0x24
SizeofVfVlan = 0x0c
SizeofVfTxRate = 0x08
SizeofVfRate = 0x0c
SizeofVfSpoofchk = 0x08
SizeofVfLinkState = 0x08
SizeofVfRssQueryEn = 0x08
SizeofVfTrust = 0x08
)
// struct ifla_vf_mac {
// __u32 vf;
// __u8 mac[32]; /* MAX_ADDR_LEN */
// };
type VfMac struct {
Vf uint32
Mac [32]byte
}
func (msg *VfMac) Len() int {
return SizeofVfMac
}
func DeserializeVfMac(b []byte) *VfMac {
return (*VfMac)(unsafe.Pointer(&b[0:SizeofVfMac][0]))
}
func (msg *VfMac) Serialize() []byte {
return (*(*[SizeofVfMac]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_vlan {
// __u32 vf;
// __u32 vlan; /* 0 - 4095, 0 disables VLAN filter */
// __u32 qos;
// };
type VfVlan struct {
Vf uint32
Vlan uint32
Qos uint32
}
func (msg *VfVlan) Len() int {
return SizeofVfVlan
}
func DeserializeVfVlan(b []byte) *VfVlan {
return (*VfVlan)(unsafe.Pointer(&b[0:SizeofVfVlan][0]))
}
func (msg *VfVlan) Serialize() []byte {
return (*(*[SizeofVfVlan]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_tx_rate {
// __u32 vf;
// __u32 rate; /* Max TX bandwidth in Mbps, 0 disables throttling */
// };
type VfTxRate struct {
Vf uint32
Rate uint32
}
func (msg *VfTxRate) Len() int {
return SizeofVfTxRate
}
func DeserializeVfTxRate(b []byte) *VfTxRate {
return (*VfTxRate)(unsafe.Pointer(&b[0:SizeofVfTxRate][0]))
}
func (msg *VfTxRate) Serialize() []byte {
return (*(*[SizeofVfTxRate]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_rate {
// __u32 vf;
// __u32 min_tx_rate; /* Min Bandwidth in Mbps */
// __u32 max_tx_rate; /* Max Bandwidth in Mbps */
// };
type VfRate struct {
Vf uint32
MinTxRate uint32
MaxTxRate uint32
}
func (msg *VfRate) Len() int {
return SizeofVfRate
}
func DeserializeVfRate(b []byte) *VfRate {
return (*VfRate)(unsafe.Pointer(&b[0:SizeofVfRate][0]))
}
func (msg *VfRate) Serialize() []byte {
return (*(*[SizeofVfRate]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_spoofchk {
// __u32 vf;
// __u32 setting;
// };
type VfSpoofchk struct {
Vf uint32
Setting uint32
}
func (msg *VfSpoofchk) Len() int {
return SizeofVfSpoofchk
}
func DeserializeVfSpoofchk(b []byte) *VfSpoofchk {
return (*VfSpoofchk)(unsafe.Pointer(&b[0:SizeofVfSpoofchk][0]))
}
func (msg *VfSpoofchk) Serialize() []byte {
return (*(*[SizeofVfSpoofchk]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_link_state {
// __u32 vf;
// __u32 link_state;
// };
type VfLinkState struct {
Vf uint32
LinkState uint32
}
func (msg *VfLinkState) Len() int {
return SizeofVfLinkState
}
func DeserializeVfLinkState(b []byte) *VfLinkState {
return (*VfLinkState)(unsafe.Pointer(&b[0:SizeofVfLinkState][0]))
}
func (msg *VfLinkState) Serialize() []byte {
return (*(*[SizeofVfLinkState]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_rss_query_en {
// __u32 vf;
// __u32 setting;
// };
type VfRssQueryEn struct {
Vf uint32
Setting uint32
}
func (msg *VfRssQueryEn) Len() int {
return SizeofVfRssQueryEn
}
func DeserializeVfRssQueryEn(b []byte) *VfRssQueryEn {
return (*VfRssQueryEn)(unsafe.Pointer(&b[0:SizeofVfRssQueryEn][0]))
}
func (msg *VfRssQueryEn) Serialize() []byte {
return (*(*[SizeofVfRssQueryEn]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_trust {
// __u32 vf;
// __u32 setting;
// };
type VfTrust struct {
Vf uint32
Setting uint32
}
func (msg *VfTrust) Len() int {
return SizeofVfTrust
}
func DeserializeVfTrust(b []byte) *VfTrust {
return (*VfTrust)(unsafe.Pointer(&b[0:SizeofVfTrust][0]))
}
func (msg *VfTrust) Serialize() []byte {
return (*(*[SizeofVfTrust]byte)(unsafe.Pointer(msg)))[:]
}
const (
XDP_FLAGS_UPDATE_IF_NOEXIST = 1 << iota
XDP_FLAGS_SKB_MODE
XDP_FLAGS_DRV_MODE
XDP_FLAGS_MASK = XDP_FLAGS_UPDATE_IF_NOEXIST | XDP_FLAGS_SKB_MODE | XDP_FLAGS_DRV_MODE
)
const (
IFLA_XDP_UNSPEC = iota
IFLA_XDP_FD /* fd of xdp program to attach, or -1 to remove */
IFLA_XDP_ATTACHED /* read-only bool indicating if prog is attached */
IFLA_XDP_FLAGS /* xdp prog related flags */
IFLA_XDP_PROG_ID /* xdp prog id */
IFLA_XDP_MAX = IFLA_XDP_PROG_ID
)
const (
IFLA_IPTUN_UNSPEC = iota
IFLA_IPTUN_LINK
IFLA_IPTUN_LOCAL
IFLA_IPTUN_REMOTE
IFLA_IPTUN_TTL
IFLA_IPTUN_TOS
IFLA_IPTUN_ENCAP_LIMIT
IFLA_IPTUN_FLOWINFO
IFLA_IPTUN_FLAGS
IFLA_IPTUN_PROTO
IFLA_IPTUN_PMTUDISC
IFLA_IPTUN_6RD_PREFIX
IFLA_IPTUN_6RD_RELAY_PREFIX
IFLA_IPTUN_6RD_PREFIXLEN
IFLA_IPTUN_6RD_RELAY_PREFIXLEN
IFLA_IPTUN_ENCAP_TYPE
IFLA_IPTUN_ENCAP_FLAGS
IFLA_IPTUN_ENCAP_SPORT
IFLA_IPTUN_ENCAP_DPORT
IFLA_IPTUN_COLLECT_METADATA
IFLA_IPTUN_MAX = IFLA_IPTUN_COLLECT_METADATA
)
const (
IFLA_VTI_UNSPEC = iota
IFLA_VTI_LINK
IFLA_VTI_IKEY
IFLA_VTI_OKEY
IFLA_VTI_LOCAL
IFLA_VTI_REMOTE
IFLA_VTI_MAX = IFLA_VTI_REMOTE
)
const (
IFLA_VRF_UNSPEC = iota
IFLA_VRF_TABLE
)
const (
IFLA_BR_UNSPEC = iota
IFLA_BR_FORWARD_DELAY
IFLA_BR_HELLO_TIME
IFLA_BR_MAX_AGE
IFLA_BR_AGEING_TIME
IFLA_BR_STP_STATE
IFLA_BR_PRIORITY
IFLA_BR_VLAN_FILTERING
IFLA_BR_VLAN_PROTOCOL
IFLA_BR_GROUP_FWD_MASK
IFLA_BR_ROOT_ID
IFLA_BR_BRIDGE_ID
IFLA_BR_ROOT_PORT
IFLA_BR_ROOT_PATH_COST
IFLA_BR_TOPOLOGY_CHANGE
IFLA_BR_TOPOLOGY_CHANGE_DETECTED
IFLA_BR_HELLO_TIMER
IFLA_BR_TCN_TIMER
IFLA_BR_TOPOLOGY_CHANGE_TIMER
IFLA_BR_GC_TIMER
IFLA_BR_GROUP_ADDR
IFLA_BR_FDB_FLUSH
IFLA_BR_MCAST_ROUTER
IFLA_BR_MCAST_SNOOPING
IFLA_BR_MCAST_QUERY_USE_IFADDR
IFLA_BR_MCAST_QUERIER
IFLA_BR_MCAST_HASH_ELASTICITY
IFLA_BR_MCAST_HASH_MAX
IFLA_BR_MCAST_LAST_MEMBER_CNT
IFLA_BR_MCAST_STARTUP_QUERY_CNT
IFLA_BR_MCAST_LAST_MEMBER_INTVL
IFLA_BR_MCAST_MEMBERSHIP_INTVL
IFLA_BR_MCAST_QUERIER_INTVL
IFLA_BR_MCAST_QUERY_INTVL
IFLA_BR_MCAST_QUERY_RESPONSE_INTVL
IFLA_BR_MCAST_STARTUP_QUERY_INTVL
IFLA_BR_NF_CALL_IPTABLES
IFLA_BR_NF_CALL_IP6TABLES
IFLA_BR_NF_CALL_ARPTABLES
IFLA_BR_VLAN_DEFAULT_PVID
IFLA_BR_PAD
IFLA_BR_VLAN_STATS_ENABLED
IFLA_BR_MCAST_STATS_ENABLED
IFLA_BR_MCAST_IGMP_VERSION
IFLA_BR_MCAST_MLD_VERSION
IFLA_BR_MAX = IFLA_BR_MCAST_MLD_VERSION
)
const (
IFLA_GTP_UNSPEC = iota
IFLA_GTP_FD0
IFLA_GTP_FD1
IFLA_GTP_PDP_HASHSIZE
IFLA_GTP_ROLE
)
const (
GTP_ROLE_GGSN = iota
GTP_ROLE_SGSN
)

36
vendor/github.com/vishvananda/netlink/nl/mpls_linux.go generated vendored Normal file
View File

@ -0,0 +1,36 @@
package nl
import "encoding/binary"
const (
MPLS_LS_LABEL_SHIFT = 12
MPLS_LS_S_SHIFT = 8
)
func EncodeMPLSStack(labels ...int) []byte {
b := make([]byte, 4*len(labels))
for idx, label := range labels {
l := label << MPLS_LS_LABEL_SHIFT
if idx == len(labels)-1 {
l |= 1 << MPLS_LS_S_SHIFT
}
binary.BigEndian.PutUint32(b[idx*4:], uint32(l))
}
return b
}
func DecodeMPLSStack(buf []byte) []int {
if len(buf)%4 != 0 {
return nil
}
stack := make([]int, 0, len(buf)/4)
for len(buf) > 0 {
l := binary.BigEndian.Uint32(buf[:4])
buf = buf[4:]
stack = append(stack, int(l)>>MPLS_LS_LABEL_SHIFT)
if (l>>MPLS_LS_S_SHIFT)&1 > 0 {
break
}
}
return stack
}

738
vendor/github.com/vishvananda/netlink/nl/nl_linux.go generated vendored Normal file
View File

@ -0,0 +1,738 @@
// Package nl has low level primitives for making Netlink calls.
package nl
import (
"bytes"
"encoding/binary"
"fmt"
"net"
"runtime"
"sync"
"sync/atomic"
"syscall"
"unsafe"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
const (
// Family type definitions
FAMILY_ALL = unix.AF_UNSPEC
FAMILY_V4 = unix.AF_INET
FAMILY_V6 = unix.AF_INET6
FAMILY_MPLS = AF_MPLS
)
// SupportedNlFamilies contains the list of netlink families this netlink package supports
var SupportedNlFamilies = []int{unix.NETLINK_ROUTE, unix.NETLINK_XFRM, unix.NETLINK_NETFILTER}
var nextSeqNr uint32
// GetIPFamily returns the family type of a net.IP.
func GetIPFamily(ip net.IP) int {
if len(ip) <= net.IPv4len {
return FAMILY_V4
}
if ip.To4() != nil {
return FAMILY_V4
}
return FAMILY_V6
}
var nativeEndian binary.ByteOrder
// Get native endianness for the system
func NativeEndian() binary.ByteOrder {
if nativeEndian == nil {
var x uint32 = 0x01020304
if *(*byte)(unsafe.Pointer(&x)) == 0x01 {
nativeEndian = binary.BigEndian
} else {
nativeEndian = binary.LittleEndian
}
}
return nativeEndian
}
// Byte swap a 16 bit value if we aren't big endian
func Swap16(i uint16) uint16 {
if NativeEndian() == binary.BigEndian {
return i
}
return (i&0xff00)>>8 | (i&0xff)<<8
}
// Byte swap a 32 bit value if aren't big endian
func Swap32(i uint32) uint32 {
if NativeEndian() == binary.BigEndian {
return i
}
return (i&0xff000000)>>24 | (i&0xff0000)>>8 | (i&0xff00)<<8 | (i&0xff)<<24
}
type NetlinkRequestData interface {
Len() int
Serialize() []byte
}
// IfInfomsg is related to links, but it is used for list requests as well
type IfInfomsg struct {
unix.IfInfomsg
}
// Create an IfInfomsg with family specified
func NewIfInfomsg(family int) *IfInfomsg {
return &IfInfomsg{
IfInfomsg: unix.IfInfomsg{
Family: uint8(family),
},
}
}
func DeserializeIfInfomsg(b []byte) *IfInfomsg {
return (*IfInfomsg)(unsafe.Pointer(&b[0:unix.SizeofIfInfomsg][0]))
}
func (msg *IfInfomsg) Serialize() []byte {
return (*(*[unix.SizeofIfInfomsg]byte)(unsafe.Pointer(msg)))[:]
}
func (msg *IfInfomsg) Len() int {
return unix.SizeofIfInfomsg
}
func (msg *IfInfomsg) EncapType() string {
switch msg.Type {
case 0:
return "generic"
case unix.ARPHRD_ETHER:
return "ether"
case unix.ARPHRD_EETHER:
return "eether"
case unix.ARPHRD_AX25:
return "ax25"
case unix.ARPHRD_PRONET:
return "pronet"
case unix.ARPHRD_CHAOS:
return "chaos"
case unix.ARPHRD_IEEE802:
return "ieee802"
case unix.ARPHRD_ARCNET:
return "arcnet"
case unix.ARPHRD_APPLETLK:
return "atalk"
case unix.ARPHRD_DLCI:
return "dlci"
case unix.ARPHRD_ATM:
return "atm"
case unix.ARPHRD_METRICOM:
return "metricom"
case unix.ARPHRD_IEEE1394:
return "ieee1394"
case unix.ARPHRD_INFINIBAND:
return "infiniband"
case unix.ARPHRD_SLIP:
return "slip"
case unix.ARPHRD_CSLIP:
return "cslip"
case unix.ARPHRD_SLIP6:
return "slip6"
case unix.ARPHRD_CSLIP6:
return "cslip6"
case unix.ARPHRD_RSRVD:
return "rsrvd"
case unix.ARPHRD_ADAPT:
return "adapt"
case unix.ARPHRD_ROSE:
return "rose"
case unix.ARPHRD_X25:
return "x25"
case unix.ARPHRD_HWX25:
return "hwx25"
case unix.ARPHRD_PPP:
return "ppp"
case unix.ARPHRD_HDLC:
return "hdlc"
case unix.ARPHRD_LAPB:
return "lapb"
case unix.ARPHRD_DDCMP:
return "ddcmp"
case unix.ARPHRD_RAWHDLC:
return "rawhdlc"
case unix.ARPHRD_TUNNEL:
return "ipip"
case unix.ARPHRD_TUNNEL6:
return "tunnel6"
case unix.ARPHRD_FRAD:
return "frad"
case unix.ARPHRD_SKIP:
return "skip"
case unix.ARPHRD_LOOPBACK:
return "loopback"
case unix.ARPHRD_LOCALTLK:
return "ltalk"
case unix.ARPHRD_FDDI:
return "fddi"
case unix.ARPHRD_BIF:
return "bif"
case unix.ARPHRD_SIT:
return "sit"
case unix.ARPHRD_IPDDP:
return "ip/ddp"
case unix.ARPHRD_IPGRE:
return "gre"
case unix.ARPHRD_PIMREG:
return "pimreg"
case unix.ARPHRD_HIPPI:
return "hippi"
case unix.ARPHRD_ASH:
return "ash"
case unix.ARPHRD_ECONET:
return "econet"
case unix.ARPHRD_IRDA:
return "irda"
case unix.ARPHRD_FCPP:
return "fcpp"
case unix.ARPHRD_FCAL:
return "fcal"
case unix.ARPHRD_FCPL:
return "fcpl"
case unix.ARPHRD_FCFABRIC:
return "fcfb0"
case unix.ARPHRD_FCFABRIC + 1:
return "fcfb1"
case unix.ARPHRD_FCFABRIC + 2:
return "fcfb2"
case unix.ARPHRD_FCFABRIC + 3:
return "fcfb3"
case unix.ARPHRD_FCFABRIC + 4:
return "fcfb4"
case unix.ARPHRD_FCFABRIC + 5:
return "fcfb5"
case unix.ARPHRD_FCFABRIC + 6:
return "fcfb6"
case unix.ARPHRD_FCFABRIC + 7:
return "fcfb7"
case unix.ARPHRD_FCFABRIC + 8:
return "fcfb8"
case unix.ARPHRD_FCFABRIC + 9:
return "fcfb9"
case unix.ARPHRD_FCFABRIC + 10:
return "fcfb10"
case unix.ARPHRD_FCFABRIC + 11:
return "fcfb11"
case unix.ARPHRD_FCFABRIC + 12:
return "fcfb12"
case unix.ARPHRD_IEEE802_TR:
return "tr"
case unix.ARPHRD_IEEE80211:
return "ieee802.11"
case unix.ARPHRD_IEEE80211_PRISM:
return "ieee802.11/prism"
case unix.ARPHRD_IEEE80211_RADIOTAP:
return "ieee802.11/radiotap"
case unix.ARPHRD_IEEE802154:
return "ieee802.15.4"
case 65534:
return "none"
case 65535:
return "void"
}
return fmt.Sprintf("unknown%d", msg.Type)
}
func rtaAlignOf(attrlen int) int {
return (attrlen + unix.RTA_ALIGNTO - 1) & ^(unix.RTA_ALIGNTO - 1)
}
func NewIfInfomsgChild(parent *RtAttr, family int) *IfInfomsg {
msg := NewIfInfomsg(family)
parent.children = append(parent.children, msg)
return msg
}
// Extend RtAttr to handle data and children
type RtAttr struct {
unix.RtAttr
Data []byte
children []NetlinkRequestData
}
// Create a new Extended RtAttr object
func NewRtAttr(attrType int, data []byte) *RtAttr {
return &RtAttr{
RtAttr: unix.RtAttr{
Type: uint16(attrType),
},
children: []NetlinkRequestData{},
Data: data,
}
}
// Create a new RtAttr obj anc add it as a child of an existing object
func NewRtAttrChild(parent *RtAttr, attrType int, data []byte) *RtAttr {
attr := NewRtAttr(attrType, data)
parent.children = append(parent.children, attr)
return attr
}
// AddChild adds an existing RtAttr as a child.
func (a *RtAttr) AddChild(attr *RtAttr) {
a.children = append(a.children, attr)
}
func (a *RtAttr) Len() int {
if len(a.children) == 0 {
return (unix.SizeofRtAttr + len(a.Data))
}
l := 0
for _, child := range a.children {
l += rtaAlignOf(child.Len())
}
l += unix.SizeofRtAttr
return rtaAlignOf(l + len(a.Data))
}
// Serialize the RtAttr into a byte array
// This can't just unsafe.cast because it must iterate through children.
func (a *RtAttr) Serialize() []byte {
native := NativeEndian()
length := a.Len()
buf := make([]byte, rtaAlignOf(length))
next := 4
if a.Data != nil {
copy(buf[next:], a.Data)
next += rtaAlignOf(len(a.Data))
}
if len(a.children) > 0 {
for _, child := range a.children {
childBuf := child.Serialize()
copy(buf[next:], childBuf)
next += rtaAlignOf(len(childBuf))
}
}
if l := uint16(length); l != 0 {
native.PutUint16(buf[0:2], l)
}
native.PutUint16(buf[2:4], a.Type)
return buf
}
type NetlinkRequest struct {
unix.NlMsghdr
Data []NetlinkRequestData
RawData []byte
Sockets map[int]*SocketHandle
}
// Serialize the Netlink Request into a byte array
func (req *NetlinkRequest) Serialize() []byte {
length := unix.SizeofNlMsghdr
dataBytes := make([][]byte, len(req.Data))
for i, data := range req.Data {
dataBytes[i] = data.Serialize()
length = length + len(dataBytes[i])
}
length += len(req.RawData)
req.Len = uint32(length)
b := make([]byte, length)
hdr := (*(*[unix.SizeofNlMsghdr]byte)(unsafe.Pointer(req)))[:]
next := unix.SizeofNlMsghdr
copy(b[0:next], hdr)
for _, data := range dataBytes {
for _, dataByte := range data {
b[next] = dataByte
next = next + 1
}
}
// Add the raw data if any
if len(req.RawData) > 0 {
copy(b[next:length], req.RawData)
}
return b
}
func (req *NetlinkRequest) AddData(data NetlinkRequestData) {
if data != nil {
req.Data = append(req.Data, data)
}
}
// AddRawData adds raw bytes to the end of the NetlinkRequest object during serialization
func (req *NetlinkRequest) AddRawData(data []byte) {
if data != nil {
req.RawData = append(req.RawData, data...)
}
}
// Execute the request against a the given sockType.
// Returns a list of netlink messages in serialized format, optionally filtered
// by resType.
func (req *NetlinkRequest) Execute(sockType int, resType uint16) ([][]byte, error) {
var (
s *NetlinkSocket
err error
)
if req.Sockets != nil {
if sh, ok := req.Sockets[sockType]; ok {
s = sh.Socket
req.Seq = atomic.AddUint32(&sh.Seq, 1)
}
}
sharedSocket := s != nil
if s == nil {
s, err = getNetlinkSocket(sockType)
if err != nil {
return nil, err
}
defer s.Close()
} else {
s.Lock()
defer s.Unlock()
}
if err := s.Send(req); err != nil {
return nil, err
}
pid, err := s.GetPid()
if err != nil {
return nil, err
}
var res [][]byte
done:
for {
msgs, err := s.Receive()
if err != nil {
return nil, err
}
for _, m := range msgs {
if m.Header.Seq != req.Seq {
if sharedSocket {
continue
}
return nil, fmt.Errorf("Wrong Seq nr %d, expected %d", m.Header.Seq, req.Seq)
}
if m.Header.Pid != pid {
return nil, fmt.Errorf("Wrong pid %d, expected %d", m.Header.Pid, pid)
}
if m.Header.Type == unix.NLMSG_DONE {
break done
}
if m.Header.Type == unix.NLMSG_ERROR {
native := NativeEndian()
error := int32(native.Uint32(m.Data[0:4]))
if error == 0 {
break done
}
return nil, syscall.Errno(-error)
}
if resType != 0 && m.Header.Type != resType {
continue
}
res = append(res, m.Data)
if m.Header.Flags&unix.NLM_F_MULTI == 0 {
break done
}
}
}
return res, nil
}
// Create a new netlink request from proto and flags
// Note the Len value will be inaccurate once data is added until
// the message is serialized
func NewNetlinkRequest(proto, flags int) *NetlinkRequest {
return &NetlinkRequest{
NlMsghdr: unix.NlMsghdr{
Len: uint32(unix.SizeofNlMsghdr),
Type: uint16(proto),
Flags: unix.NLM_F_REQUEST | uint16(flags),
Seq: atomic.AddUint32(&nextSeqNr, 1),
},
}
}
type NetlinkSocket struct {
fd int32
lsa unix.SockaddrNetlink
sync.Mutex
}
func getNetlinkSocket(protocol int) (*NetlinkSocket, error) {
fd, err := unix.Socket(unix.AF_NETLINK, unix.SOCK_RAW|unix.SOCK_CLOEXEC, protocol)
if err != nil {
return nil, err
}
s := &NetlinkSocket{
fd: int32(fd),
}
s.lsa.Family = unix.AF_NETLINK
if err := unix.Bind(fd, &s.lsa); err != nil {
unix.Close(fd)
return nil, err
}
return s, nil
}
// GetNetlinkSocketAt opens a netlink socket in the network namespace newNs
// and positions the thread back into the network namespace specified by curNs,
// when done. If curNs is close, the function derives the current namespace and
// moves back into it when done. If newNs is close, the socket will be opened
// in the current network namespace.
func GetNetlinkSocketAt(newNs, curNs netns.NsHandle, protocol int) (*NetlinkSocket, error) {
c, err := executeInNetns(newNs, curNs)
if err != nil {
return nil, err
}
defer c()
return getNetlinkSocket(protocol)
}
// executeInNetns sets execution of the code following this call to the
// network namespace newNs, then moves the thread back to curNs if open,
// otherwise to the current netns at the time the function was invoked
// In case of success, the caller is expected to execute the returned function
// at the end of the code that needs to be executed in the network namespace.
// Example:
// func jobAt(...) error {
// d, err := executeInNetns(...)
// if err != nil { return err}
// defer d()
// < code which needs to be executed in specific netns>
// }
// TODO: his function probably belongs to netns pkg.
func executeInNetns(newNs, curNs netns.NsHandle) (func(), error) {
var (
err error
moveBack func(netns.NsHandle) error
closeNs func() error
unlockThd func()
)
restore := func() {
// order matters
if moveBack != nil {
moveBack(curNs)
}
if closeNs != nil {
closeNs()
}
if unlockThd != nil {
unlockThd()
}
}
if newNs.IsOpen() {
runtime.LockOSThread()
unlockThd = runtime.UnlockOSThread
if !curNs.IsOpen() {
if curNs, err = netns.Get(); err != nil {
restore()
return nil, fmt.Errorf("could not get current namespace while creating netlink socket: %v", err)
}
closeNs = curNs.Close
}
if err := netns.Set(newNs); err != nil {
restore()
return nil, fmt.Errorf("failed to set into network namespace %d while creating netlink socket: %v", newNs, err)
}
moveBack = netns.Set
}
return restore, nil
}
// Create a netlink socket with a given protocol (e.g. NETLINK_ROUTE)
// and subscribe it to multicast groups passed in variable argument list.
// Returns the netlink socket on which Receive() method can be called
// to retrieve the messages from the kernel.
func Subscribe(protocol int, groups ...uint) (*NetlinkSocket, error) {
fd, err := unix.Socket(unix.AF_NETLINK, unix.SOCK_RAW, protocol)
if err != nil {
return nil, err
}
s := &NetlinkSocket{
fd: int32(fd),
}
s.lsa.Family = unix.AF_NETLINK
for _, g := range groups {
s.lsa.Groups |= (1 << (g - 1))
}
if err := unix.Bind(fd, &s.lsa); err != nil {
unix.Close(fd)
return nil, err
}
return s, nil
}
// SubscribeAt works like Subscribe plus let's the caller choose the network
// namespace in which the socket would be opened (newNs). Then control goes back
// to curNs if open, otherwise to the netns at the time this function was called.
func SubscribeAt(newNs, curNs netns.NsHandle, protocol int, groups ...uint) (*NetlinkSocket, error) {
c, err := executeInNetns(newNs, curNs)
if err != nil {
return nil, err
}
defer c()
return Subscribe(protocol, groups...)
}
func (s *NetlinkSocket) Close() {
fd := int(atomic.SwapInt32(&s.fd, -1))
unix.Close(fd)
}
func (s *NetlinkSocket) GetFd() int {
return int(atomic.LoadInt32(&s.fd))
}
func (s *NetlinkSocket) Send(request *NetlinkRequest) error {
fd := int(atomic.LoadInt32(&s.fd))
if fd < 0 {
return fmt.Errorf("Send called on a closed socket")
}
if err := unix.Sendto(fd, request.Serialize(), 0, &s.lsa); err != nil {
return err
}
return nil
}
func (s *NetlinkSocket) Receive() ([]syscall.NetlinkMessage, error) {
fd := int(atomic.LoadInt32(&s.fd))
if fd < 0 {
return nil, fmt.Errorf("Receive called on a closed socket")
}
rb := make([]byte, unix.Getpagesize())
nr, _, err := unix.Recvfrom(fd, rb, 0)
if err != nil {
return nil, err
}
if nr < unix.NLMSG_HDRLEN {
return nil, fmt.Errorf("Got short response from netlink")
}
rb = rb[:nr]
return syscall.ParseNetlinkMessage(rb)
}
// SetSendTimeout allows to set a send timeout on the socket
func (s *NetlinkSocket) SetSendTimeout(timeout *unix.Timeval) error {
// Set a send timeout of SOCKET_SEND_TIMEOUT, this will allow the Send to periodically unblock and avoid that a routine
// remains stuck on a send on a closed fd
return unix.SetsockoptTimeval(int(s.fd), unix.SOL_SOCKET, unix.SO_SNDTIMEO, timeout)
}
// SetReceiveTimeout allows to set a receive timeout on the socket
func (s *NetlinkSocket) SetReceiveTimeout(timeout *unix.Timeval) error {
// Set a read timeout of SOCKET_READ_TIMEOUT, this will allow the Read to periodically unblock and avoid that a routine
// remains stuck on a recvmsg on a closed fd
return unix.SetsockoptTimeval(int(s.fd), unix.SOL_SOCKET, unix.SO_RCVTIMEO, timeout)
}
func (s *NetlinkSocket) GetPid() (uint32, error) {
fd := int(atomic.LoadInt32(&s.fd))
lsa, err := unix.Getsockname(fd)
if err != nil {
return 0, err
}
switch v := lsa.(type) {
case *unix.SockaddrNetlink:
return v.Pid, nil
}
return 0, fmt.Errorf("Wrong socket type")
}
func ZeroTerminated(s string) []byte {
bytes := make([]byte, len(s)+1)
for i := 0; i < len(s); i++ {
bytes[i] = s[i]
}
bytes[len(s)] = 0
return bytes
}
func NonZeroTerminated(s string) []byte {
bytes := make([]byte, len(s))
for i := 0; i < len(s); i++ {
bytes[i] = s[i]
}
return bytes
}
func BytesToString(b []byte) string {
n := bytes.Index(b, []byte{0})
return string(b[:n])
}
func Uint8Attr(v uint8) []byte {
return []byte{byte(v)}
}
func Uint16Attr(v uint16) []byte {
native := NativeEndian()
bytes := make([]byte, 2)
native.PutUint16(bytes, v)
return bytes
}
func Uint32Attr(v uint32) []byte {
native := NativeEndian()
bytes := make([]byte, 4)
native.PutUint32(bytes, v)
return bytes
}
func Uint64Attr(v uint64) []byte {
native := NativeEndian()
bytes := make([]byte, 8)
native.PutUint64(bytes, v)
return bytes
}
func ParseRouteAttr(b []byte) ([]syscall.NetlinkRouteAttr, error) {
var attrs []syscall.NetlinkRouteAttr
for len(b) >= unix.SizeofRtAttr {
a, vbuf, alen, err := netlinkRouteAttrAndValue(b)
if err != nil {
return nil, err
}
ra := syscall.NetlinkRouteAttr{Attr: syscall.RtAttr(*a), Value: vbuf[:int(a.Len)-unix.SizeofRtAttr]}
attrs = append(attrs, ra)
b = b[alen:]
}
return attrs, nil
}
func netlinkRouteAttrAndValue(b []byte) (*unix.RtAttr, []byte, int, error) {
a := (*unix.RtAttr)(unsafe.Pointer(&b[0]))
if int(a.Len) < unix.SizeofRtAttr || int(a.Len) > len(b) {
return nil, nil, 0, unix.EINVAL
}
return a, b[unix.SizeofRtAttr:], rtaAlignOf(int(a.Len)), nil
}
// SocketHandle contains the netlink socket and the associated
// sequence counter for a specific netlink family
type SocketHandle struct {
Seq uint32
Socket *NetlinkSocket
}
// Close closes the netlink socket
func (sh *SocketHandle) Close() {
if sh.Socket != nil {
sh.Socket.Close()
}
}

View File

@ -0,0 +1,11 @@
// +build !linux
package nl
import "encoding/binary"
var SupportedNlFamilies = []int{}
func NativeEndian() binary.ByteOrder {
return nil
}

View File

@ -0,0 +1,81 @@
package nl
import (
"unsafe"
"golang.org/x/sys/unix"
)
type RtMsg struct {
unix.RtMsg
}
func NewRtMsg() *RtMsg {
return &RtMsg{
RtMsg: unix.RtMsg{
Table: unix.RT_TABLE_MAIN,
Scope: unix.RT_SCOPE_UNIVERSE,
Protocol: unix.RTPROT_BOOT,
Type: unix.RTN_UNICAST,
},
}
}
func NewRtDelMsg() *RtMsg {
return &RtMsg{
RtMsg: unix.RtMsg{
Table: unix.RT_TABLE_MAIN,
Scope: unix.RT_SCOPE_NOWHERE,
},
}
}
func (msg *RtMsg) Len() int {
return unix.SizeofRtMsg
}
func DeserializeRtMsg(b []byte) *RtMsg {
return (*RtMsg)(unsafe.Pointer(&b[0:unix.SizeofRtMsg][0]))
}
func (msg *RtMsg) Serialize() []byte {
return (*(*[unix.SizeofRtMsg]byte)(unsafe.Pointer(msg)))[:]
}
type RtNexthop struct {
unix.RtNexthop
Children []NetlinkRequestData
}
func DeserializeRtNexthop(b []byte) *RtNexthop {
return (*RtNexthop)(unsafe.Pointer(&b[0:unix.SizeofRtNexthop][0]))
}
func (msg *RtNexthop) Len() int {
if len(msg.Children) == 0 {
return unix.SizeofRtNexthop
}
l := 0
for _, child := range msg.Children {
l += rtaAlignOf(child.Len())
}
l += unix.SizeofRtNexthop
return rtaAlignOf(l)
}
func (msg *RtNexthop) Serialize() []byte {
length := msg.Len()
msg.RtNexthop.Len = uint16(length)
buf := make([]byte, length)
copy(buf, (*(*[unix.SizeofRtNexthop]byte)(unsafe.Pointer(msg)))[:])
next := rtaAlignOf(unix.SizeofRtNexthop)
if len(msg.Children) > 0 {
for _, child := range msg.Children {
childBuf := child.Serialize()
copy(buf[next:], childBuf)
next += rtaAlignOf(len(childBuf))
}
}
return buf
}

111
vendor/github.com/vishvananda/netlink/nl/seg6_linux.go generated vendored Normal file
View File

@ -0,0 +1,111 @@
package nl
import (
"errors"
"fmt"
"net"
)
type IPv6SrHdr struct {
nextHdr uint8
hdrLen uint8
routingType uint8
segmentsLeft uint8
firstSegment uint8
flags uint8
reserved uint16
Segments []net.IP
}
func (s1 *IPv6SrHdr) Equal(s2 IPv6SrHdr) bool {
if len(s1.Segments) != len(s2.Segments) {
return false
}
for i := range s1.Segments {
if s1.Segments[i].Equal(s2.Segments[i]) != true {
return false
}
}
return s1.nextHdr == s2.nextHdr &&
s1.hdrLen == s2.hdrLen &&
s1.routingType == s2.routingType &&
s1.segmentsLeft == s2.segmentsLeft &&
s1.firstSegment == s2.firstSegment &&
s1.flags == s2.flags
// reserved doesn't need to be identical.
}
// seg6 encap mode
const (
SEG6_IPTUN_MODE_INLINE = iota
SEG6_IPTUN_MODE_ENCAP
)
// number of nested RTATTR
// from include/uapi/linux/seg6_iptunnel.h
const (
SEG6_IPTUNNEL_UNSPEC = iota
SEG6_IPTUNNEL_SRH
__SEG6_IPTUNNEL_MAX
)
const (
SEG6_IPTUNNEL_MAX = __SEG6_IPTUNNEL_MAX - 1
)
func EncodeSEG6Encap(mode int, segments []net.IP) ([]byte, error) {
nsegs := len(segments) // nsegs: number of segments
if nsegs == 0 {
return nil, errors.New("EncodeSEG6Encap: No Segment in srh")
}
b := make([]byte, 12, 12+len(segments)*16)
native := NativeEndian()
native.PutUint32(b, uint32(mode))
b[4] = 0 // srh.nextHdr (0 when calling netlink)
b[5] = uint8(16 * nsegs >> 3) // srh.hdrLen (in 8-octets unit)
b[6] = IPV6_SRCRT_TYPE_4 // srh.routingType (assigned by IANA)
b[7] = uint8(nsegs - 1) // srh.segmentsLeft
b[8] = uint8(nsegs - 1) // srh.firstSegment
b[9] = 0 // srh.flags (SR6_FLAG1_HMAC for srh_hmac)
// srh.reserved: Defined as "Tag" in draft-ietf-6man-segment-routing-header-07
native.PutUint16(b[10:], 0) // srh.reserved
for _, netIP := range segments {
b = append(b, netIP...) // srh.Segments
}
return b, nil
}
func DecodeSEG6Encap(buf []byte) (int, []net.IP, error) {
native := NativeEndian()
mode := int(native.Uint32(buf))
srh := IPv6SrHdr{
nextHdr: buf[4],
hdrLen: buf[5],
routingType: buf[6],
segmentsLeft: buf[7],
firstSegment: buf[8],
flags: buf[9],
reserved: native.Uint16(buf[10:12]),
}
buf = buf[12:]
if len(buf)%16 != 0 {
err := fmt.Errorf("DecodeSEG6Encap: error parsing Segment List (buf len: %d)\n", len(buf))
return mode, nil, err
}
for len(buf) > 0 {
srh.Segments = append(srh.Segments, net.IP(buf[:16]))
buf = buf[16:]
}
return mode, srh.Segments, nil
}
// Helper functions
func SEG6EncapModeString(mode int) string {
switch mode {
case SEG6_IPTUN_MODE_INLINE:
return "inline"
case SEG6_IPTUN_MODE_ENCAP:
return "encap"
}
return "unknown"
}

78
vendor/github.com/vishvananda/netlink/nl/syscall.go generated vendored Normal file
View File

@ -0,0 +1,78 @@
package nl
// syscall package lack of rule atributes type.
// Thus there are defined below
const (
FRA_UNSPEC = iota
FRA_DST /* destination address */
FRA_SRC /* source address */
FRA_IIFNAME /* interface name */
FRA_GOTO /* target to jump to (FR_ACT_GOTO) */
FRA_UNUSED2
FRA_PRIORITY /* priority/preference */
FRA_UNUSED3
FRA_UNUSED4
FRA_UNUSED5
FRA_FWMARK /* mark */
FRA_FLOW /* flow/class id */
FRA_TUN_ID
FRA_SUPPRESS_IFGROUP
FRA_SUPPRESS_PREFIXLEN
FRA_TABLE /* Extended table id */
FRA_FWMASK /* mask for netfilter mark */
FRA_OIFNAME
)
// ip rule netlink request types
const (
FR_ACT_UNSPEC = iota
FR_ACT_TO_TBL /* Pass to fixed table */
FR_ACT_GOTO /* Jump to another rule */
FR_ACT_NOP /* No operation */
FR_ACT_RES3
FR_ACT_RES4
FR_ACT_BLACKHOLE /* Drop without notification */
FR_ACT_UNREACHABLE /* Drop with ENETUNREACH */
FR_ACT_PROHIBIT /* Drop with EACCES */
)
// socket diags related
const (
SOCK_DIAG_BY_FAMILY = 20 /* linux.sock_diag.h */
TCPDIAG_NOCOOKIE = 0xFFFFFFFF /* TCPDIAG_NOCOOKIE in net/ipv4/tcp_diag.h*/
)
const (
AF_MPLS = 28
)
const (
RTA_NEWDST = 0x13
RTA_ENCAP_TYPE = 0x15
RTA_ENCAP = 0x16
)
// RTA_ENCAP subtype
const (
MPLS_IPTUNNEL_UNSPEC = iota
MPLS_IPTUNNEL_DST
)
// light weight tunnel encap types
const (
LWTUNNEL_ENCAP_NONE = iota
LWTUNNEL_ENCAP_MPLS
LWTUNNEL_ENCAP_IP
LWTUNNEL_ENCAP_ILA
LWTUNNEL_ENCAP_IP6
LWTUNNEL_ENCAP_SEG6
LWTUNNEL_ENCAP_BPF
)
// routing header types
const (
IPV6_SRCRT_STRICT = 0x01 // Deprecated; will be removed
IPV6_SRCRT_TYPE_0 = 0 // Deprecated; will be removed
IPV6_SRCRT_TYPE_2 = 2 // IPv6 type 2 Routing Header
IPV6_SRCRT_TYPE_4 = 4 // Segment Routing with IPv6
)

710
vendor/github.com/vishvananda/netlink/nl/tc_linux.go generated vendored Normal file
View File

@ -0,0 +1,710 @@
package nl
import (
"unsafe"
)
// LinkLayer
const (
LINKLAYER_UNSPEC = iota
LINKLAYER_ETHERNET
LINKLAYER_ATM
)
// ATM
const (
ATM_CELL_PAYLOAD = 48
ATM_CELL_SIZE = 53
)
const TC_LINKLAYER_MASK = 0x0F
// Police
const (
TCA_POLICE_UNSPEC = iota
TCA_POLICE_TBF
TCA_POLICE_RATE
TCA_POLICE_PEAKRATE
TCA_POLICE_AVRATE
TCA_POLICE_RESULT
TCA_POLICE_MAX = TCA_POLICE_RESULT
)
// Message types
const (
TCA_UNSPEC = iota
TCA_KIND
TCA_OPTIONS
TCA_STATS
TCA_XSTATS
TCA_RATE
TCA_FCNT
TCA_STATS2
TCA_STAB
TCA_MAX = TCA_STAB
)
const (
TCA_ACT_TAB = 1
TCAA_MAX = 1
)
const (
TCA_ACT_UNSPEC = iota
TCA_ACT_KIND
TCA_ACT_OPTIONS
TCA_ACT_INDEX
TCA_ACT_STATS
TCA_ACT_MAX
)
const (
TCA_PRIO_UNSPEC = iota
TCA_PRIO_MQ
TCA_PRIO_MAX = TCA_PRIO_MQ
)
const (
SizeofTcMsg = 0x14
SizeofTcActionMsg = 0x04
SizeofTcPrioMap = 0x14
SizeofTcRateSpec = 0x0c
SizeofTcNetemQopt = 0x18
SizeofTcNetemCorr = 0x0c
SizeofTcNetemReorder = 0x08
SizeofTcNetemCorrupt = 0x08
SizeofTcTbfQopt = 2*SizeofTcRateSpec + 0x0c
SizeofTcHtbCopt = 2*SizeofTcRateSpec + 0x14
SizeofTcHtbGlob = 0x14
SizeofTcU32Key = 0x10
SizeofTcU32Sel = 0x10 // without keys
SizeofTcGen = 0x14
SizeofTcMirred = SizeofTcGen + 0x08
SizeofTcPolice = 2*SizeofTcRateSpec + 0x20
)
// struct tcmsg {
// unsigned char tcm_family;
// unsigned char tcm__pad1;
// unsigned short tcm__pad2;
// int tcm_ifindex;
// __u32 tcm_handle;
// __u32 tcm_parent;
// __u32 tcm_info;
// };
type TcMsg struct {
Family uint8
Pad [3]byte
Ifindex int32
Handle uint32
Parent uint32
Info uint32
}
func (msg *TcMsg) Len() int {
return SizeofTcMsg
}
func DeserializeTcMsg(b []byte) *TcMsg {
return (*TcMsg)(unsafe.Pointer(&b[0:SizeofTcMsg][0]))
}
func (x *TcMsg) Serialize() []byte {
return (*(*[SizeofTcMsg]byte)(unsafe.Pointer(x)))[:]
}
// struct tcamsg {
// unsigned char tca_family;
// unsigned char tca__pad1;
// unsigned short tca__pad2;
// };
type TcActionMsg struct {
Family uint8
Pad [3]byte
}
func (msg *TcActionMsg) Len() int {
return SizeofTcActionMsg
}
func DeserializeTcActionMsg(b []byte) *TcActionMsg {
return (*TcActionMsg)(unsafe.Pointer(&b[0:SizeofTcActionMsg][0]))
}
func (x *TcActionMsg) Serialize() []byte {
return (*(*[SizeofTcActionMsg]byte)(unsafe.Pointer(x)))[:]
}
const (
TC_PRIO_MAX = 15
)
// struct tc_prio_qopt {
// int bands; /* Number of bands */
// __u8 priomap[TC_PRIO_MAX+1]; /* Map: logical priority -> PRIO band */
// };
type TcPrioMap struct {
Bands int32
Priomap [TC_PRIO_MAX + 1]uint8
}
func (msg *TcPrioMap) Len() int {
return SizeofTcPrioMap
}
func DeserializeTcPrioMap(b []byte) *TcPrioMap {
return (*TcPrioMap)(unsafe.Pointer(&b[0:SizeofTcPrioMap][0]))
}
func (x *TcPrioMap) Serialize() []byte {
return (*(*[SizeofTcPrioMap]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_TBF_UNSPEC = iota
TCA_TBF_PARMS
TCA_TBF_RTAB
TCA_TBF_PTAB
TCA_TBF_RATE64
TCA_TBF_PRATE64
TCA_TBF_BURST
TCA_TBF_PBURST
TCA_TBF_MAX = TCA_TBF_PBURST
)
// struct tc_ratespec {
// unsigned char cell_log;
// __u8 linklayer; /* lower 4 bits */
// unsigned short overhead;
// short cell_align;
// unsigned short mpu;
// __u32 rate;
// };
type TcRateSpec struct {
CellLog uint8
Linklayer uint8
Overhead uint16
CellAlign int16
Mpu uint16
Rate uint32
}
func (msg *TcRateSpec) Len() int {
return SizeofTcRateSpec
}
func DeserializeTcRateSpec(b []byte) *TcRateSpec {
return (*TcRateSpec)(unsafe.Pointer(&b[0:SizeofTcRateSpec][0]))
}
func (x *TcRateSpec) Serialize() []byte {
return (*(*[SizeofTcRateSpec]byte)(unsafe.Pointer(x)))[:]
}
/**
* NETEM
*/
const (
TCA_NETEM_UNSPEC = iota
TCA_NETEM_CORR
TCA_NETEM_DELAY_DIST
TCA_NETEM_REORDER
TCA_NETEM_CORRUPT
TCA_NETEM_LOSS
TCA_NETEM_RATE
TCA_NETEM_ECN
TCA_NETEM_RATE64
TCA_NETEM_MAX = TCA_NETEM_RATE64
)
// struct tc_netem_qopt {
// __u32 latency; /* added delay (us) */
// __u32 limit; /* fifo limit (packets) */
// __u32 loss; /* random packet loss (0=none ~0=100%) */
// __u32 gap; /* re-ordering gap (0 for none) */
// __u32 duplicate; /* random packet dup (0=none ~0=100%) */
// __u32 jitter; /* random jitter in latency (us) */
// };
type TcNetemQopt struct {
Latency uint32
Limit uint32
Loss uint32
Gap uint32
Duplicate uint32
Jitter uint32
}
func (msg *TcNetemQopt) Len() int {
return SizeofTcNetemQopt
}
func DeserializeTcNetemQopt(b []byte) *TcNetemQopt {
return (*TcNetemQopt)(unsafe.Pointer(&b[0:SizeofTcNetemQopt][0]))
}
func (x *TcNetemQopt) Serialize() []byte {
return (*(*[SizeofTcNetemQopt]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_netem_corr {
// __u32 delay_corr; /* delay correlation */
// __u32 loss_corr; /* packet loss correlation */
// __u32 dup_corr; /* duplicate correlation */
// };
type TcNetemCorr struct {
DelayCorr uint32
LossCorr uint32
DupCorr uint32
}
func (msg *TcNetemCorr) Len() int {
return SizeofTcNetemCorr
}
func DeserializeTcNetemCorr(b []byte) *TcNetemCorr {
return (*TcNetemCorr)(unsafe.Pointer(&b[0:SizeofTcNetemCorr][0]))
}
func (x *TcNetemCorr) Serialize() []byte {
return (*(*[SizeofTcNetemCorr]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_netem_reorder {
// __u32 probability;
// __u32 correlation;
// };
type TcNetemReorder struct {
Probability uint32
Correlation uint32
}
func (msg *TcNetemReorder) Len() int {
return SizeofTcNetemReorder
}
func DeserializeTcNetemReorder(b []byte) *TcNetemReorder {
return (*TcNetemReorder)(unsafe.Pointer(&b[0:SizeofTcNetemReorder][0]))
}
func (x *TcNetemReorder) Serialize() []byte {
return (*(*[SizeofTcNetemReorder]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_netem_corrupt {
// __u32 probability;
// __u32 correlation;
// };
type TcNetemCorrupt struct {
Probability uint32
Correlation uint32
}
func (msg *TcNetemCorrupt) Len() int {
return SizeofTcNetemCorrupt
}
func DeserializeTcNetemCorrupt(b []byte) *TcNetemCorrupt {
return (*TcNetemCorrupt)(unsafe.Pointer(&b[0:SizeofTcNetemCorrupt][0]))
}
func (x *TcNetemCorrupt) Serialize() []byte {
return (*(*[SizeofTcNetemCorrupt]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_tbf_qopt {
// struct tc_ratespec rate;
// struct tc_ratespec peakrate;
// __u32 limit;
// __u32 buffer;
// __u32 mtu;
// };
type TcTbfQopt struct {
Rate TcRateSpec
Peakrate TcRateSpec
Limit uint32
Buffer uint32
Mtu uint32
}
func (msg *TcTbfQopt) Len() int {
return SizeofTcTbfQopt
}
func DeserializeTcTbfQopt(b []byte) *TcTbfQopt {
return (*TcTbfQopt)(unsafe.Pointer(&b[0:SizeofTcTbfQopt][0]))
}
func (x *TcTbfQopt) Serialize() []byte {
return (*(*[SizeofTcTbfQopt]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_HTB_UNSPEC = iota
TCA_HTB_PARMS
TCA_HTB_INIT
TCA_HTB_CTAB
TCA_HTB_RTAB
TCA_HTB_DIRECT_QLEN
TCA_HTB_RATE64
TCA_HTB_CEIL64
TCA_HTB_MAX = TCA_HTB_CEIL64
)
//struct tc_htb_opt {
// struct tc_ratespec rate;
// struct tc_ratespec ceil;
// __u32 buffer;
// __u32 cbuffer;
// __u32 quantum;
// __u32 level; /* out only */
// __u32 prio;
//};
type TcHtbCopt struct {
Rate TcRateSpec
Ceil TcRateSpec
Buffer uint32
Cbuffer uint32
Quantum uint32
Level uint32
Prio uint32
}
func (msg *TcHtbCopt) Len() int {
return SizeofTcHtbCopt
}
func DeserializeTcHtbCopt(b []byte) *TcHtbCopt {
return (*TcHtbCopt)(unsafe.Pointer(&b[0:SizeofTcHtbCopt][0]))
}
func (x *TcHtbCopt) Serialize() []byte {
return (*(*[SizeofTcHtbCopt]byte)(unsafe.Pointer(x)))[:]
}
type TcHtbGlob struct {
Version uint32
Rate2Quantum uint32
Defcls uint32
Debug uint32
DirectPkts uint32
}
func (msg *TcHtbGlob) Len() int {
return SizeofTcHtbGlob
}
func DeserializeTcHtbGlob(b []byte) *TcHtbGlob {
return (*TcHtbGlob)(unsafe.Pointer(&b[0:SizeofTcHtbGlob][0]))
}
func (x *TcHtbGlob) Serialize() []byte {
return (*(*[SizeofTcHtbGlob]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_U32_UNSPEC = iota
TCA_U32_CLASSID
TCA_U32_HASH
TCA_U32_LINK
TCA_U32_DIVISOR
TCA_U32_SEL
TCA_U32_POLICE
TCA_U32_ACT
TCA_U32_INDEV
TCA_U32_PCNT
TCA_U32_MARK
TCA_U32_MAX = TCA_U32_MARK
)
// struct tc_u32_key {
// __be32 mask;
// __be32 val;
// int off;
// int offmask;
// };
type TcU32Key struct {
Mask uint32 // big endian
Val uint32 // big endian
Off int32
OffMask int32
}
func (msg *TcU32Key) Len() int {
return SizeofTcU32Key
}
func DeserializeTcU32Key(b []byte) *TcU32Key {
return (*TcU32Key)(unsafe.Pointer(&b[0:SizeofTcU32Key][0]))
}
func (x *TcU32Key) Serialize() []byte {
return (*(*[SizeofTcU32Key]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_u32_sel {
// unsigned char flags;
// unsigned char offshift;
// unsigned char nkeys;
//
// __be16 offmask;
// __u16 off;
// short offoff;
//
// short hoff;
// __be32 hmask;
// struct tc_u32_key keys[0];
// };
const (
TC_U32_TERMINAL = 1 << iota
TC_U32_OFFSET = 1 << iota
TC_U32_VAROFFSET = 1 << iota
TC_U32_EAT = 1 << iota
)
type TcU32Sel struct {
Flags uint8
Offshift uint8
Nkeys uint8
Pad uint8
Offmask uint16 // big endian
Off uint16
Offoff int16
Hoff int16
Hmask uint32 // big endian
Keys []TcU32Key
}
func (msg *TcU32Sel) Len() int {
return SizeofTcU32Sel + int(msg.Nkeys)*SizeofTcU32Key
}
func DeserializeTcU32Sel(b []byte) *TcU32Sel {
x := &TcU32Sel{}
copy((*(*[SizeofTcU32Sel]byte)(unsafe.Pointer(x)))[:], b)
next := SizeofTcU32Sel
var i uint8
for i = 0; i < x.Nkeys; i++ {
x.Keys = append(x.Keys, *DeserializeTcU32Key(b[next:]))
next += SizeofTcU32Key
}
return x
}
func (x *TcU32Sel) Serialize() []byte {
// This can't just unsafe.cast because it must iterate through keys.
buf := make([]byte, x.Len())
copy(buf, (*(*[SizeofTcU32Sel]byte)(unsafe.Pointer(x)))[:])
next := SizeofTcU32Sel
for _, key := range x.Keys {
keyBuf := key.Serialize()
copy(buf[next:], keyBuf)
next += SizeofTcU32Key
}
return buf
}
type TcGen struct {
Index uint32
Capab uint32
Action int32
Refcnt int32
Bindcnt int32
}
func (msg *TcGen) Len() int {
return SizeofTcGen
}
func DeserializeTcGen(b []byte) *TcGen {
return (*TcGen)(unsafe.Pointer(&b[0:SizeofTcGen][0]))
}
func (x *TcGen) Serialize() []byte {
return (*(*[SizeofTcGen]byte)(unsafe.Pointer(x)))[:]
}
// #define tc_gen \
// __u32 index; \
// __u32 capab; \
// int action; \
// int refcnt; \
// int bindcnt
const (
TCA_ACT_GACT = 5
)
const (
TCA_GACT_UNSPEC = iota
TCA_GACT_TM
TCA_GACT_PARMS
TCA_GACT_PROB
TCA_GACT_MAX = TCA_GACT_PROB
)
type TcGact TcGen
const (
TCA_ACT_BPF = 13
)
const (
TCA_ACT_BPF_UNSPEC = iota
TCA_ACT_BPF_TM
TCA_ACT_BPF_PARMS
TCA_ACT_BPF_OPS_LEN
TCA_ACT_BPF_OPS
TCA_ACT_BPF_FD
TCA_ACT_BPF_NAME
TCA_ACT_BPF_MAX = TCA_ACT_BPF_NAME
)
const (
TCA_BPF_FLAG_ACT_DIRECT uint32 = 1 << iota
)
const (
TCA_BPF_UNSPEC = iota
TCA_BPF_ACT
TCA_BPF_POLICE
TCA_BPF_CLASSID
TCA_BPF_OPS_LEN
TCA_BPF_OPS
TCA_BPF_FD
TCA_BPF_NAME
TCA_BPF_FLAGS
TCA_BPF_MAX = TCA_BPF_FLAGS
)
type TcBpf TcGen
const (
TCA_ACT_MIRRED = 8
)
const (
TCA_MIRRED_UNSPEC = iota
TCA_MIRRED_TM
TCA_MIRRED_PARMS
TCA_MIRRED_MAX = TCA_MIRRED_PARMS
)
// struct tc_mirred {
// tc_gen;
// int eaction; /* one of IN/EGRESS_MIRROR/REDIR */
// __u32 ifindex; /* ifindex of egress port */
// };
type TcMirred struct {
TcGen
Eaction int32
Ifindex uint32
}
func (msg *TcMirred) Len() int {
return SizeofTcMirred
}
func DeserializeTcMirred(b []byte) *TcMirred {
return (*TcMirred)(unsafe.Pointer(&b[0:SizeofTcMirred][0]))
}
func (x *TcMirred) Serialize() []byte {
return (*(*[SizeofTcMirred]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_police {
// __u32 index;
// int action;
// __u32 limit;
// __u32 burst;
// __u32 mtu;
// struct tc_ratespec rate;
// struct tc_ratespec peakrate;
// int refcnt;
// int bindcnt;
// __u32 capab;
// };
type TcPolice struct {
Index uint32
Action int32
Limit uint32
Burst uint32
Mtu uint32
Rate TcRateSpec
PeakRate TcRateSpec
Refcnt int32
Bindcnt int32
Capab uint32
}
func (msg *TcPolice) Len() int {
return SizeofTcPolice
}
func DeserializeTcPolice(b []byte) *TcPolice {
return (*TcPolice)(unsafe.Pointer(&b[0:SizeofTcPolice][0]))
}
func (x *TcPolice) Serialize() []byte {
return (*(*[SizeofTcPolice]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_FW_UNSPEC = iota
TCA_FW_CLASSID
TCA_FW_POLICE
TCA_FW_INDEV
TCA_FW_ACT
TCA_FW_MASK
TCA_FW_MAX = TCA_FW_MASK
)
const (
TCA_MATCHALL_UNSPEC = iota
TCA_MATCHALL_CLASSID
TCA_MATCHALL_ACT
TCA_MATCHALL_FLAGS
)
const (
TCA_FQ_UNSPEC = iota
TCA_FQ_PLIMIT // limit of total number of packets in queue
TCA_FQ_FLOW_PLIMIT // limit of packets per flow
TCA_FQ_QUANTUM // RR quantum
TCA_FQ_INITIAL_QUANTUM // RR quantum for new flow
TCA_FQ_RATE_ENABLE // enable/disable rate limiting
TCA_FQ_FLOW_DEFAULT_RATE // obsolete do not use
TCA_FQ_FLOW_MAX_RATE // per flow max rate
TCA_FQ_BUCKETS_LOG // log2(number of buckets)
TCA_FQ_FLOW_REFILL_DELAY // flow credit refill delay in usec
TCA_FQ_ORPHAN_MASK // mask applied to orphaned skb hashes
TCA_FQ_LOW_RATE_THRESHOLD // per packet delay under this rate
)
const (
TCA_FQ_CODEL_UNSPEC = iota
TCA_FQ_CODEL_TARGET
TCA_FQ_CODEL_LIMIT
TCA_FQ_CODEL_INTERVAL
TCA_FQ_CODEL_ECN
TCA_FQ_CODEL_FLOWS
TCA_FQ_CODEL_QUANTUM
TCA_FQ_CODEL_CE_THRESHOLD
TCA_FQ_CODEL_DROP_BATCH_SIZE
TCA_FQ_CODEL_MEMORY_LIMIT
)

296
vendor/github.com/vishvananda/netlink/nl/xfrm_linux.go generated vendored Normal file
View File

@ -0,0 +1,296 @@
package nl
import (
"bytes"
"net"
"unsafe"
)
// Infinity for packet and byte counts
const (
XFRM_INF = ^uint64(0)
)
type XfrmMsgType uint8
type XfrmMsg interface {
Type() XfrmMsgType
}
// Message Types
const (
XFRM_MSG_BASE XfrmMsgType = 0x10
XFRM_MSG_NEWSA = 0x10
XFRM_MSG_DELSA = 0x11
XFRM_MSG_GETSA = 0x12
XFRM_MSG_NEWPOLICY = 0x13
XFRM_MSG_DELPOLICY = 0x14
XFRM_MSG_GETPOLICY = 0x15
XFRM_MSG_ALLOCSPI = 0x16
XFRM_MSG_ACQUIRE = 0x17
XFRM_MSG_EXPIRE = 0x18
XFRM_MSG_UPDPOLICY = 0x19
XFRM_MSG_UPDSA = 0x1a
XFRM_MSG_POLEXPIRE = 0x1b
XFRM_MSG_FLUSHSA = 0x1c
XFRM_MSG_FLUSHPOLICY = 0x1d
XFRM_MSG_NEWAE = 0x1e
XFRM_MSG_GETAE = 0x1f
XFRM_MSG_REPORT = 0x20
XFRM_MSG_MIGRATE = 0x21
XFRM_MSG_NEWSADINFO = 0x22
XFRM_MSG_GETSADINFO = 0x23
XFRM_MSG_NEWSPDINFO = 0x24
XFRM_MSG_GETSPDINFO = 0x25
XFRM_MSG_MAPPING = 0x26
XFRM_MSG_MAX = 0x26
XFRM_NR_MSGTYPES = 0x17
)
// Attribute types
const (
/* Netlink message attributes. */
XFRMA_UNSPEC = 0x00
XFRMA_ALG_AUTH = 0x01 /* struct xfrm_algo */
XFRMA_ALG_CRYPT = 0x02 /* struct xfrm_algo */
XFRMA_ALG_COMP = 0x03 /* struct xfrm_algo */
XFRMA_ENCAP = 0x04 /* struct xfrm_algo + struct xfrm_encap_tmpl */
XFRMA_TMPL = 0x05 /* 1 or more struct xfrm_user_tmpl */
XFRMA_SA = 0x06 /* struct xfrm_usersa_info */
XFRMA_POLICY = 0x07 /* struct xfrm_userpolicy_info */
XFRMA_SEC_CTX = 0x08 /* struct xfrm_sec_ctx */
XFRMA_LTIME_VAL = 0x09
XFRMA_REPLAY_VAL = 0x0a
XFRMA_REPLAY_THRESH = 0x0b
XFRMA_ETIMER_THRESH = 0x0c
XFRMA_SRCADDR = 0x0d /* xfrm_address_t */
XFRMA_COADDR = 0x0e /* xfrm_address_t */
XFRMA_LASTUSED = 0x0f /* unsigned long */
XFRMA_POLICY_TYPE = 0x10 /* struct xfrm_userpolicy_type */
XFRMA_MIGRATE = 0x11
XFRMA_ALG_AEAD = 0x12 /* struct xfrm_algo_aead */
XFRMA_KMADDRESS = 0x13 /* struct xfrm_user_kmaddress */
XFRMA_ALG_AUTH_TRUNC = 0x14 /* struct xfrm_algo_auth */
XFRMA_MARK = 0x15 /* struct xfrm_mark */
XFRMA_TFCPAD = 0x16 /* __u32 */
XFRMA_REPLAY_ESN_VAL = 0x17 /* struct xfrm_replay_esn */
XFRMA_SA_EXTRA_FLAGS = 0x18 /* __u32 */
XFRMA_MAX = 0x18
)
const (
SizeofXfrmAddress = 0x10
SizeofXfrmSelector = 0x38
SizeofXfrmLifetimeCfg = 0x40
SizeofXfrmLifetimeCur = 0x20
SizeofXfrmId = 0x18
SizeofXfrmMark = 0x08
)
// Netlink groups
const (
XFRMNLGRP_NONE = 0x0
XFRMNLGRP_ACQUIRE = 0x1
XFRMNLGRP_EXPIRE = 0x2
XFRMNLGRP_SA = 0x3
XFRMNLGRP_POLICY = 0x4
XFRMNLGRP_AEVENTS = 0x5
XFRMNLGRP_REPORT = 0x6
XFRMNLGRP_MIGRATE = 0x7
XFRMNLGRP_MAPPING = 0x8
__XFRMNLGRP_MAX = 0x9
)
// typedef union {
// __be32 a4;
// __be32 a6[4];
// } xfrm_address_t;
type XfrmAddress [SizeofXfrmAddress]byte
func (x *XfrmAddress) ToIP() net.IP {
var empty = [12]byte{}
ip := make(net.IP, net.IPv6len)
if bytes.Equal(x[4:16], empty[:]) {
ip[10] = 0xff
ip[11] = 0xff
copy(ip[12:16], x[0:4])
} else {
copy(ip[:], x[:])
}
return ip
}
func (x *XfrmAddress) ToIPNet(prefixlen uint8) *net.IPNet {
ip := x.ToIP()
if GetIPFamily(ip) == FAMILY_V4 {
return &net.IPNet{IP: ip, Mask: net.CIDRMask(int(prefixlen), 32)}
}
return &net.IPNet{IP: ip, Mask: net.CIDRMask(int(prefixlen), 128)}
}
func (x *XfrmAddress) FromIP(ip net.IP) {
var empty = [16]byte{}
if len(ip) < net.IPv4len {
copy(x[4:16], empty[:])
} else if GetIPFamily(ip) == FAMILY_V4 {
copy(x[0:4], ip.To4()[0:4])
copy(x[4:16], empty[:12])
} else {
copy(x[0:16], ip.To16()[0:16])
}
}
func DeserializeXfrmAddress(b []byte) *XfrmAddress {
return (*XfrmAddress)(unsafe.Pointer(&b[0:SizeofXfrmAddress][0]))
}
func (x *XfrmAddress) Serialize() []byte {
return (*(*[SizeofXfrmAddress]byte)(unsafe.Pointer(x)))[:]
}
// struct xfrm_selector {
// xfrm_address_t daddr;
// xfrm_address_t saddr;
// __be16 dport;
// __be16 dport_mask;
// __be16 sport;
// __be16 sport_mask;
// __u16 family;
// __u8 prefixlen_d;
// __u8 prefixlen_s;
// __u8 proto;
// int ifindex;
// __kernel_uid32_t user;
// };
type XfrmSelector struct {
Daddr XfrmAddress
Saddr XfrmAddress
Dport uint16 // big endian
DportMask uint16 // big endian
Sport uint16 // big endian
SportMask uint16 // big endian
Family uint16
PrefixlenD uint8
PrefixlenS uint8
Proto uint8
Pad [3]byte
Ifindex int32
User uint32
}
func (msg *XfrmSelector) Len() int {
return SizeofXfrmSelector
}
func DeserializeXfrmSelector(b []byte) *XfrmSelector {
return (*XfrmSelector)(unsafe.Pointer(&b[0:SizeofXfrmSelector][0]))
}
func (msg *XfrmSelector) Serialize() []byte {
return (*(*[SizeofXfrmSelector]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_lifetime_cfg {
// __u64 soft_byte_limit;
// __u64 hard_byte_limit;
// __u64 soft_packet_limit;
// __u64 hard_packet_limit;
// __u64 soft_add_expires_seconds;
// __u64 hard_add_expires_seconds;
// __u64 soft_use_expires_seconds;
// __u64 hard_use_expires_seconds;
// };
//
type XfrmLifetimeCfg struct {
SoftByteLimit uint64
HardByteLimit uint64
SoftPacketLimit uint64
HardPacketLimit uint64
SoftAddExpiresSeconds uint64
HardAddExpiresSeconds uint64
SoftUseExpiresSeconds uint64
HardUseExpiresSeconds uint64
}
func (msg *XfrmLifetimeCfg) Len() int {
return SizeofXfrmLifetimeCfg
}
func DeserializeXfrmLifetimeCfg(b []byte) *XfrmLifetimeCfg {
return (*XfrmLifetimeCfg)(unsafe.Pointer(&b[0:SizeofXfrmLifetimeCfg][0]))
}
func (msg *XfrmLifetimeCfg) Serialize() []byte {
return (*(*[SizeofXfrmLifetimeCfg]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_lifetime_cur {
// __u64 bytes;
// __u64 packets;
// __u64 add_time;
// __u64 use_time;
// };
type XfrmLifetimeCur struct {
Bytes uint64
Packets uint64
AddTime uint64
UseTime uint64
}
func (msg *XfrmLifetimeCur) Len() int {
return SizeofXfrmLifetimeCur
}
func DeserializeXfrmLifetimeCur(b []byte) *XfrmLifetimeCur {
return (*XfrmLifetimeCur)(unsafe.Pointer(&b[0:SizeofXfrmLifetimeCur][0]))
}
func (msg *XfrmLifetimeCur) Serialize() []byte {
return (*(*[SizeofXfrmLifetimeCur]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_id {
// xfrm_address_t daddr;
// __be32 spi;
// __u8 proto;
// };
type XfrmId struct {
Daddr XfrmAddress
Spi uint32 // big endian
Proto uint8
Pad [3]byte
}
func (msg *XfrmId) Len() int {
return SizeofXfrmId
}
func DeserializeXfrmId(b []byte) *XfrmId {
return (*XfrmId)(unsafe.Pointer(&b[0:SizeofXfrmId][0]))
}
func (msg *XfrmId) Serialize() []byte {
return (*(*[SizeofXfrmId]byte)(unsafe.Pointer(msg)))[:]
}
type XfrmMark struct {
Value uint32
Mask uint32
}
func (msg *XfrmMark) Len() int {
return SizeofXfrmMark
}
func DeserializeXfrmMark(b []byte) *XfrmMark {
return (*XfrmMark)(unsafe.Pointer(&b[0:SizeofXfrmMark][0]))
}
func (msg *XfrmMark) Serialize() []byte {
return (*(*[SizeofXfrmMark]byte)(unsafe.Pointer(msg)))[:]
}

View File

@ -0,0 +1,32 @@
package nl
import (
"unsafe"
)
const (
SizeofXfrmUserExpire = 0xe8
)
// struct xfrm_user_expire {
// struct xfrm_usersa_info state;
// __u8 hard;
// };
type XfrmUserExpire struct {
XfrmUsersaInfo XfrmUsersaInfo
Hard uint8
Pad [7]byte
}
func (msg *XfrmUserExpire) Len() int {
return SizeofXfrmUserExpire
}
func DeserializeXfrmUserExpire(b []byte) *XfrmUserExpire {
return (*XfrmUserExpire)(unsafe.Pointer(&b[0:SizeofXfrmUserExpire][0]))
}
func (msg *XfrmUserExpire) Serialize() []byte {
return (*(*[SizeofXfrmUserExpire]byte)(unsafe.Pointer(msg)))[:]
}

View File

@ -0,0 +1,119 @@
package nl
import (
"unsafe"
)
const (
SizeofXfrmUserpolicyId = 0x40
SizeofXfrmUserpolicyInfo = 0xa8
SizeofXfrmUserTmpl = 0x40
)
// struct xfrm_userpolicy_id {
// struct xfrm_selector sel;
// __u32 index;
// __u8 dir;
// };
//
type XfrmUserpolicyId struct {
Sel XfrmSelector
Index uint32
Dir uint8
Pad [3]byte
}
func (msg *XfrmUserpolicyId) Len() int {
return SizeofXfrmUserpolicyId
}
func DeserializeXfrmUserpolicyId(b []byte) *XfrmUserpolicyId {
return (*XfrmUserpolicyId)(unsafe.Pointer(&b[0:SizeofXfrmUserpolicyId][0]))
}
func (msg *XfrmUserpolicyId) Serialize() []byte {
return (*(*[SizeofXfrmUserpolicyId]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_userpolicy_info {
// struct xfrm_selector sel;
// struct xfrm_lifetime_cfg lft;
// struct xfrm_lifetime_cur curlft;
// __u32 priority;
// __u32 index;
// __u8 dir;
// __u8 action;
// #define XFRM_POLICY_ALLOW 0
// #define XFRM_POLICY_BLOCK 1
// __u8 flags;
// #define XFRM_POLICY_LOCALOK 1 /* Allow user to override global policy */
// /* Automatically expand selector to include matching ICMP payloads. */
// #define XFRM_POLICY_ICMP 2
// __u8 share;
// };
type XfrmUserpolicyInfo struct {
Sel XfrmSelector
Lft XfrmLifetimeCfg
Curlft XfrmLifetimeCur
Priority uint32
Index uint32
Dir uint8
Action uint8
Flags uint8
Share uint8
Pad [4]byte
}
func (msg *XfrmUserpolicyInfo) Len() int {
return SizeofXfrmUserpolicyInfo
}
func DeserializeXfrmUserpolicyInfo(b []byte) *XfrmUserpolicyInfo {
return (*XfrmUserpolicyInfo)(unsafe.Pointer(&b[0:SizeofXfrmUserpolicyInfo][0]))
}
func (msg *XfrmUserpolicyInfo) Serialize() []byte {
return (*(*[SizeofXfrmUserpolicyInfo]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_user_tmpl {
// struct xfrm_id id;
// __u16 family;
// xfrm_address_t saddr;
// __u32 reqid;
// __u8 mode;
// __u8 share;
// __u8 optional;
// __u32 aalgos;
// __u32 ealgos;
// __u32 calgos;
// }
type XfrmUserTmpl struct {
XfrmId XfrmId
Family uint16
Pad1 [2]byte
Saddr XfrmAddress
Reqid uint32
Mode uint8
Share uint8
Optional uint8
Pad2 byte
Aalgos uint32
Ealgos uint32
Calgos uint32
}
func (msg *XfrmUserTmpl) Len() int {
return SizeofXfrmUserTmpl
}
func DeserializeXfrmUserTmpl(b []byte) *XfrmUserTmpl {
return (*XfrmUserTmpl)(unsafe.Pointer(&b[0:SizeofXfrmUserTmpl][0]))
}
func (msg *XfrmUserTmpl) Serialize() []byte {
return (*(*[SizeofXfrmUserTmpl]byte)(unsafe.Pointer(msg)))[:]
}

View File

@ -0,0 +1,334 @@
package nl
import (
"unsafe"
)
const (
SizeofXfrmUsersaId = 0x18
SizeofXfrmStats = 0x0c
SizeofXfrmUsersaInfo = 0xe0
SizeofXfrmUserSpiInfo = 0xe8
SizeofXfrmAlgo = 0x44
SizeofXfrmAlgoAuth = 0x48
SizeofXfrmAlgoAEAD = 0x48
SizeofXfrmEncapTmpl = 0x18
SizeofXfrmUsersaFlush = 0x8
SizeofXfrmReplayStateEsn = 0x18
)
const (
XFRM_STATE_NOECN = 1
XFRM_STATE_DECAP_DSCP = 2
XFRM_STATE_NOPMTUDISC = 4
XFRM_STATE_WILDRECV = 8
XFRM_STATE_ICMP = 16
XFRM_STATE_AF_UNSPEC = 32
XFRM_STATE_ALIGN4 = 64
XFRM_STATE_ESN = 128
)
// struct xfrm_usersa_id {
// xfrm_address_t daddr;
// __be32 spi;
// __u16 family;
// __u8 proto;
// };
type XfrmUsersaId struct {
Daddr XfrmAddress
Spi uint32 // big endian
Family uint16
Proto uint8
Pad byte
}
func (msg *XfrmUsersaId) Len() int {
return SizeofXfrmUsersaId
}
func DeserializeXfrmUsersaId(b []byte) *XfrmUsersaId {
return (*XfrmUsersaId)(unsafe.Pointer(&b[0:SizeofXfrmUsersaId][0]))
}
func (msg *XfrmUsersaId) Serialize() []byte {
return (*(*[SizeofXfrmUsersaId]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_stats {
// __u32 replay_window;
// __u32 replay;
// __u32 integrity_failed;
// };
type XfrmStats struct {
ReplayWindow uint32
Replay uint32
IntegrityFailed uint32
}
func (msg *XfrmStats) Len() int {
return SizeofXfrmStats
}
func DeserializeXfrmStats(b []byte) *XfrmStats {
return (*XfrmStats)(unsafe.Pointer(&b[0:SizeofXfrmStats][0]))
}
func (msg *XfrmStats) Serialize() []byte {
return (*(*[SizeofXfrmStats]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_usersa_info {
// struct xfrm_selector sel;
// struct xfrm_id id;
// xfrm_address_t saddr;
// struct xfrm_lifetime_cfg lft;
// struct xfrm_lifetime_cur curlft;
// struct xfrm_stats stats;
// __u32 seq;
// __u32 reqid;
// __u16 family;
// __u8 mode; /* XFRM_MODE_xxx */
// __u8 replay_window;
// __u8 flags;
// #define XFRM_STATE_NOECN 1
// #define XFRM_STATE_DECAP_DSCP 2
// #define XFRM_STATE_NOPMTUDISC 4
// #define XFRM_STATE_WILDRECV 8
// #define XFRM_STATE_ICMP 16
// #define XFRM_STATE_AF_UNSPEC 32
// #define XFRM_STATE_ALIGN4 64
// #define XFRM_STATE_ESN 128
// };
//
// #define XFRM_SA_XFLAG_DONT_ENCAP_DSCP 1
//
type XfrmUsersaInfo struct {
Sel XfrmSelector
Id XfrmId
Saddr XfrmAddress
Lft XfrmLifetimeCfg
Curlft XfrmLifetimeCur
Stats XfrmStats
Seq uint32
Reqid uint32
Family uint16
Mode uint8
ReplayWindow uint8
Flags uint8
Pad [7]byte
}
func (msg *XfrmUsersaInfo) Len() int {
return SizeofXfrmUsersaInfo
}
func DeserializeXfrmUsersaInfo(b []byte) *XfrmUsersaInfo {
return (*XfrmUsersaInfo)(unsafe.Pointer(&b[0:SizeofXfrmUsersaInfo][0]))
}
func (msg *XfrmUsersaInfo) Serialize() []byte {
return (*(*[SizeofXfrmUsersaInfo]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_userspi_info {
// struct xfrm_usersa_info info;
// __u32 min;
// __u32 max;
// };
type XfrmUserSpiInfo struct {
XfrmUsersaInfo XfrmUsersaInfo
Min uint32
Max uint32
}
func (msg *XfrmUserSpiInfo) Len() int {
return SizeofXfrmUserSpiInfo
}
func DeserializeXfrmUserSpiInfo(b []byte) *XfrmUserSpiInfo {
return (*XfrmUserSpiInfo)(unsafe.Pointer(&b[0:SizeofXfrmUserSpiInfo][0]))
}
func (msg *XfrmUserSpiInfo) Serialize() []byte {
return (*(*[SizeofXfrmUserSpiInfo]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_algo {
// char alg_name[64];
// unsigned int alg_key_len; /* in bits */
// char alg_key[0];
// };
type XfrmAlgo struct {
AlgName [64]byte
AlgKeyLen uint32
AlgKey []byte
}
func (msg *XfrmAlgo) Len() int {
return SizeofXfrmAlgo + int(msg.AlgKeyLen/8)
}
func DeserializeXfrmAlgo(b []byte) *XfrmAlgo {
ret := XfrmAlgo{}
copy(ret.AlgName[:], b[0:64])
ret.AlgKeyLen = *(*uint32)(unsafe.Pointer(&b[64]))
ret.AlgKey = b[68:ret.Len()]
return &ret
}
func (msg *XfrmAlgo) Serialize() []byte {
b := make([]byte, msg.Len())
copy(b[0:64], msg.AlgName[:])
copy(b[64:68], (*(*[4]byte)(unsafe.Pointer(&msg.AlgKeyLen)))[:])
copy(b[68:msg.Len()], msg.AlgKey[:])
return b
}
// struct xfrm_algo_auth {
// char alg_name[64];
// unsigned int alg_key_len; /* in bits */
// unsigned int alg_trunc_len; /* in bits */
// char alg_key[0];
// };
type XfrmAlgoAuth struct {
AlgName [64]byte
AlgKeyLen uint32
AlgTruncLen uint32
AlgKey []byte
}
func (msg *XfrmAlgoAuth) Len() int {
return SizeofXfrmAlgoAuth + int(msg.AlgKeyLen/8)
}
func DeserializeXfrmAlgoAuth(b []byte) *XfrmAlgoAuth {
ret := XfrmAlgoAuth{}
copy(ret.AlgName[:], b[0:64])
ret.AlgKeyLen = *(*uint32)(unsafe.Pointer(&b[64]))
ret.AlgTruncLen = *(*uint32)(unsafe.Pointer(&b[68]))
ret.AlgKey = b[72:ret.Len()]
return &ret
}
func (msg *XfrmAlgoAuth) Serialize() []byte {
b := make([]byte, msg.Len())
copy(b[0:64], msg.AlgName[:])
copy(b[64:68], (*(*[4]byte)(unsafe.Pointer(&msg.AlgKeyLen)))[:])
copy(b[68:72], (*(*[4]byte)(unsafe.Pointer(&msg.AlgTruncLen)))[:])
copy(b[72:msg.Len()], msg.AlgKey[:])
return b
}
// struct xfrm_algo_aead {
// char alg_name[64];
// unsigned int alg_key_len; /* in bits */
// unsigned int alg_icv_len; /* in bits */
// char alg_key[0];
// }
type XfrmAlgoAEAD struct {
AlgName [64]byte
AlgKeyLen uint32
AlgICVLen uint32
AlgKey []byte
}
func (msg *XfrmAlgoAEAD) Len() int {
return SizeofXfrmAlgoAEAD + int(msg.AlgKeyLen/8)
}
func DeserializeXfrmAlgoAEAD(b []byte) *XfrmAlgoAEAD {
ret := XfrmAlgoAEAD{}
copy(ret.AlgName[:], b[0:64])
ret.AlgKeyLen = *(*uint32)(unsafe.Pointer(&b[64]))
ret.AlgICVLen = *(*uint32)(unsafe.Pointer(&b[68]))
ret.AlgKey = b[72:ret.Len()]
return &ret
}
func (msg *XfrmAlgoAEAD) Serialize() []byte {
b := make([]byte, msg.Len())
copy(b[0:64], msg.AlgName[:])
copy(b[64:68], (*(*[4]byte)(unsafe.Pointer(&msg.AlgKeyLen)))[:])
copy(b[68:72], (*(*[4]byte)(unsafe.Pointer(&msg.AlgICVLen)))[:])
copy(b[72:msg.Len()], msg.AlgKey[:])
return b
}
// struct xfrm_encap_tmpl {
// __u16 encap_type;
// __be16 encap_sport;
// __be16 encap_dport;
// xfrm_address_t encap_oa;
// };
type XfrmEncapTmpl struct {
EncapType uint16
EncapSport uint16 // big endian
EncapDport uint16 // big endian
Pad [2]byte
EncapOa XfrmAddress
}
func (msg *XfrmEncapTmpl) Len() int {
return SizeofXfrmEncapTmpl
}
func DeserializeXfrmEncapTmpl(b []byte) *XfrmEncapTmpl {
return (*XfrmEncapTmpl)(unsafe.Pointer(&b[0:SizeofXfrmEncapTmpl][0]))
}
func (msg *XfrmEncapTmpl) Serialize() []byte {
return (*(*[SizeofXfrmEncapTmpl]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_usersa_flush {
// __u8 proto;
// };
type XfrmUsersaFlush struct {
Proto uint8
}
func (msg *XfrmUsersaFlush) Len() int {
return SizeofXfrmUsersaFlush
}
func DeserializeXfrmUsersaFlush(b []byte) *XfrmUsersaFlush {
return (*XfrmUsersaFlush)(unsafe.Pointer(&b[0:SizeofXfrmUsersaFlush][0]))
}
func (msg *XfrmUsersaFlush) Serialize() []byte {
return (*(*[SizeofXfrmUsersaFlush]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_replay_state_esn {
// unsigned int bmp_len;
// __u32 oseq;
// __u32 seq;
// __u32 oseq_hi;
// __u32 seq_hi;
// __u32 replay_window;
// __u32 bmp[0];
// };
type XfrmReplayStateEsn struct {
BmpLen uint32
OSeq uint32
Seq uint32
OSeqHi uint32
SeqHi uint32
ReplayWindow uint32
Bmp []uint32
}
func (msg *XfrmReplayStateEsn) Serialize() []byte {
// We deliberately do not pass Bmp, as it gets set by the kernel.
return (*(*[SizeofXfrmReplayStateEsn]byte)(unsafe.Pointer(msg)))[:]
}

32
vendor/github.com/vishvananda/netlink/order.go generated vendored Normal file
View File

@ -0,0 +1,32 @@
package netlink
import (
"encoding/binary"
"github.com/vishvananda/netlink/nl"
)
var (
native = nl.NativeEndian()
networkOrder = binary.BigEndian
)
func htonl(val uint32) []byte {
bytes := make([]byte, 4)
binary.BigEndian.PutUint32(bytes, val)
return bytes
}
func htons(val uint16) []byte {
bytes := make([]byte, 2)
binary.BigEndian.PutUint16(bytes, val)
return bytes
}
func ntohl(buf []byte) uint32 {
return binary.BigEndian.Uint32(buf)
}
func ntohs(buf []byte) uint16 {
return binary.BigEndian.Uint16(buf)
}

58
vendor/github.com/vishvananda/netlink/protinfo.go generated vendored Normal file
View File

@ -0,0 +1,58 @@
package netlink
import (
"strings"
)
// Protinfo represents bridge flags from netlink.
type Protinfo struct {
Hairpin bool
Guard bool
FastLeave bool
RootBlock bool
Learning bool
Flood bool
ProxyArp bool
ProxyArpWiFi bool
}
// String returns a list of enabled flags
func (prot *Protinfo) String() string {
var boolStrings []string
if prot.Hairpin {
boolStrings = append(boolStrings, "Hairpin")
}
if prot.Guard {
boolStrings = append(boolStrings, "Guard")
}
if prot.FastLeave {
boolStrings = append(boolStrings, "FastLeave")
}
if prot.RootBlock {
boolStrings = append(boolStrings, "RootBlock")
}
if prot.Learning {
boolStrings = append(boolStrings, "Learning")
}
if prot.Flood {
boolStrings = append(boolStrings, "Flood")
}
if prot.ProxyArp {
boolStrings = append(boolStrings, "ProxyArp")
}
if prot.ProxyArpWiFi {
boolStrings = append(boolStrings, "ProxyArpWiFi")
}
return strings.Join(boolStrings, " ")
}
func boolToByte(x bool) []byte {
if x {
return []byte{1}
}
return []byte{0}
}
func byteToBool(x byte) bool {
return uint8(x) != 0
}

View File

@ -0,0 +1,75 @@
package netlink
import (
"fmt"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
func LinkGetProtinfo(link Link) (Protinfo, error) {
return pkgHandle.LinkGetProtinfo(link)
}
func (h *Handle) LinkGetProtinfo(link Link) (Protinfo, error) {
base := link.Attrs()
h.ensureIndex(base)
var pi Protinfo
req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(unix.AF_BRIDGE)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, 0)
if err != nil {
return pi, err
}
for _, m := range msgs {
ans := nl.DeserializeIfInfomsg(m)
if int(ans.Index) != base.Index {
continue
}
attrs, err := nl.ParseRouteAttr(m[ans.Len():])
if err != nil {
return pi, err
}
for _, attr := range attrs {
if attr.Attr.Type != unix.IFLA_PROTINFO|unix.NLA_F_NESTED {
continue
}
infos, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return pi, err
}
pi = *parseProtinfo(infos)
return pi, nil
}
}
return pi, fmt.Errorf("Device with index %d not found", base.Index)
}
func parseProtinfo(infos []syscall.NetlinkRouteAttr) *Protinfo {
var pi Protinfo
for _, info := range infos {
switch info.Attr.Type {
case nl.IFLA_BRPORT_MODE:
pi.Hairpin = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_GUARD:
pi.Guard = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_FAST_LEAVE:
pi.FastLeave = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_PROTECT:
pi.RootBlock = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_LEARNING:
pi.Learning = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_UNICAST_FLOOD:
pi.Flood = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_PROXYARP:
pi.ProxyArp = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_PROXYARP_WIFI:
pi.ProxyArpWiFi = byteToBool(info.Value[0])
}
}
return &pi
}

292
vendor/github.com/vishvananda/netlink/qdisc.go generated vendored Normal file
View File

@ -0,0 +1,292 @@
package netlink
import (
"fmt"
"math"
)
const (
HANDLE_NONE = 0
HANDLE_INGRESS = 0xFFFFFFF1
HANDLE_CLSACT = HANDLE_INGRESS
HANDLE_ROOT = 0xFFFFFFFF
PRIORITY_MAP_LEN = 16
)
const (
HANDLE_MIN_INGRESS = 0xFFFFFFF2
HANDLE_MIN_EGRESS = 0xFFFFFFF3
)
type Qdisc interface {
Attrs() *QdiscAttrs
Type() string
}
// QdiscAttrs represents a netlink qdisc. A qdisc is associated with a link,
// has a handle, a parent and a refcnt. The root qdisc of a device should
// have parent == HANDLE_ROOT.
type QdiscAttrs struct {
LinkIndex int
Handle uint32
Parent uint32
Refcnt uint32 // read only
}
func (q QdiscAttrs) String() string {
return fmt.Sprintf("{LinkIndex: %d, Handle: %s, Parent: %s, Refcnt: %d}", q.LinkIndex, HandleStr(q.Handle), HandleStr(q.Parent), q.Refcnt)
}
func MakeHandle(major, minor uint16) uint32 {
return (uint32(major) << 16) | uint32(minor)
}
func MajorMinor(handle uint32) (uint16, uint16) {
return uint16((handle & 0xFFFF0000) >> 16), uint16(handle & 0x0000FFFFF)
}
func HandleStr(handle uint32) string {
switch handle {
case HANDLE_NONE:
return "none"
case HANDLE_INGRESS:
return "ingress"
case HANDLE_ROOT:
return "root"
default:
major, minor := MajorMinor(handle)
return fmt.Sprintf("%x:%x", major, minor)
}
}
func Percentage2u32(percentage float32) uint32 {
// FIXME this is most likely not the best way to convert from % to uint32
if percentage == 100 {
return math.MaxUint32
}
return uint32(math.MaxUint32 * (percentage / 100))
}
// PfifoFast is the default qdisc created by the kernel if one has not
// been defined for the interface
type PfifoFast struct {
QdiscAttrs
Bands uint8
PriorityMap [PRIORITY_MAP_LEN]uint8
}
func (qdisc *PfifoFast) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *PfifoFast) Type() string {
return "pfifo_fast"
}
// Prio is a basic qdisc that works just like PfifoFast
type Prio struct {
QdiscAttrs
Bands uint8
PriorityMap [PRIORITY_MAP_LEN]uint8
}
func NewPrio(attrs QdiscAttrs) *Prio {
return &Prio{
QdiscAttrs: attrs,
Bands: 3,
PriorityMap: [PRIORITY_MAP_LEN]uint8{1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1},
}
}
func (qdisc *Prio) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *Prio) Type() string {
return "prio"
}
// Htb is a classful qdisc that rate limits based on tokens
type Htb struct {
QdiscAttrs
Version uint32
Rate2Quantum uint32
Defcls uint32
Debug uint32
DirectPkts uint32
}
func NewHtb(attrs QdiscAttrs) *Htb {
return &Htb{
QdiscAttrs: attrs,
Version: 3,
Defcls: 0,
Rate2Quantum: 10,
Debug: 0,
DirectPkts: 0,
}
}
func (qdisc *Htb) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *Htb) Type() string {
return "htb"
}
// Netem is a classless qdisc that rate limits based on tokens
type NetemQdiscAttrs struct {
Latency uint32 // in us
DelayCorr float32 // in %
Limit uint32
Loss float32 // in %
LossCorr float32 // in %
Gap uint32
Duplicate float32 // in %
DuplicateCorr float32 // in %
Jitter uint32 // in us
ReorderProb float32 // in %
ReorderCorr float32 // in %
CorruptProb float32 // in %
CorruptCorr float32 // in %
}
func (q NetemQdiscAttrs) String() string {
return fmt.Sprintf(
"{Latency: %d, Limit: %d, Loss: %f, Gap: %d, Duplicate: %f, Jitter: %d}",
q.Latency, q.Limit, q.Loss, q.Gap, q.Duplicate, q.Jitter,
)
}
type Netem struct {
QdiscAttrs
Latency uint32
DelayCorr uint32
Limit uint32
Loss uint32
LossCorr uint32
Gap uint32
Duplicate uint32
DuplicateCorr uint32
Jitter uint32
ReorderProb uint32
ReorderCorr uint32
CorruptProb uint32
CorruptCorr uint32
}
func (qdisc *Netem) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *Netem) Type() string {
return "netem"
}
// Tbf is a classless qdisc that rate limits based on tokens
type Tbf struct {
QdiscAttrs
Rate uint64
Limit uint32
Buffer uint32
Peakrate uint64
Minburst uint32
// TODO: handle other settings
}
func (qdisc *Tbf) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *Tbf) Type() string {
return "tbf"
}
// Ingress is a qdisc for adding ingress filters
type Ingress struct {
QdiscAttrs
}
func (qdisc *Ingress) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *Ingress) Type() string {
return "ingress"
}
// GenericQdisc qdiscs represent types that are not currently understood
// by this netlink library.
type GenericQdisc struct {
QdiscAttrs
QdiscType string
}
func (qdisc *GenericQdisc) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *GenericQdisc) Type() string {
return qdisc.QdiscType
}
// Fq is a classless packet scheduler meant to be mostly used for locally generated traffic.
type Fq struct {
QdiscAttrs
PacketLimit uint32
FlowPacketLimit uint32
// In bytes
Quantum uint32
InitialQuantum uint32
// called RateEnable under the hood
Pacing uint32
FlowDefaultRate uint32
FlowMaxRate uint32
// called BucketsLog under the hood
Buckets uint32
FlowRefillDelay uint32
LowRateThreshold uint32
}
func NewFq(attrs QdiscAttrs) *Fq {
return &Fq{
QdiscAttrs: attrs,
Pacing: 1,
}
}
func (qdisc *Fq) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *Fq) Type() string {
return "fq"
}
// FQ_Codel (Fair Queuing Controlled Delay) is queuing discipline that combines Fair Queuing with the CoDel AQM scheme.
type FqCodel struct {
QdiscAttrs
Target uint32
Limit uint32
Interval uint32
ECN uint32
Flows uint32
Quantum uint32
// There are some more attributes here, but support for them seems not ubiquitous
}
func NewFqCodel(attrs QdiscAttrs) *FqCodel {
return &FqCodel{
QdiscAttrs: attrs,
ECN: 1,
}
}
func (qdisc *FqCodel) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *FqCodel) Type() string {
return "fq_codel"
}

647
vendor/github.com/vishvananda/netlink/qdisc_linux.go generated vendored Normal file
View File

@ -0,0 +1,647 @@
package netlink
import (
"fmt"
"io/ioutil"
"strconv"
"strings"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// NOTE function is here because it uses other linux functions
func NewNetem(attrs QdiscAttrs, nattrs NetemQdiscAttrs) *Netem {
var limit uint32 = 1000
var lossCorr, delayCorr, duplicateCorr uint32
var reorderProb, reorderCorr uint32
var corruptProb, corruptCorr uint32
latency := nattrs.Latency
loss := Percentage2u32(nattrs.Loss)
gap := nattrs.Gap
duplicate := Percentage2u32(nattrs.Duplicate)
jitter := nattrs.Jitter
// Correlation
if latency > 0 && jitter > 0 {
delayCorr = Percentage2u32(nattrs.DelayCorr)
}
if loss > 0 {
lossCorr = Percentage2u32(nattrs.LossCorr)
}
if duplicate > 0 {
duplicateCorr = Percentage2u32(nattrs.DuplicateCorr)
}
// FIXME should validate values(like loss/duplicate are percentages...)
latency = time2Tick(latency)
if nattrs.Limit != 0 {
limit = nattrs.Limit
}
// Jitter is only value if latency is > 0
if latency > 0 {
jitter = time2Tick(jitter)
}
reorderProb = Percentage2u32(nattrs.ReorderProb)
reorderCorr = Percentage2u32(nattrs.ReorderCorr)
if reorderProb > 0 {
// ERROR if lantency == 0
if gap == 0 {
gap = 1
}
}
corruptProb = Percentage2u32(nattrs.CorruptProb)
corruptCorr = Percentage2u32(nattrs.CorruptCorr)
return &Netem{
QdiscAttrs: attrs,
Latency: latency,
DelayCorr: delayCorr,
Limit: limit,
Loss: loss,
LossCorr: lossCorr,
Gap: gap,
Duplicate: duplicate,
DuplicateCorr: duplicateCorr,
Jitter: jitter,
ReorderProb: reorderProb,
ReorderCorr: reorderCorr,
CorruptProb: corruptProb,
CorruptCorr: corruptCorr,
}
}
// QdiscDel will delete a qdisc from the system.
// Equivalent to: `tc qdisc del $qdisc`
func QdiscDel(qdisc Qdisc) error {
return pkgHandle.QdiscDel(qdisc)
}
// QdiscDel will delete a qdisc from the system.
// Equivalent to: `tc qdisc del $qdisc`
func (h *Handle) QdiscDel(qdisc Qdisc) error {
return h.qdiscModify(unix.RTM_DELQDISC, 0, qdisc)
}
// QdiscChange will change a qdisc in place
// Equivalent to: `tc qdisc change $qdisc`
// The parent and handle MUST NOT be changed.
func QdiscChange(qdisc Qdisc) error {
return pkgHandle.QdiscChange(qdisc)
}
// QdiscChange will change a qdisc in place
// Equivalent to: `tc qdisc change $qdisc`
// The parent and handle MUST NOT be changed.
func (h *Handle) QdiscChange(qdisc Qdisc) error {
return h.qdiscModify(unix.RTM_NEWQDISC, 0, qdisc)
}
// QdiscReplace will replace a qdisc to the system.
// Equivalent to: `tc qdisc replace $qdisc`
// The handle MUST change.
func QdiscReplace(qdisc Qdisc) error {
return pkgHandle.QdiscReplace(qdisc)
}
// QdiscReplace will replace a qdisc to the system.
// Equivalent to: `tc qdisc replace $qdisc`
// The handle MUST change.
func (h *Handle) QdiscReplace(qdisc Qdisc) error {
return h.qdiscModify(
unix.RTM_NEWQDISC,
unix.NLM_F_CREATE|unix.NLM_F_REPLACE,
qdisc)
}
// QdiscAdd will add a qdisc to the system.
// Equivalent to: `tc qdisc add $qdisc`
func QdiscAdd(qdisc Qdisc) error {
return pkgHandle.QdiscAdd(qdisc)
}
// QdiscAdd will add a qdisc to the system.
// Equivalent to: `tc qdisc add $qdisc`
func (h *Handle) QdiscAdd(qdisc Qdisc) error {
return h.qdiscModify(
unix.RTM_NEWQDISC,
unix.NLM_F_CREATE|unix.NLM_F_EXCL,
qdisc)
}
func (h *Handle) qdiscModify(cmd, flags int, qdisc Qdisc) error {
req := h.newNetlinkRequest(cmd, flags|unix.NLM_F_ACK)
base := qdisc.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Ifindex: int32(base.LinkIndex),
Handle: base.Handle,
Parent: base.Parent,
}
req.AddData(msg)
// When deleting don't bother building the rest of the netlink payload
if cmd != unix.RTM_DELQDISC {
if err := qdiscPayload(req, qdisc); err != nil {
return err
}
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func qdiscPayload(req *nl.NetlinkRequest, qdisc Qdisc) error {
req.AddData(nl.NewRtAttr(nl.TCA_KIND, nl.ZeroTerminated(qdisc.Type())))
options := nl.NewRtAttr(nl.TCA_OPTIONS, nil)
switch qdisc := qdisc.(type) {
case *Prio:
tcmap := nl.TcPrioMap{
Bands: int32(qdisc.Bands),
Priomap: qdisc.PriorityMap,
}
options = nl.NewRtAttr(nl.TCA_OPTIONS, tcmap.Serialize())
case *Tbf:
opt := nl.TcTbfQopt{}
opt.Rate.Rate = uint32(qdisc.Rate)
opt.Peakrate.Rate = uint32(qdisc.Peakrate)
opt.Limit = qdisc.Limit
opt.Buffer = qdisc.Buffer
nl.NewRtAttrChild(options, nl.TCA_TBF_PARMS, opt.Serialize())
if qdisc.Rate >= uint64(1<<32) {
nl.NewRtAttrChild(options, nl.TCA_TBF_RATE64, nl.Uint64Attr(qdisc.Rate))
}
if qdisc.Peakrate >= uint64(1<<32) {
nl.NewRtAttrChild(options, nl.TCA_TBF_PRATE64, nl.Uint64Attr(qdisc.Peakrate))
}
if qdisc.Peakrate > 0 {
nl.NewRtAttrChild(options, nl.TCA_TBF_PBURST, nl.Uint32Attr(qdisc.Minburst))
}
case *Htb:
opt := nl.TcHtbGlob{}
opt.Version = qdisc.Version
opt.Rate2Quantum = qdisc.Rate2Quantum
opt.Defcls = qdisc.Defcls
// TODO: Handle Debug properly. For now default to 0
opt.Debug = qdisc.Debug
opt.DirectPkts = qdisc.DirectPkts
nl.NewRtAttrChild(options, nl.TCA_HTB_INIT, opt.Serialize())
// nl.NewRtAttrChild(options, nl.TCA_HTB_DIRECT_QLEN, opt.Serialize())
case *Netem:
opt := nl.TcNetemQopt{}
opt.Latency = qdisc.Latency
opt.Limit = qdisc.Limit
opt.Loss = qdisc.Loss
opt.Gap = qdisc.Gap
opt.Duplicate = qdisc.Duplicate
opt.Jitter = qdisc.Jitter
options = nl.NewRtAttr(nl.TCA_OPTIONS, opt.Serialize())
// Correlation
corr := nl.TcNetemCorr{}
corr.DelayCorr = qdisc.DelayCorr
corr.LossCorr = qdisc.LossCorr
corr.DupCorr = qdisc.DuplicateCorr
if corr.DelayCorr > 0 || corr.LossCorr > 0 || corr.DupCorr > 0 {
nl.NewRtAttrChild(options, nl.TCA_NETEM_CORR, corr.Serialize())
}
// Corruption
corruption := nl.TcNetemCorrupt{}
corruption.Probability = qdisc.CorruptProb
corruption.Correlation = qdisc.CorruptCorr
if corruption.Probability > 0 {
nl.NewRtAttrChild(options, nl.TCA_NETEM_CORRUPT, corruption.Serialize())
}
// Reorder
reorder := nl.TcNetemReorder{}
reorder.Probability = qdisc.ReorderProb
reorder.Correlation = qdisc.ReorderCorr
if reorder.Probability > 0 {
nl.NewRtAttrChild(options, nl.TCA_NETEM_REORDER, reorder.Serialize())
}
case *Ingress:
// ingress filters must use the proper handle
if qdisc.Attrs().Parent != HANDLE_INGRESS {
return fmt.Errorf("Ingress filters must set Parent to HANDLE_INGRESS")
}
case *FqCodel:
nl.NewRtAttrChild(options, nl.TCA_FQ_CODEL_ECN, nl.Uint32Attr((uint32(qdisc.ECN))))
if qdisc.Limit > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_CODEL_LIMIT, nl.Uint32Attr((uint32(qdisc.Limit))))
}
if qdisc.Interval > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_CODEL_INTERVAL, nl.Uint32Attr((uint32(qdisc.Interval))))
}
if qdisc.Flows > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_CODEL_FLOWS, nl.Uint32Attr((uint32(qdisc.Flows))))
}
if qdisc.Quantum > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_CODEL_QUANTUM, nl.Uint32Attr((uint32(qdisc.Quantum))))
}
case *Fq:
nl.NewRtAttrChild(options, nl.TCA_FQ_RATE_ENABLE, nl.Uint32Attr((uint32(qdisc.Pacing))))
if qdisc.Buckets > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_BUCKETS_LOG, nl.Uint32Attr((uint32(qdisc.Buckets))))
}
if qdisc.LowRateThreshold > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_LOW_RATE_THRESHOLD, nl.Uint32Attr((uint32(qdisc.LowRateThreshold))))
}
if qdisc.Quantum > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_QUANTUM, nl.Uint32Attr((uint32(qdisc.Quantum))))
}
if qdisc.InitialQuantum > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_INITIAL_QUANTUM, nl.Uint32Attr((uint32(qdisc.InitialQuantum))))
}
if qdisc.FlowRefillDelay > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_FLOW_REFILL_DELAY, nl.Uint32Attr((uint32(qdisc.FlowRefillDelay))))
}
if qdisc.FlowPacketLimit > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_FLOW_PLIMIT, nl.Uint32Attr((uint32(qdisc.FlowPacketLimit))))
}
if qdisc.FlowMaxRate > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_FLOW_MAX_RATE, nl.Uint32Attr((uint32(qdisc.FlowMaxRate))))
}
if qdisc.FlowDefaultRate > 0 {
nl.NewRtAttrChild(options, nl.TCA_FQ_FLOW_DEFAULT_RATE, nl.Uint32Attr((uint32(qdisc.FlowDefaultRate))))
}
}
req.AddData(options)
return nil
}
// QdiscList gets a list of qdiscs in the system.
// Equivalent to: `tc qdisc show`.
// The list can be filtered by link.
func QdiscList(link Link) ([]Qdisc, error) {
return pkgHandle.QdiscList(link)
}
// QdiscList gets a list of qdiscs in the system.
// Equivalent to: `tc qdisc show`.
// The list can be filtered by link.
func (h *Handle) QdiscList(link Link) ([]Qdisc, error) {
req := h.newNetlinkRequest(unix.RTM_GETQDISC, unix.NLM_F_DUMP)
index := int32(0)
if link != nil {
base := link.Attrs()
h.ensureIndex(base)
index = int32(base.Index)
}
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Ifindex: index,
}
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWQDISC)
if err != nil {
return nil, err
}
var res []Qdisc
for _, m := range msgs {
msg := nl.DeserializeTcMsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
// skip qdiscs from other interfaces
if link != nil && msg.Ifindex != index {
continue
}
base := QdiscAttrs{
LinkIndex: int(msg.Ifindex),
Handle: msg.Handle,
Parent: msg.Parent,
Refcnt: msg.Info,
}
var qdisc Qdisc
qdiscType := ""
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.TCA_KIND:
qdiscType = string(attr.Value[:len(attr.Value)-1])
switch qdiscType {
case "pfifo_fast":
qdisc = &PfifoFast{}
case "prio":
qdisc = &Prio{}
case "tbf":
qdisc = &Tbf{}
case "ingress":
qdisc = &Ingress{}
case "htb":
qdisc = &Htb{}
case "fq":
qdisc = &Fq{}
case "fq_codel":
qdisc = &FqCodel{}
case "netem":
qdisc = &Netem{}
default:
qdisc = &GenericQdisc{QdiscType: qdiscType}
}
case nl.TCA_OPTIONS:
switch qdiscType {
case "pfifo_fast":
// pfifo returns TcPrioMap directly without wrapping it in rtattr
if err := parsePfifoFastData(qdisc, attr.Value); err != nil {
return nil, err
}
case "prio":
// prio returns TcPrioMap directly without wrapping it in rtattr
if err := parsePrioData(qdisc, attr.Value); err != nil {
return nil, err
}
case "tbf":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseTbfData(qdisc, data); err != nil {
return nil, err
}
case "htb":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseHtbData(qdisc, data); err != nil {
return nil, err
}
case "fq":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseFqData(qdisc, data); err != nil {
return nil, err
}
case "fq_codel":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseFqCodelData(qdisc, data); err != nil {
return nil, err
}
case "netem":
if err := parseNetemData(qdisc, attr.Value); err != nil {
return nil, err
}
// no options for ingress
}
}
}
*qdisc.Attrs() = base
res = append(res, qdisc)
}
return res, nil
}
func parsePfifoFastData(qdisc Qdisc, value []byte) error {
pfifo := qdisc.(*PfifoFast)
tcmap := nl.DeserializeTcPrioMap(value)
pfifo.PriorityMap = tcmap.Priomap
pfifo.Bands = uint8(tcmap.Bands)
return nil
}
func parsePrioData(qdisc Qdisc, value []byte) error {
prio := qdisc.(*Prio)
tcmap := nl.DeserializeTcPrioMap(value)
prio.PriorityMap = tcmap.Priomap
prio.Bands = uint8(tcmap.Bands)
return nil
}
func parseHtbData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
native = nl.NativeEndian()
htb := qdisc.(*Htb)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_HTB_INIT:
opt := nl.DeserializeTcHtbGlob(datum.Value)
htb.Version = opt.Version
htb.Rate2Quantum = opt.Rate2Quantum
htb.Defcls = opt.Defcls
htb.Debug = opt.Debug
htb.DirectPkts = opt.DirectPkts
case nl.TCA_HTB_DIRECT_QLEN:
// TODO
//htb.DirectQlen = native.uint32(datum.Value)
}
}
return nil
}
func parseFqCodelData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
native = nl.NativeEndian()
fqCodel := qdisc.(*FqCodel)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_FQ_CODEL_TARGET:
fqCodel.Target = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_LIMIT:
fqCodel.Limit = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_INTERVAL:
fqCodel.Interval = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_ECN:
fqCodel.ECN = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_FLOWS:
fqCodel.Flows = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_QUANTUM:
fqCodel.Quantum = native.Uint32(datum.Value)
}
}
return nil
}
func parseFqData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
native = nl.NativeEndian()
fq := qdisc.(*Fq)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_FQ_BUCKETS_LOG:
fq.Buckets = native.Uint32(datum.Value)
case nl.TCA_FQ_LOW_RATE_THRESHOLD:
fq.LowRateThreshold = native.Uint32(datum.Value)
case nl.TCA_FQ_QUANTUM:
fq.Quantum = native.Uint32(datum.Value)
case nl.TCA_FQ_RATE_ENABLE:
fq.Pacing = native.Uint32(datum.Value)
case nl.TCA_FQ_INITIAL_QUANTUM:
fq.InitialQuantum = native.Uint32(datum.Value)
case nl.TCA_FQ_ORPHAN_MASK:
// TODO
case nl.TCA_FQ_FLOW_REFILL_DELAY:
fq.FlowRefillDelay = native.Uint32(datum.Value)
case nl.TCA_FQ_FLOW_PLIMIT:
fq.FlowPacketLimit = native.Uint32(datum.Value)
case nl.TCA_FQ_PLIMIT:
fq.PacketLimit = native.Uint32(datum.Value)
case nl.TCA_FQ_FLOW_MAX_RATE:
fq.FlowMaxRate = native.Uint32(datum.Value)
case nl.TCA_FQ_FLOW_DEFAULT_RATE:
fq.FlowDefaultRate = native.Uint32(datum.Value)
}
}
return nil
}
func parseNetemData(qdisc Qdisc, value []byte) error {
netem := qdisc.(*Netem)
opt := nl.DeserializeTcNetemQopt(value)
netem.Latency = opt.Latency
netem.Limit = opt.Limit
netem.Loss = opt.Loss
netem.Gap = opt.Gap
netem.Duplicate = opt.Duplicate
netem.Jitter = opt.Jitter
data, err := nl.ParseRouteAttr(value[nl.SizeofTcNetemQopt:])
if err != nil {
return err
}
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_NETEM_CORR:
opt := nl.DeserializeTcNetemCorr(datum.Value)
netem.DelayCorr = opt.DelayCorr
netem.LossCorr = opt.LossCorr
netem.DuplicateCorr = opt.DupCorr
case nl.TCA_NETEM_CORRUPT:
opt := nl.DeserializeTcNetemCorrupt(datum.Value)
netem.CorruptProb = opt.Probability
netem.CorruptCorr = opt.Correlation
case nl.TCA_NETEM_REORDER:
opt := nl.DeserializeTcNetemReorder(datum.Value)
netem.ReorderProb = opt.Probability
netem.ReorderCorr = opt.Correlation
}
}
return nil
}
func parseTbfData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
native = nl.NativeEndian()
tbf := qdisc.(*Tbf)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_TBF_PARMS:
opt := nl.DeserializeTcTbfQopt(datum.Value)
tbf.Rate = uint64(opt.Rate.Rate)
tbf.Peakrate = uint64(opt.Peakrate.Rate)
tbf.Limit = opt.Limit
tbf.Buffer = opt.Buffer
case nl.TCA_TBF_RATE64:
tbf.Rate = native.Uint64(datum.Value[0:8])
case nl.TCA_TBF_PRATE64:
tbf.Peakrate = native.Uint64(datum.Value[0:8])
case nl.TCA_TBF_PBURST:
tbf.Minburst = native.Uint32(datum.Value[0:4])
}
}
return nil
}
const (
TIME_UNITS_PER_SEC = 1000000
)
var (
tickInUsec float64
clockFactor float64
hz float64
)
func initClock() {
data, err := ioutil.ReadFile("/proc/net/psched")
if err != nil {
return
}
parts := strings.Split(strings.TrimSpace(string(data)), " ")
if len(parts) < 3 {
return
}
var vals [3]uint64
for i := range vals {
val, err := strconv.ParseUint(parts[i], 16, 32)
if err != nil {
return
}
vals[i] = val
}
// compatibility
if vals[2] == 1000000000 {
vals[0] = vals[1]
}
clockFactor = float64(vals[2]) / TIME_UNITS_PER_SEC
tickInUsec = float64(vals[0]) / float64(vals[1]) * clockFactor
hz = float64(vals[0])
}
func TickInUsec() float64 {
if tickInUsec == 0.0 {
initClock()
}
return tickInUsec
}
func ClockFactor() float64 {
if clockFactor == 0.0 {
initClock()
}
return clockFactor
}
func Hz() float64 {
if hz == 0.0 {
initClock()
}
return hz
}
func time2Tick(time uint32) uint32 {
return uint32(float64(time) * TickInUsec())
}
func tick2Time(tick uint32) uint32 {
return uint32(float64(tick) / TickInUsec())
}
func time2Ktime(time uint32) uint32 {
return uint32(float64(time) * ClockFactor())
}
func ktime2Time(ktime uint32) uint32 {
return uint32(float64(ktime) / ClockFactor())
}
func burst(rate uint64, buffer uint32) uint32 {
return uint32(float64(rate) * float64(tick2Time(buffer)) / TIME_UNITS_PER_SEC)
}
func latency(rate uint64, limit, buffer uint32) float64 {
return TIME_UNITS_PER_SEC*(float64(limit)/float64(rate)) - float64(tick2Time(buffer))
}
func Xmittime(rate uint64, size uint32) float64 {
return TickInUsec() * TIME_UNITS_PER_SEC * (float64(size) / float64(rate))
}

178
vendor/github.com/vishvananda/netlink/route.go generated vendored Normal file
View File

@ -0,0 +1,178 @@
package netlink
import (
"fmt"
"net"
"strings"
)
// Scope is an enum representing a route scope.
type Scope uint8
type NextHopFlag int
type Destination interface {
Family() int
Decode([]byte) error
Encode() ([]byte, error)
String() string
Equal(Destination) bool
}
type Encap interface {
Type() int
Decode([]byte) error
Encode() ([]byte, error)
String() string
Equal(Encap) bool
}
// Route represents a netlink route.
type Route struct {
LinkIndex int
ILinkIndex int
Scope Scope
Dst *net.IPNet
Src net.IP
Gw net.IP
MultiPath []*NexthopInfo
Protocol int
Priority int
Table int
Type int
Tos int
Flags int
MPLSDst *int
NewDst Destination
Encap Encap
MTU int
AdvMSS int
}
func (r Route) String() string {
elems := []string{}
if len(r.MultiPath) == 0 {
elems = append(elems, fmt.Sprintf("Ifindex: %d", r.LinkIndex))
}
if r.MPLSDst != nil {
elems = append(elems, fmt.Sprintf("Dst: %d", r.MPLSDst))
} else {
elems = append(elems, fmt.Sprintf("Dst: %s", r.Dst))
}
if r.NewDst != nil {
elems = append(elems, fmt.Sprintf("NewDst: %s", r.NewDst))
}
if r.Encap != nil {
elems = append(elems, fmt.Sprintf("Encap: %s", r.Encap))
}
elems = append(elems, fmt.Sprintf("Src: %s", r.Src))
if len(r.MultiPath) > 0 {
elems = append(elems, fmt.Sprintf("Gw: %s", r.MultiPath))
} else {
elems = append(elems, fmt.Sprintf("Gw: %s", r.Gw))
}
elems = append(elems, fmt.Sprintf("Flags: %s", r.ListFlags()))
elems = append(elems, fmt.Sprintf("Table: %d", r.Table))
return fmt.Sprintf("{%s}", strings.Join(elems, " "))
}
func (r Route) Equal(x Route) bool {
return r.LinkIndex == x.LinkIndex &&
r.ILinkIndex == x.ILinkIndex &&
r.Scope == x.Scope &&
ipNetEqual(r.Dst, x.Dst) &&
r.Src.Equal(x.Src) &&
r.Gw.Equal(x.Gw) &&
nexthopInfoSlice(r.MultiPath).Equal(x.MultiPath) &&
r.Protocol == x.Protocol &&
r.Priority == x.Priority &&
r.Table == x.Table &&
r.Type == x.Type &&
r.Tos == x.Tos &&
r.Flags == x.Flags &&
(r.MPLSDst == x.MPLSDst || (r.MPLSDst != nil && x.MPLSDst != nil && *r.MPLSDst == *x.MPLSDst)) &&
(r.NewDst == x.NewDst || (r.NewDst != nil && r.NewDst.Equal(x.NewDst))) &&
(r.Encap == x.Encap || (r.Encap != nil && r.Encap.Equal(x.Encap)))
}
func (r *Route) SetFlag(flag NextHopFlag) {
r.Flags |= int(flag)
}
func (r *Route) ClearFlag(flag NextHopFlag) {
r.Flags &^= int(flag)
}
type flagString struct {
f NextHopFlag
s string
}
// RouteUpdate is sent when a route changes - type is RTM_NEWROUTE or RTM_DELROUTE
type RouteUpdate struct {
Type uint16
Route
}
type NexthopInfo struct {
LinkIndex int
Hops int
Gw net.IP
Flags int
NewDst Destination
Encap Encap
}
func (n *NexthopInfo) String() string {
elems := []string{}
elems = append(elems, fmt.Sprintf("Ifindex: %d", n.LinkIndex))
if n.NewDst != nil {
elems = append(elems, fmt.Sprintf("NewDst: %s", n.NewDst))
}
if n.Encap != nil {
elems = append(elems, fmt.Sprintf("Encap: %s", n.Encap))
}
elems = append(elems, fmt.Sprintf("Weight: %d", n.Hops+1))
elems = append(elems, fmt.Sprintf("Gw: %s", n.Gw))
elems = append(elems, fmt.Sprintf("Flags: %s", n.ListFlags()))
return fmt.Sprintf("{%s}", strings.Join(elems, " "))
}
func (n NexthopInfo) Equal(x NexthopInfo) bool {
return n.LinkIndex == x.LinkIndex &&
n.Hops == x.Hops &&
n.Gw.Equal(x.Gw) &&
n.Flags == x.Flags &&
(n.NewDst == x.NewDst || (n.NewDst != nil && n.NewDst.Equal(x.NewDst))) &&
(n.Encap == x.Encap || (n.Encap != nil && n.Encap.Equal(x.Encap)))
}
type nexthopInfoSlice []*NexthopInfo
func (n nexthopInfoSlice) Equal(x []*NexthopInfo) bool {
if len(n) != len(x) {
return false
}
for i := range n {
if n[i] == nil || x[i] == nil {
return false
}
if !n[i].Equal(*x[i]) {
return false
}
}
return true
}
// ipNetEqual returns true iff both IPNet are equal
func ipNetEqual(ipn1 *net.IPNet, ipn2 *net.IPNet) bool {
if ipn1 == ipn2 {
return true
}
if ipn1 == nil || ipn2 == nil {
return false
}
m1, _ := ipn1.Mask.Size()
m2, _ := ipn2.Mask.Size()
return m1 == m2 && ipn1.IP.Equal(ipn2.IP)
}

878
vendor/github.com/vishvananda/netlink/route_linux.go generated vendored Normal file
View File

@ -0,0 +1,878 @@
package netlink
import (
"fmt"
"net"
"strings"
"syscall"
"github.com/vishvananda/netlink/nl"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
// RtAttr is shared so it is in netlink_linux.go
const (
SCOPE_UNIVERSE Scope = unix.RT_SCOPE_UNIVERSE
SCOPE_SITE Scope = unix.RT_SCOPE_SITE
SCOPE_LINK Scope = unix.RT_SCOPE_LINK
SCOPE_HOST Scope = unix.RT_SCOPE_HOST
SCOPE_NOWHERE Scope = unix.RT_SCOPE_NOWHERE
)
const (
RT_FILTER_PROTOCOL uint64 = 1 << (1 + iota)
RT_FILTER_SCOPE
RT_FILTER_TYPE
RT_FILTER_TOS
RT_FILTER_IIF
RT_FILTER_OIF
RT_FILTER_DST
RT_FILTER_SRC
RT_FILTER_GW
RT_FILTER_TABLE
)
const (
FLAG_ONLINK NextHopFlag = unix.RTNH_F_ONLINK
FLAG_PERVASIVE NextHopFlag = unix.RTNH_F_PERVASIVE
)
var testFlags = []flagString{
{f: FLAG_ONLINK, s: "onlink"},
{f: FLAG_PERVASIVE, s: "pervasive"},
}
func listFlags(flag int) []string {
var flags []string
for _, tf := range testFlags {
if flag&int(tf.f) != 0 {
flags = append(flags, tf.s)
}
}
return flags
}
func (r *Route) ListFlags() []string {
return listFlags(r.Flags)
}
func (n *NexthopInfo) ListFlags() []string {
return listFlags(n.Flags)
}
type MPLSDestination struct {
Labels []int
}
func (d *MPLSDestination) Family() int {
return nl.FAMILY_MPLS
}
func (d *MPLSDestination) Decode(buf []byte) error {
d.Labels = nl.DecodeMPLSStack(buf)
return nil
}
func (d *MPLSDestination) Encode() ([]byte, error) {
return nl.EncodeMPLSStack(d.Labels...), nil
}
func (d *MPLSDestination) String() string {
s := make([]string, 0, len(d.Labels))
for _, l := range d.Labels {
s = append(s, fmt.Sprintf("%d", l))
}
return strings.Join(s, "/")
}
func (d *MPLSDestination) Equal(x Destination) bool {
o, ok := x.(*MPLSDestination)
if !ok {
return false
}
if d == nil && o == nil {
return true
}
if d == nil || o == nil {
return false
}
if d.Labels == nil && o.Labels == nil {
return true
}
if d.Labels == nil || o.Labels == nil {
return false
}
if len(d.Labels) != len(o.Labels) {
return false
}
for i := range d.Labels {
if d.Labels[i] != o.Labels[i] {
return false
}
}
return true
}
type MPLSEncap struct {
Labels []int
}
func (e *MPLSEncap) Type() int {
return nl.LWTUNNEL_ENCAP_MPLS
}
func (e *MPLSEncap) Decode(buf []byte) error {
if len(buf) < 4 {
return fmt.Errorf("lack of bytes")
}
native := nl.NativeEndian()
l := native.Uint16(buf)
if len(buf) < int(l) {
return fmt.Errorf("lack of bytes")
}
buf = buf[:l]
typ := native.Uint16(buf[2:])
if typ != nl.MPLS_IPTUNNEL_DST {
return fmt.Errorf("unknown MPLS Encap Type: %d", typ)
}
e.Labels = nl.DecodeMPLSStack(buf[4:])
return nil
}
func (e *MPLSEncap) Encode() ([]byte, error) {
s := nl.EncodeMPLSStack(e.Labels...)
native := nl.NativeEndian()
hdr := make([]byte, 4)
native.PutUint16(hdr, uint16(len(s)+4))
native.PutUint16(hdr[2:], nl.MPLS_IPTUNNEL_DST)
return append(hdr, s...), nil
}
func (e *MPLSEncap) String() string {
s := make([]string, 0, len(e.Labels))
for _, l := range e.Labels {
s = append(s, fmt.Sprintf("%d", l))
}
return strings.Join(s, "/")
}
func (e *MPLSEncap) Equal(x Encap) bool {
o, ok := x.(*MPLSEncap)
if !ok {
return false
}
if e == nil && o == nil {
return true
}
if e == nil || o == nil {
return false
}
if e.Labels == nil && o.Labels == nil {
return true
}
if e.Labels == nil || o.Labels == nil {
return false
}
if len(e.Labels) != len(o.Labels) {
return false
}
for i := range e.Labels {
if e.Labels[i] != o.Labels[i] {
return false
}
}
return true
}
// SEG6 definitions
type SEG6Encap struct {
Mode int
Segments []net.IP
}
func (e *SEG6Encap) Type() int {
return nl.LWTUNNEL_ENCAP_SEG6
}
func (e *SEG6Encap) Decode(buf []byte) error {
if len(buf) < 4 {
return fmt.Errorf("lack of bytes")
}
native := nl.NativeEndian()
// Get Length(l) & Type(typ) : 2 + 2 bytes
l := native.Uint16(buf)
if len(buf) < int(l) {
return fmt.Errorf("lack of bytes")
}
buf = buf[:l] // make sure buf size upper limit is Length
typ := native.Uint16(buf[2:])
if typ != nl.SEG6_IPTUNNEL_SRH {
return fmt.Errorf("unknown SEG6 Type: %d", typ)
}
var err error
e.Mode, e.Segments, err = nl.DecodeSEG6Encap(buf[4:])
return err
}
func (e *SEG6Encap) Encode() ([]byte, error) {
s, err := nl.EncodeSEG6Encap(e.Mode, e.Segments)
native := nl.NativeEndian()
hdr := make([]byte, 4)
native.PutUint16(hdr, uint16(len(s)+4))
native.PutUint16(hdr[2:], nl.SEG6_IPTUNNEL_SRH)
return append(hdr, s...), err
}
func (e *SEG6Encap) String() string {
segs := make([]string, 0, len(e.Segments))
// append segment backwards (from n to 0) since seg#0 is the last segment.
for i := len(e.Segments); i > 0; i-- {
segs = append(segs, fmt.Sprintf("%s", e.Segments[i-1]))
}
str := fmt.Sprintf("mode %s segs %d [ %s ]", nl.SEG6EncapModeString(e.Mode),
len(e.Segments), strings.Join(segs, " "))
return str
}
func (e *SEG6Encap) Equal(x Encap) bool {
o, ok := x.(*SEG6Encap)
if !ok {
return false
}
if e == o {
return true
}
if e == nil || o == nil {
return false
}
if e.Mode != o.Mode {
return false
}
if len(e.Segments) != len(o.Segments) {
return false
}
for i := range e.Segments {
if !e.Segments[i].Equal(o.Segments[i]) {
return false
}
}
return true
}
// RouteAdd will add a route to the system.
// Equivalent to: `ip route add $route`
func RouteAdd(route *Route) error {
return pkgHandle.RouteAdd(route)
}
// RouteAdd will add a route to the system.
// Equivalent to: `ip route add $route`
func (h *Handle) RouteAdd(route *Route) error {
flags := unix.NLM_F_CREATE | unix.NLM_F_EXCL | unix.NLM_F_ACK
req := h.newNetlinkRequest(unix.RTM_NEWROUTE, flags)
return h.routeHandle(route, req, nl.NewRtMsg())
}
// RouteReplace will add a route to the system.
// Equivalent to: `ip route replace $route`
func RouteReplace(route *Route) error {
return pkgHandle.RouteReplace(route)
}
// RouteReplace will add a route to the system.
// Equivalent to: `ip route replace $route`
func (h *Handle) RouteReplace(route *Route) error {
flags := unix.NLM_F_CREATE | unix.NLM_F_REPLACE | unix.NLM_F_ACK
req := h.newNetlinkRequest(unix.RTM_NEWROUTE, flags)
return h.routeHandle(route, req, nl.NewRtMsg())
}
// RouteDel will delete a route from the system.
// Equivalent to: `ip route del $route`
func RouteDel(route *Route) error {
return pkgHandle.RouteDel(route)
}
// RouteDel will delete a route from the system.
// Equivalent to: `ip route del $route`
func (h *Handle) RouteDel(route *Route) error {
req := h.newNetlinkRequest(unix.RTM_DELROUTE, unix.NLM_F_ACK)
return h.routeHandle(route, req, nl.NewRtDelMsg())
}
func (h *Handle) routeHandle(route *Route, req *nl.NetlinkRequest, msg *nl.RtMsg) error {
if (route.Dst == nil || route.Dst.IP == nil) && route.Src == nil && route.Gw == nil && route.MPLSDst == nil {
return fmt.Errorf("one of Dst.IP, Src, or Gw must not be nil")
}
family := -1
var rtAttrs []*nl.RtAttr
if route.Dst != nil && route.Dst.IP != nil {
dstLen, _ := route.Dst.Mask.Size()
msg.Dst_len = uint8(dstLen)
dstFamily := nl.GetIPFamily(route.Dst.IP)
family = dstFamily
var dstData []byte
if dstFamily == FAMILY_V4 {
dstData = route.Dst.IP.To4()
} else {
dstData = route.Dst.IP.To16()
}
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_DST, dstData))
} else if route.MPLSDst != nil {
family = nl.FAMILY_MPLS
msg.Dst_len = uint8(20)
msg.Type = unix.RTN_UNICAST
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_DST, nl.EncodeMPLSStack(*route.MPLSDst)))
}
if route.NewDst != nil {
if family != -1 && family != route.NewDst.Family() {
return fmt.Errorf("new destination and destination are not the same address family")
}
buf, err := route.NewDst.Encode()
if err != nil {
return err
}
rtAttrs = append(rtAttrs, nl.NewRtAttr(nl.RTA_NEWDST, buf))
}
if route.Encap != nil {
buf := make([]byte, 2)
native.PutUint16(buf, uint16(route.Encap.Type()))
rtAttrs = append(rtAttrs, nl.NewRtAttr(nl.RTA_ENCAP_TYPE, buf))
buf, err := route.Encap.Encode()
if err != nil {
return err
}
rtAttrs = append(rtAttrs, nl.NewRtAttr(nl.RTA_ENCAP, buf))
}
if route.Src != nil {
srcFamily := nl.GetIPFamily(route.Src)
if family != -1 && family != srcFamily {
return fmt.Errorf("source and destination ip are not the same IP family")
}
family = srcFamily
var srcData []byte
if srcFamily == FAMILY_V4 {
srcData = route.Src.To4()
} else {
srcData = route.Src.To16()
}
// The commonly used src ip for routes is actually PREFSRC
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_PREFSRC, srcData))
}
if route.Gw != nil {
gwFamily := nl.GetIPFamily(route.Gw)
if family != -1 && family != gwFamily {
return fmt.Errorf("gateway, source, and destination ip are not the same IP family")
}
family = gwFamily
var gwData []byte
if gwFamily == FAMILY_V4 {
gwData = route.Gw.To4()
} else {
gwData = route.Gw.To16()
}
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_GATEWAY, gwData))
}
if len(route.MultiPath) > 0 {
buf := []byte{}
for _, nh := range route.MultiPath {
rtnh := &nl.RtNexthop{
RtNexthop: unix.RtNexthop{
Hops: uint8(nh.Hops),
Ifindex: int32(nh.LinkIndex),
Flags: uint8(nh.Flags),
},
}
children := []nl.NetlinkRequestData{}
if nh.Gw != nil {
gwFamily := nl.GetIPFamily(nh.Gw)
if family != -1 && family != gwFamily {
return fmt.Errorf("gateway, source, and destination ip are not the same IP family")
}
if gwFamily == FAMILY_V4 {
children = append(children, nl.NewRtAttr(unix.RTA_GATEWAY, []byte(nh.Gw.To4())))
} else {
children = append(children, nl.NewRtAttr(unix.RTA_GATEWAY, []byte(nh.Gw.To16())))
}
}
if nh.NewDst != nil {
if family != -1 && family != nh.NewDst.Family() {
return fmt.Errorf("new destination and destination are not the same address family")
}
buf, err := nh.NewDst.Encode()
if err != nil {
return err
}
children = append(children, nl.NewRtAttr(nl.RTA_NEWDST, buf))
}
if nh.Encap != nil {
buf := make([]byte, 2)
native.PutUint16(buf, uint16(nh.Encap.Type()))
rtAttrs = append(rtAttrs, nl.NewRtAttr(nl.RTA_ENCAP_TYPE, buf))
buf, err := nh.Encap.Encode()
if err != nil {
return err
}
children = append(children, nl.NewRtAttr(nl.RTA_ENCAP, buf))
}
rtnh.Children = children
buf = append(buf, rtnh.Serialize()...)
}
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_MULTIPATH, buf))
}
if route.Table > 0 {
if route.Table >= 256 {
msg.Table = unix.RT_TABLE_UNSPEC
b := make([]byte, 4)
native.PutUint32(b, uint32(route.Table))
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_TABLE, b))
} else {
msg.Table = uint8(route.Table)
}
}
if route.Priority > 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(route.Priority))
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_PRIORITY, b))
}
if route.Tos > 0 {
msg.Tos = uint8(route.Tos)
}
if route.Protocol > 0 {
msg.Protocol = uint8(route.Protocol)
}
if route.Type > 0 {
msg.Type = uint8(route.Type)
}
var metrics []*nl.RtAttr
// TODO: support other rta_metric values
if route.MTU > 0 {
b := nl.Uint32Attr(uint32(route.MTU))
metrics = append(metrics, nl.NewRtAttr(unix.RTAX_MTU, b))
}
if route.AdvMSS > 0 {
b := nl.Uint32Attr(uint32(route.AdvMSS))
metrics = append(metrics, nl.NewRtAttr(unix.RTAX_ADVMSS, b))
}
if metrics != nil {
attr := nl.NewRtAttr(unix.RTA_METRICS, nil)
for _, metric := range metrics {
attr.AddChild(metric)
}
rtAttrs = append(rtAttrs, attr)
}
msg.Flags = uint32(route.Flags)
msg.Scope = uint8(route.Scope)
msg.Family = uint8(family)
req.AddData(msg)
for _, attr := range rtAttrs {
req.AddData(attr)
}
var (
b = make([]byte, 4)
native = nl.NativeEndian()
)
native.PutUint32(b, uint32(route.LinkIndex))
req.AddData(nl.NewRtAttr(unix.RTA_OIF, b))
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// RouteList gets a list of routes in the system.
// Equivalent to: `ip route show`.
// The list can be filtered by link and ip family.
func RouteList(link Link, family int) ([]Route, error) {
return pkgHandle.RouteList(link, family)
}
// RouteList gets a list of routes in the system.
// Equivalent to: `ip route show`.
// The list can be filtered by link and ip family.
func (h *Handle) RouteList(link Link, family int) ([]Route, error) {
var routeFilter *Route
if link != nil {
routeFilter = &Route{
LinkIndex: link.Attrs().Index,
}
}
return h.RouteListFiltered(family, routeFilter, RT_FILTER_OIF)
}
// RouteListFiltered gets a list of routes in the system filtered with specified rules.
// All rules must be defined in RouteFilter struct
func RouteListFiltered(family int, filter *Route, filterMask uint64) ([]Route, error) {
return pkgHandle.RouteListFiltered(family, filter, filterMask)
}
// RouteListFiltered gets a list of routes in the system filtered with specified rules.
// All rules must be defined in RouteFilter struct
func (h *Handle) RouteListFiltered(family int, filter *Route, filterMask uint64) ([]Route, error) {
req := h.newNetlinkRequest(unix.RTM_GETROUTE, unix.NLM_F_DUMP)
infmsg := nl.NewIfInfomsg(family)
req.AddData(infmsg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWROUTE)
if err != nil {
return nil, err
}
var res []Route
for _, m := range msgs {
msg := nl.DeserializeRtMsg(m)
if msg.Flags&unix.RTM_F_CLONED != 0 {
// Ignore cloned routes
continue
}
if msg.Table != unix.RT_TABLE_MAIN {
if filter == nil || filter != nil && filterMask&RT_FILTER_TABLE == 0 {
// Ignore non-main tables
continue
}
}
route, err := deserializeRoute(m)
if err != nil {
return nil, err
}
if filter != nil {
switch {
case filterMask&RT_FILTER_TABLE != 0 && filter.Table != unix.RT_TABLE_UNSPEC && route.Table != filter.Table:
continue
case filterMask&RT_FILTER_PROTOCOL != 0 && route.Protocol != filter.Protocol:
continue
case filterMask&RT_FILTER_SCOPE != 0 && route.Scope != filter.Scope:
continue
case filterMask&RT_FILTER_TYPE != 0 && route.Type != filter.Type:
continue
case filterMask&RT_FILTER_TOS != 0 && route.Tos != filter.Tos:
continue
case filterMask&RT_FILTER_OIF != 0 && route.LinkIndex != filter.LinkIndex:
continue
case filterMask&RT_FILTER_IIF != 0 && route.ILinkIndex != filter.ILinkIndex:
continue
case filterMask&RT_FILTER_GW != 0 && !route.Gw.Equal(filter.Gw):
continue
case filterMask&RT_FILTER_SRC != 0 && !route.Src.Equal(filter.Src):
continue
case filterMask&RT_FILTER_DST != 0:
if filter.MPLSDst == nil || route.MPLSDst == nil || (*filter.MPLSDst) != (*route.MPLSDst) {
if !ipNetEqual(route.Dst, filter.Dst) {
continue
}
}
}
}
res = append(res, route)
}
return res, nil
}
// deserializeRoute decodes a binary netlink message into a Route struct
func deserializeRoute(m []byte) (Route, error) {
msg := nl.DeserializeRtMsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return Route{}, err
}
route := Route{
Scope: Scope(msg.Scope),
Protocol: int(msg.Protocol),
Table: int(msg.Table),
Type: int(msg.Type),
Tos: int(msg.Tos),
Flags: int(msg.Flags),
}
native := nl.NativeEndian()
var encap, encapType syscall.NetlinkRouteAttr
for _, attr := range attrs {
switch attr.Attr.Type {
case unix.RTA_GATEWAY:
route.Gw = net.IP(attr.Value)
case unix.RTA_PREFSRC:
route.Src = net.IP(attr.Value)
case unix.RTA_DST:
if msg.Family == nl.FAMILY_MPLS {
stack := nl.DecodeMPLSStack(attr.Value)
if len(stack) == 0 || len(stack) > 1 {
return route, fmt.Errorf("invalid MPLS RTA_DST")
}
route.MPLSDst = &stack[0]
} else {
route.Dst = &net.IPNet{
IP: attr.Value,
Mask: net.CIDRMask(int(msg.Dst_len), 8*len(attr.Value)),
}
}
case unix.RTA_OIF:
route.LinkIndex = int(native.Uint32(attr.Value[0:4]))
case unix.RTA_IIF:
route.ILinkIndex = int(native.Uint32(attr.Value[0:4]))
case unix.RTA_PRIORITY:
route.Priority = int(native.Uint32(attr.Value[0:4]))
case unix.RTA_TABLE:
route.Table = int(native.Uint32(attr.Value[0:4]))
case unix.RTA_MULTIPATH:
parseRtNexthop := func(value []byte) (*NexthopInfo, []byte, error) {
if len(value) < unix.SizeofRtNexthop {
return nil, nil, fmt.Errorf("lack of bytes")
}
nh := nl.DeserializeRtNexthop(value)
if len(value) < int(nh.RtNexthop.Len) {
return nil, nil, fmt.Errorf("lack of bytes")
}
info := &NexthopInfo{
LinkIndex: int(nh.RtNexthop.Ifindex),
Hops: int(nh.RtNexthop.Hops),
Flags: int(nh.RtNexthop.Flags),
}
attrs, err := nl.ParseRouteAttr(value[unix.SizeofRtNexthop:int(nh.RtNexthop.Len)])
if err != nil {
return nil, nil, err
}
var encap, encapType syscall.NetlinkRouteAttr
for _, attr := range attrs {
switch attr.Attr.Type {
case unix.RTA_GATEWAY:
info.Gw = net.IP(attr.Value)
case nl.RTA_NEWDST:
var d Destination
switch msg.Family {
case nl.FAMILY_MPLS:
d = &MPLSDestination{}
}
if err := d.Decode(attr.Value); err != nil {
return nil, nil, err
}
info.NewDst = d
case nl.RTA_ENCAP_TYPE:
encapType = attr
case nl.RTA_ENCAP:
encap = attr
}
}
if len(encap.Value) != 0 && len(encapType.Value) != 0 {
typ := int(native.Uint16(encapType.Value[0:2]))
var e Encap
switch typ {
case nl.LWTUNNEL_ENCAP_MPLS:
e = &MPLSEncap{}
if err := e.Decode(encap.Value); err != nil {
return nil, nil, err
}
}
info.Encap = e
}
return info, value[int(nh.RtNexthop.Len):], nil
}
rest := attr.Value
for len(rest) > 0 {
info, buf, err := parseRtNexthop(rest)
if err != nil {
return route, err
}
route.MultiPath = append(route.MultiPath, info)
rest = buf
}
case nl.RTA_NEWDST:
var d Destination
switch msg.Family {
case nl.FAMILY_MPLS:
d = &MPLSDestination{}
}
if err := d.Decode(attr.Value); err != nil {
return route, err
}
route.NewDst = d
case nl.RTA_ENCAP_TYPE:
encapType = attr
case nl.RTA_ENCAP:
encap = attr
case unix.RTA_METRICS:
metrics, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return route, err
}
for _, metric := range metrics {
switch metric.Attr.Type {
case unix.RTAX_MTU:
route.MTU = int(native.Uint32(metric.Value[0:4]))
case unix.RTAX_ADVMSS:
route.AdvMSS = int(native.Uint32(metric.Value[0:4]))
}
}
}
}
if len(encap.Value) != 0 && len(encapType.Value) != 0 {
typ := int(native.Uint16(encapType.Value[0:2]))
var e Encap
switch typ {
case nl.LWTUNNEL_ENCAP_MPLS:
e = &MPLSEncap{}
if err := e.Decode(encap.Value); err != nil {
return route, err
}
case nl.LWTUNNEL_ENCAP_SEG6:
e = &SEG6Encap{}
if err := e.Decode(encap.Value); err != nil {
return route, err
}
}
route.Encap = e
}
return route, nil
}
// RouteGet gets a route to a specific destination from the host system.
// Equivalent to: 'ip route get'.
func RouteGet(destination net.IP) ([]Route, error) {
return pkgHandle.RouteGet(destination)
}
// RouteGet gets a route to a specific destination from the host system.
// Equivalent to: 'ip route get'.
func (h *Handle) RouteGet(destination net.IP) ([]Route, error) {
req := h.newNetlinkRequest(unix.RTM_GETROUTE, unix.NLM_F_REQUEST)
family := nl.GetIPFamily(destination)
var destinationData []byte
var bitlen uint8
if family == FAMILY_V4 {
destinationData = destination.To4()
bitlen = 32
} else {
destinationData = destination.To16()
bitlen = 128
}
msg := &nl.RtMsg{}
msg.Family = uint8(family)
msg.Dst_len = bitlen
req.AddData(msg)
rtaDst := nl.NewRtAttr(unix.RTA_DST, destinationData)
req.AddData(rtaDst)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWROUTE)
if err != nil {
return nil, err
}
var res []Route
for _, m := range msgs {
route, err := deserializeRoute(m)
if err != nil {
return nil, err
}
res = append(res, route)
}
return res, nil
}
// RouteSubscribe takes a chan down which notifications will be sent
// when routes are added or deleted. Close the 'done' chan to stop subscription.
func RouteSubscribe(ch chan<- RouteUpdate, done <-chan struct{}) error {
return routeSubscribeAt(netns.None(), netns.None(), ch, done, nil, false)
}
// RouteSubscribeAt works like RouteSubscribe plus it allows the caller
// to choose the network namespace in which to subscribe (ns).
func RouteSubscribeAt(ns netns.NsHandle, ch chan<- RouteUpdate, done <-chan struct{}) error {
return routeSubscribeAt(ns, netns.None(), ch, done, nil, false)
}
// RouteSubscribeOptions contains a set of options to use with
// RouteSubscribeWithOptions.
type RouteSubscribeOptions struct {
Namespace *netns.NsHandle
ErrorCallback func(error)
ListExisting bool
}
// RouteSubscribeWithOptions work like RouteSubscribe but enable to
// provide additional options to modify the behavior. Currently, the
// namespace can be provided as well as an error callback.
func RouteSubscribeWithOptions(ch chan<- RouteUpdate, done <-chan struct{}, options RouteSubscribeOptions) error {
if options.Namespace == nil {
none := netns.None()
options.Namespace = &none
}
return routeSubscribeAt(*options.Namespace, netns.None(), ch, done, options.ErrorCallback, options.ListExisting)
}
func routeSubscribeAt(newNs, curNs netns.NsHandle, ch chan<- RouteUpdate, done <-chan struct{}, cberr func(error), listExisting bool) error {
s, err := nl.SubscribeAt(newNs, curNs, unix.NETLINK_ROUTE, unix.RTNLGRP_IPV4_ROUTE, unix.RTNLGRP_IPV6_ROUTE)
if err != nil {
return err
}
if done != nil {
go func() {
<-done
s.Close()
}()
}
if listExisting {
req := pkgHandle.newNetlinkRequest(unix.RTM_GETROUTE,
unix.NLM_F_DUMP)
infmsg := nl.NewIfInfomsg(unix.AF_UNSPEC)
req.AddData(infmsg)
if err := s.Send(req); err != nil {
return err
}
}
go func() {
defer close(ch)
for {
msgs, err := s.Receive()
if err != nil {
if cberr != nil {
cberr(err)
}
return
}
for _, m := range msgs {
if m.Header.Type == unix.NLMSG_DONE {
continue
}
if m.Header.Type == unix.NLMSG_ERROR {
native := nl.NativeEndian()
error := int32(native.Uint32(m.Data[0:4]))
if error == 0 {
continue
}
if cberr != nil {
cberr(syscall.Errno(-error))
}
return
}
route, err := deserializeRoute(m.Data)
if err != nil {
if cberr != nil {
cberr(err)
}
return
}
ch <- RouteUpdate{Type: m.Header.Type, Route: route}
}
}
}()
return nil
}

View File

@ -0,0 +1,11 @@
// +build !linux
package netlink
func (r *Route) ListFlags() []string {
return []string{}
}
func (n *NexthopInfo) ListFlags() []string {
return []string{}
}

42
vendor/github.com/vishvananda/netlink/rule.go generated vendored Normal file
View File

@ -0,0 +1,42 @@
package netlink
import (
"fmt"
"net"
)
// Rule represents a netlink rule.
type Rule struct {
Priority int
Family int
Table int
Mark int
Mask int
TunID uint
Goto int
Src *net.IPNet
Dst *net.IPNet
Flow int
IifName string
OifName string
SuppressIfgroup int
SuppressPrefixlen int
Invert bool
}
func (r Rule) String() string {
return fmt.Sprintf("ip rule %d: from %s table %d", r.Priority, r.Src, r.Table)
}
// NewRule return empty rules.
func NewRule() *Rule {
return &Rule{
SuppressIfgroup: -1,
SuppressPrefixlen: -1,
Priority: -1,
Mark: -1,
Mask: -1,
Goto: -1,
Flow: -1,
}
}

234
vendor/github.com/vishvananda/netlink/rule_linux.go generated vendored Normal file
View File

@ -0,0 +1,234 @@
package netlink
import (
"fmt"
"net"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
const FibRuleInvert = 0x2
// RuleAdd adds a rule to the system.
// Equivalent to: ip rule add
func RuleAdd(rule *Rule) error {
return pkgHandle.RuleAdd(rule)
}
// RuleAdd adds a rule to the system.
// Equivalent to: ip rule add
func (h *Handle) RuleAdd(rule *Rule) error {
req := h.newNetlinkRequest(unix.RTM_NEWRULE, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
return ruleHandle(rule, req)
}
// RuleDel deletes a rule from the system.
// Equivalent to: ip rule del
func RuleDel(rule *Rule) error {
return pkgHandle.RuleDel(rule)
}
// RuleDel deletes a rule from the system.
// Equivalent to: ip rule del
func (h *Handle) RuleDel(rule *Rule) error {
req := h.newNetlinkRequest(unix.RTM_DELRULE, unix.NLM_F_ACK)
return ruleHandle(rule, req)
}
func ruleHandle(rule *Rule, req *nl.NetlinkRequest) error {
msg := nl.NewRtMsg()
msg.Family = unix.AF_INET
msg.Protocol = unix.RTPROT_BOOT
msg.Scope = unix.RT_SCOPE_UNIVERSE
msg.Table = unix.RT_TABLE_UNSPEC
msg.Type = unix.RTN_UNSPEC
if req.NlMsghdr.Flags&unix.NLM_F_CREATE > 0 {
msg.Type = unix.RTN_UNICAST
}
if rule.Invert {
msg.Flags |= FibRuleInvert
}
if rule.Family != 0 {
msg.Family = uint8(rule.Family)
}
if rule.Table >= 0 && rule.Table < 256 {
msg.Table = uint8(rule.Table)
}
var dstFamily uint8
var rtAttrs []*nl.RtAttr
if rule.Dst != nil && rule.Dst.IP != nil {
dstLen, _ := rule.Dst.Mask.Size()
msg.Dst_len = uint8(dstLen)
msg.Family = uint8(nl.GetIPFamily(rule.Dst.IP))
dstFamily = msg.Family
var dstData []byte
if msg.Family == unix.AF_INET {
dstData = rule.Dst.IP.To4()
} else {
dstData = rule.Dst.IP.To16()
}
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_DST, dstData))
}
if rule.Src != nil && rule.Src.IP != nil {
msg.Family = uint8(nl.GetIPFamily(rule.Src.IP))
if dstFamily != 0 && dstFamily != msg.Family {
return fmt.Errorf("source and destination ip are not the same IP family")
}
srcLen, _ := rule.Src.Mask.Size()
msg.Src_len = uint8(srcLen)
var srcData []byte
if msg.Family == unix.AF_INET {
srcData = rule.Src.IP.To4()
} else {
srcData = rule.Src.IP.To16()
}
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_SRC, srcData))
}
req.AddData(msg)
for i := range rtAttrs {
req.AddData(rtAttrs[i])
}
native := nl.NativeEndian()
if rule.Priority >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Priority))
req.AddData(nl.NewRtAttr(nl.FRA_PRIORITY, b))
}
if rule.Mark >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Mark))
req.AddData(nl.NewRtAttr(nl.FRA_FWMARK, b))
}
if rule.Mask >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Mask))
req.AddData(nl.NewRtAttr(nl.FRA_FWMASK, b))
}
if rule.Flow >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Flow))
req.AddData(nl.NewRtAttr(nl.FRA_FLOW, b))
}
if rule.TunID > 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.TunID))
req.AddData(nl.NewRtAttr(nl.FRA_TUN_ID, b))
}
if rule.Table >= 256 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Table))
req.AddData(nl.NewRtAttr(nl.FRA_TABLE, b))
}
if msg.Table > 0 {
if rule.SuppressPrefixlen >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.SuppressPrefixlen))
req.AddData(nl.NewRtAttr(nl.FRA_SUPPRESS_PREFIXLEN, b))
}
if rule.SuppressIfgroup >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.SuppressIfgroup))
req.AddData(nl.NewRtAttr(nl.FRA_SUPPRESS_IFGROUP, b))
}
}
if rule.IifName != "" {
req.AddData(nl.NewRtAttr(nl.FRA_IIFNAME, []byte(rule.IifName)))
}
if rule.OifName != "" {
req.AddData(nl.NewRtAttr(nl.FRA_OIFNAME, []byte(rule.OifName)))
}
if rule.Goto >= 0 {
msg.Type = nl.FR_ACT_NOP
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Goto))
req.AddData(nl.NewRtAttr(nl.FRA_GOTO, b))
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// RuleList lists rules in the system.
// Equivalent to: ip rule list
func RuleList(family int) ([]Rule, error) {
return pkgHandle.RuleList(family)
}
// RuleList lists rules in the system.
// Equivalent to: ip rule list
func (h *Handle) RuleList(family int) ([]Rule, error) {
req := h.newNetlinkRequest(unix.RTM_GETRULE, unix.NLM_F_DUMP|unix.NLM_F_REQUEST)
msg := nl.NewIfInfomsg(family)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWRULE)
if err != nil {
return nil, err
}
native := nl.NativeEndian()
var res = make([]Rule, 0)
for i := range msgs {
msg := nl.DeserializeRtMsg(msgs[i])
attrs, err := nl.ParseRouteAttr(msgs[i][msg.Len():])
if err != nil {
return nil, err
}
rule := NewRule()
rule.Invert = msg.Flags&FibRuleInvert > 0
for j := range attrs {
switch attrs[j].Attr.Type {
case unix.RTA_TABLE:
rule.Table = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_SRC:
rule.Src = &net.IPNet{
IP: attrs[j].Value,
Mask: net.CIDRMask(int(msg.Src_len), 8*len(attrs[j].Value)),
}
case nl.FRA_DST:
rule.Dst = &net.IPNet{
IP: attrs[j].Value,
Mask: net.CIDRMask(int(msg.Dst_len), 8*len(attrs[j].Value)),
}
case nl.FRA_FWMARK:
rule.Mark = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_FWMASK:
rule.Mask = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_TUN_ID:
rule.TunID = uint(native.Uint64(attrs[j].Value[0:4]))
case nl.FRA_IIFNAME:
rule.IifName = string(attrs[j].Value[:len(attrs[j].Value)-1])
case nl.FRA_OIFNAME:
rule.OifName = string(attrs[j].Value[:len(attrs[j].Value)-1])
case nl.FRA_SUPPRESS_PREFIXLEN:
i := native.Uint32(attrs[j].Value[0:4])
if i != 0xffffffff {
rule.SuppressPrefixlen = int(i)
}
case nl.FRA_SUPPRESS_IFGROUP:
i := native.Uint32(attrs[j].Value[0:4])
if i != 0xffffffff {
rule.SuppressIfgroup = int(i)
}
case nl.FRA_FLOW:
rule.Flow = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_GOTO:
rule.Goto = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_PRIORITY:
rule.Priority = int(native.Uint32(attrs[j].Value[0:4]))
}
}
res = append(res, *rule)
}
return res, nil
}

27
vendor/github.com/vishvananda/netlink/socket.go generated vendored Normal file
View File

@ -0,0 +1,27 @@
package netlink
import "net"
// SocketID identifies a single socket.
type SocketID struct {
SourcePort uint16
DestinationPort uint16
Source net.IP
Destination net.IP
Interface uint32
Cookie [2]uint32
}
// Socket represents a netlink socket.
type Socket struct {
Family uint8
State uint8
Timer uint8
Retrans uint8
ID SocketID
Expires uint32
RQueue uint32
WQueue uint32
UID uint32
INode uint32
}

159
vendor/github.com/vishvananda/netlink/socket_linux.go generated vendored Normal file
View File

@ -0,0 +1,159 @@
package netlink
import (
"errors"
"fmt"
"net"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
const (
sizeofSocketID = 0x30
sizeofSocketRequest = sizeofSocketID + 0x8
sizeofSocket = sizeofSocketID + 0x18
)
type socketRequest struct {
Family uint8
Protocol uint8
Ext uint8
pad uint8
States uint32
ID SocketID
}
type writeBuffer struct {
Bytes []byte
pos int
}
func (b *writeBuffer) Write(c byte) {
b.Bytes[b.pos] = c
b.pos++
}
func (b *writeBuffer) Next(n int) []byte {
s := b.Bytes[b.pos : b.pos+n]
b.pos += n
return s
}
func (r *socketRequest) Serialize() []byte {
b := writeBuffer{Bytes: make([]byte, sizeofSocketRequest)}
b.Write(r.Family)
b.Write(r.Protocol)
b.Write(r.Ext)
b.Write(r.pad)
native.PutUint32(b.Next(4), r.States)
networkOrder.PutUint16(b.Next(2), r.ID.SourcePort)
networkOrder.PutUint16(b.Next(2), r.ID.DestinationPort)
copy(b.Next(4), r.ID.Source.To4())
b.Next(12)
copy(b.Next(4), r.ID.Destination.To4())
b.Next(12)
native.PutUint32(b.Next(4), r.ID.Interface)
native.PutUint32(b.Next(4), r.ID.Cookie[0])
native.PutUint32(b.Next(4), r.ID.Cookie[1])
return b.Bytes
}
func (r *socketRequest) Len() int { return sizeofSocketRequest }
type readBuffer struct {
Bytes []byte
pos int
}
func (b *readBuffer) Read() byte {
c := b.Bytes[b.pos]
b.pos++
return c
}
func (b *readBuffer) Next(n int) []byte {
s := b.Bytes[b.pos : b.pos+n]
b.pos += n
return s
}
func (s *Socket) deserialize(b []byte) error {
if len(b) < sizeofSocket {
return fmt.Errorf("socket data short read (%d); want %d", len(b), sizeofSocket)
}
rb := readBuffer{Bytes: b}
s.Family = rb.Read()
s.State = rb.Read()
s.Timer = rb.Read()
s.Retrans = rb.Read()
s.ID.SourcePort = networkOrder.Uint16(rb.Next(2))
s.ID.DestinationPort = networkOrder.Uint16(rb.Next(2))
s.ID.Source = net.IPv4(rb.Read(), rb.Read(), rb.Read(), rb.Read())
rb.Next(12)
s.ID.Destination = net.IPv4(rb.Read(), rb.Read(), rb.Read(), rb.Read())
rb.Next(12)
s.ID.Interface = native.Uint32(rb.Next(4))
s.ID.Cookie[0] = native.Uint32(rb.Next(4))
s.ID.Cookie[1] = native.Uint32(rb.Next(4))
s.Expires = native.Uint32(rb.Next(4))
s.RQueue = native.Uint32(rb.Next(4))
s.WQueue = native.Uint32(rb.Next(4))
s.UID = native.Uint32(rb.Next(4))
s.INode = native.Uint32(rb.Next(4))
return nil
}
// SocketGet returns the Socket identified by its local and remote addresses.
func SocketGet(local, remote net.Addr) (*Socket, error) {
localTCP, ok := local.(*net.TCPAddr)
if !ok {
return nil, ErrNotImplemented
}
remoteTCP, ok := remote.(*net.TCPAddr)
if !ok {
return nil, ErrNotImplemented
}
localIP := localTCP.IP.To4()
if localIP == nil {
return nil, ErrNotImplemented
}
remoteIP := remoteTCP.IP.To4()
if remoteIP == nil {
return nil, ErrNotImplemented
}
s, err := nl.Subscribe(unix.NETLINK_INET_DIAG)
if err != nil {
return nil, err
}
defer s.Close()
req := nl.NewNetlinkRequest(nl.SOCK_DIAG_BY_FAMILY, 0)
req.AddData(&socketRequest{
Family: unix.AF_INET,
Protocol: unix.IPPROTO_TCP,
ID: SocketID{
SourcePort: uint16(localTCP.Port),
DestinationPort: uint16(remoteTCP.Port),
Source: localIP,
Destination: remoteIP,
Cookie: [2]uint32{nl.TCPDIAG_NOCOOKIE, nl.TCPDIAG_NOCOOKIE},
},
})
s.Send(req)
msgs, err := s.Receive()
if err != nil {
return nil, err
}
if len(msgs) == 0 {
return nil, errors.New("no message nor error from netlink")
}
if len(msgs) > 2 {
return nil, fmt.Errorf("multiple (%d) matching sockets", len(msgs))
}
sock := &Socket{}
if err := sock.deserialize(msgs[0].Data); err != nil {
return nil, err
}
return sock, nil
}

75
vendor/github.com/vishvananda/netlink/xfrm.go generated vendored Normal file
View File

@ -0,0 +1,75 @@
package netlink
import (
"fmt"
"golang.org/x/sys/unix"
)
// Proto is an enum representing an ipsec protocol.
type Proto uint8
const (
XFRM_PROTO_ROUTE2 Proto = unix.IPPROTO_ROUTING
XFRM_PROTO_ESP Proto = unix.IPPROTO_ESP
XFRM_PROTO_AH Proto = unix.IPPROTO_AH
XFRM_PROTO_HAO Proto = unix.IPPROTO_DSTOPTS
XFRM_PROTO_COMP Proto = 0x6c // NOTE not defined on darwin
XFRM_PROTO_IPSEC_ANY Proto = unix.IPPROTO_RAW
)
func (p Proto) String() string {
switch p {
case XFRM_PROTO_ROUTE2:
return "route2"
case XFRM_PROTO_ESP:
return "esp"
case XFRM_PROTO_AH:
return "ah"
case XFRM_PROTO_HAO:
return "hao"
case XFRM_PROTO_COMP:
return "comp"
case XFRM_PROTO_IPSEC_ANY:
return "ipsec-any"
}
return fmt.Sprintf("%d", p)
}
// Mode is an enum representing an ipsec transport.
type Mode uint8
const (
XFRM_MODE_TRANSPORT Mode = iota
XFRM_MODE_TUNNEL
XFRM_MODE_ROUTEOPTIMIZATION
XFRM_MODE_IN_TRIGGER
XFRM_MODE_BEET
XFRM_MODE_MAX
)
func (m Mode) String() string {
switch m {
case XFRM_MODE_TRANSPORT:
return "transport"
case XFRM_MODE_TUNNEL:
return "tunnel"
case XFRM_MODE_ROUTEOPTIMIZATION:
return "ro"
case XFRM_MODE_IN_TRIGGER:
return "in_trigger"
case XFRM_MODE_BEET:
return "beet"
}
return fmt.Sprintf("%d", m)
}
// XfrmMark represents the mark associated to the state or policy
type XfrmMark struct {
Value uint32
Mask uint32
}
func (m *XfrmMark) String() string {
return fmt.Sprintf("(0x%x,0x%x)", m.Value, m.Mask)
}

View File

@ -0,0 +1,97 @@
package netlink
import (
"fmt"
"github.com/vishvananda/netlink/nl"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
type XfrmMsg interface {
Type() nl.XfrmMsgType
}
type XfrmMsgExpire struct {
XfrmState *XfrmState
Hard bool
}
func (ue *XfrmMsgExpire) Type() nl.XfrmMsgType {
return nl.XFRM_MSG_EXPIRE
}
func parseXfrmMsgExpire(b []byte) *XfrmMsgExpire {
var e XfrmMsgExpire
msg := nl.DeserializeXfrmUserExpire(b)
e.XfrmState = xfrmStateFromXfrmUsersaInfo(&msg.XfrmUsersaInfo)
e.Hard = msg.Hard == 1
return &e
}
func XfrmMonitor(ch chan<- XfrmMsg, done <-chan struct{}, errorChan chan<- error,
types ...nl.XfrmMsgType) error {
groups, err := xfrmMcastGroups(types)
if err != nil {
return nil
}
s, err := nl.SubscribeAt(netns.None(), netns.None(), unix.NETLINK_XFRM, groups...)
if err != nil {
return err
}
if done != nil {
go func() {
<-done
s.Close()
}()
}
go func() {
defer close(ch)
for {
msgs, err := s.Receive()
if err != nil {
errorChan <- err
return
}
for _, m := range msgs {
switch m.Header.Type {
case nl.XFRM_MSG_EXPIRE:
ch <- parseXfrmMsgExpire(m.Data)
default:
errorChan <- fmt.Errorf("unsupported msg type: %x", m.Header.Type)
}
}
}
}()
return nil
}
func xfrmMcastGroups(types []nl.XfrmMsgType) ([]uint, error) {
groups := make([]uint, 0)
if len(types) == 0 {
return nil, fmt.Errorf("no xfrm msg type specified")
}
for _, t := range types {
var group uint
switch t {
case nl.XFRM_MSG_EXPIRE:
group = nl.XFRMNLGRP_EXPIRE
default:
return nil, fmt.Errorf("unsupported group: %x", t)
}
groups = append(groups, group)
}
return groups, nil
}

74
vendor/github.com/vishvananda/netlink/xfrm_policy.go generated vendored Normal file
View File

@ -0,0 +1,74 @@
package netlink
import (
"fmt"
"net"
)
// Dir is an enum representing an ipsec template direction.
type Dir uint8
const (
XFRM_DIR_IN Dir = iota
XFRM_DIR_OUT
XFRM_DIR_FWD
XFRM_SOCKET_IN
XFRM_SOCKET_OUT
XFRM_SOCKET_FWD
)
func (d Dir) String() string {
switch d {
case XFRM_DIR_IN:
return "dir in"
case XFRM_DIR_OUT:
return "dir out"
case XFRM_DIR_FWD:
return "dir fwd"
case XFRM_SOCKET_IN:
return "socket in"
case XFRM_SOCKET_OUT:
return "socket out"
case XFRM_SOCKET_FWD:
return "socket fwd"
}
return fmt.Sprintf("socket %d", d-XFRM_SOCKET_IN)
}
// XfrmPolicyTmpl encapsulates a rule for the base addresses of an ipsec
// policy. These rules are matched with XfrmState to determine encryption
// and authentication algorithms.
type XfrmPolicyTmpl struct {
Dst net.IP
Src net.IP
Proto Proto
Mode Mode
Spi int
Reqid int
}
func (t XfrmPolicyTmpl) String() string {
return fmt.Sprintf("{Dst: %v, Src: %v, Proto: %s, Mode: %s, Spi: 0x%x, Reqid: 0x%x}",
t.Dst, t.Src, t.Proto, t.Mode, t.Spi, t.Reqid)
}
// XfrmPolicy represents an ipsec policy. It represents the overlay network
// and has a list of XfrmPolicyTmpls representing the base addresses of
// the policy.
type XfrmPolicy struct {
Dst *net.IPNet
Src *net.IPNet
Proto Proto
DstPort int
SrcPort int
Dir Dir
Priority int
Index int
Mark *XfrmMark
Tmpls []XfrmPolicyTmpl
}
func (p XfrmPolicy) String() string {
return fmt.Sprintf("{Dst: %v, Src: %v, Proto: %s, DstPort: %d, SrcPort: %d, Dir: %s, Priority: %d, Index: %d, Mark: %s, Tmpls: %s}",
p.Dst, p.Src, p.Proto, p.DstPort, p.SrcPort, p.Dir, p.Priority, p.Index, p.Mark, p.Tmpls)
}

View File

@ -0,0 +1,256 @@
package netlink
import (
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
func selFromPolicy(sel *nl.XfrmSelector, policy *XfrmPolicy) {
sel.Family = uint16(nl.FAMILY_V4)
if policy.Dst != nil {
sel.Family = uint16(nl.GetIPFamily(policy.Dst.IP))
sel.Daddr.FromIP(policy.Dst.IP)
prefixlenD, _ := policy.Dst.Mask.Size()
sel.PrefixlenD = uint8(prefixlenD)
}
if policy.Src != nil {
sel.Saddr.FromIP(policy.Src.IP)
prefixlenS, _ := policy.Src.Mask.Size()
sel.PrefixlenS = uint8(prefixlenS)
}
sel.Proto = uint8(policy.Proto)
sel.Dport = nl.Swap16(uint16(policy.DstPort))
sel.Sport = nl.Swap16(uint16(policy.SrcPort))
if sel.Dport != 0 {
sel.DportMask = ^uint16(0)
}
if sel.Sport != 0 {
sel.SportMask = ^uint16(0)
}
}
// XfrmPolicyAdd will add an xfrm policy to the system.
// Equivalent to: `ip xfrm policy add $policy`
func XfrmPolicyAdd(policy *XfrmPolicy) error {
return pkgHandle.XfrmPolicyAdd(policy)
}
// XfrmPolicyAdd will add an xfrm policy to the system.
// Equivalent to: `ip xfrm policy add $policy`
func (h *Handle) XfrmPolicyAdd(policy *XfrmPolicy) error {
return h.xfrmPolicyAddOrUpdate(policy, nl.XFRM_MSG_NEWPOLICY)
}
// XfrmPolicyUpdate will update an xfrm policy to the system.
// Equivalent to: `ip xfrm policy update $policy`
func XfrmPolicyUpdate(policy *XfrmPolicy) error {
return pkgHandle.XfrmPolicyUpdate(policy)
}
// XfrmPolicyUpdate will update an xfrm policy to the system.
// Equivalent to: `ip xfrm policy update $policy`
func (h *Handle) XfrmPolicyUpdate(policy *XfrmPolicy) error {
return h.xfrmPolicyAddOrUpdate(policy, nl.XFRM_MSG_UPDPOLICY)
}
func (h *Handle) xfrmPolicyAddOrUpdate(policy *XfrmPolicy, nlProto int) error {
req := h.newNetlinkRequest(nlProto, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
msg := &nl.XfrmUserpolicyInfo{}
selFromPolicy(&msg.Sel, policy)
msg.Priority = uint32(policy.Priority)
msg.Index = uint32(policy.Index)
msg.Dir = uint8(policy.Dir)
msg.Lft.SoftByteLimit = nl.XFRM_INF
msg.Lft.HardByteLimit = nl.XFRM_INF
msg.Lft.SoftPacketLimit = nl.XFRM_INF
msg.Lft.HardPacketLimit = nl.XFRM_INF
req.AddData(msg)
tmplData := make([]byte, nl.SizeofXfrmUserTmpl*len(policy.Tmpls))
for i, tmpl := range policy.Tmpls {
start := i * nl.SizeofXfrmUserTmpl
userTmpl := nl.DeserializeXfrmUserTmpl(tmplData[start : start+nl.SizeofXfrmUserTmpl])
userTmpl.XfrmId.Daddr.FromIP(tmpl.Dst)
userTmpl.Saddr.FromIP(tmpl.Src)
userTmpl.XfrmId.Proto = uint8(tmpl.Proto)
userTmpl.XfrmId.Spi = nl.Swap32(uint32(tmpl.Spi))
userTmpl.Mode = uint8(tmpl.Mode)
userTmpl.Reqid = uint32(tmpl.Reqid)
userTmpl.Aalgos = ^uint32(0)
userTmpl.Ealgos = ^uint32(0)
userTmpl.Calgos = ^uint32(0)
}
if len(tmplData) > 0 {
tmpls := nl.NewRtAttr(nl.XFRMA_TMPL, tmplData)
req.AddData(tmpls)
}
if policy.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(policy.Mark))
req.AddData(out)
}
_, err := req.Execute(unix.NETLINK_XFRM, 0)
return err
}
// XfrmPolicyDel will delete an xfrm policy from the system. Note that
// the Tmpls are ignored when matching the policy to delete.
// Equivalent to: `ip xfrm policy del $policy`
func XfrmPolicyDel(policy *XfrmPolicy) error {
return pkgHandle.XfrmPolicyDel(policy)
}
// XfrmPolicyDel will delete an xfrm policy from the system. Note that
// the Tmpls are ignored when matching the policy to delete.
// Equivalent to: `ip xfrm policy del $policy`
func (h *Handle) XfrmPolicyDel(policy *XfrmPolicy) error {
_, err := h.xfrmPolicyGetOrDelete(policy, nl.XFRM_MSG_DELPOLICY)
return err
}
// XfrmPolicyList gets a list of xfrm policies in the system.
// Equivalent to: `ip xfrm policy show`.
// The list can be filtered by ip family.
func XfrmPolicyList(family int) ([]XfrmPolicy, error) {
return pkgHandle.XfrmPolicyList(family)
}
// XfrmPolicyList gets a list of xfrm policies in the system.
// Equivalent to: `ip xfrm policy show`.
// The list can be filtered by ip family.
func (h *Handle) XfrmPolicyList(family int) ([]XfrmPolicy, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_GETPOLICY, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(family)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_XFRM, nl.XFRM_MSG_NEWPOLICY)
if err != nil {
return nil, err
}
var res []XfrmPolicy
for _, m := range msgs {
if policy, err := parseXfrmPolicy(m, family); err == nil {
res = append(res, *policy)
} else if err == familyError {
continue
} else {
return nil, err
}
}
return res, nil
}
// XfrmPolicyGet gets a the policy described by the index or selector, if found.
// Equivalent to: `ip xfrm policy get { SELECTOR | index INDEX } dir DIR [ctx CTX ] [ mark MARK [ mask MASK ] ] [ ptype PTYPE ]`.
func XfrmPolicyGet(policy *XfrmPolicy) (*XfrmPolicy, error) {
return pkgHandle.XfrmPolicyGet(policy)
}
// XfrmPolicyGet gets a the policy described by the index or selector, if found.
// Equivalent to: `ip xfrm policy get { SELECTOR | index INDEX } dir DIR [ctx CTX ] [ mark MARK [ mask MASK ] ] [ ptype PTYPE ]`.
func (h *Handle) XfrmPolicyGet(policy *XfrmPolicy) (*XfrmPolicy, error) {
return h.xfrmPolicyGetOrDelete(policy, nl.XFRM_MSG_GETPOLICY)
}
// XfrmPolicyFlush will flush the policies on the system.
// Equivalent to: `ip xfrm policy flush`
func XfrmPolicyFlush() error {
return pkgHandle.XfrmPolicyFlush()
}
// XfrmPolicyFlush will flush the policies on the system.
// Equivalent to: `ip xfrm policy flush`
func (h *Handle) XfrmPolicyFlush() error {
req := h.newNetlinkRequest(nl.XFRM_MSG_FLUSHPOLICY, unix.NLM_F_ACK)
_, err := req.Execute(unix.NETLINK_XFRM, 0)
return err
}
func (h *Handle) xfrmPolicyGetOrDelete(policy *XfrmPolicy, nlProto int) (*XfrmPolicy, error) {
req := h.newNetlinkRequest(nlProto, unix.NLM_F_ACK)
msg := &nl.XfrmUserpolicyId{}
selFromPolicy(&msg.Sel, policy)
msg.Index = uint32(policy.Index)
msg.Dir = uint8(policy.Dir)
req.AddData(msg)
if policy.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(policy.Mark))
req.AddData(out)
}
resType := nl.XFRM_MSG_NEWPOLICY
if nlProto == nl.XFRM_MSG_DELPOLICY {
resType = 0
}
msgs, err := req.Execute(unix.NETLINK_XFRM, uint16(resType))
if err != nil {
return nil, err
}
if nlProto == nl.XFRM_MSG_DELPOLICY {
return nil, err
}
p, err := parseXfrmPolicy(msgs[0], FAMILY_ALL)
if err != nil {
return nil, err
}
return p, nil
}
func parseXfrmPolicy(m []byte, family int) (*XfrmPolicy, error) {
msg := nl.DeserializeXfrmUserpolicyInfo(m)
// This is mainly for the policy dump
if family != FAMILY_ALL && family != int(msg.Sel.Family) {
return nil, familyError
}
var policy XfrmPolicy
policy.Dst = msg.Sel.Daddr.ToIPNet(msg.Sel.PrefixlenD)
policy.Src = msg.Sel.Saddr.ToIPNet(msg.Sel.PrefixlenS)
policy.Proto = Proto(msg.Sel.Proto)
policy.DstPort = int(nl.Swap16(msg.Sel.Dport))
policy.SrcPort = int(nl.Swap16(msg.Sel.Sport))
policy.Priority = int(msg.Priority)
policy.Index = int(msg.Index)
policy.Dir = Dir(msg.Dir)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.XFRMA_TMPL:
max := len(attr.Value)
for i := 0; i < max; i += nl.SizeofXfrmUserTmpl {
var resTmpl XfrmPolicyTmpl
tmpl := nl.DeserializeXfrmUserTmpl(attr.Value[i : i+nl.SizeofXfrmUserTmpl])
resTmpl.Dst = tmpl.XfrmId.Daddr.ToIP()
resTmpl.Src = tmpl.Saddr.ToIP()
resTmpl.Proto = Proto(tmpl.XfrmId.Proto)
resTmpl.Mode = Mode(tmpl.Mode)
resTmpl.Spi = int(nl.Swap32(tmpl.XfrmId.Spi))
resTmpl.Reqid = int(tmpl.Reqid)
policy.Tmpls = append(policy.Tmpls, resTmpl)
}
case nl.XFRMA_MARK:
mark := nl.DeserializeXfrmMark(attr.Value[:])
policy.Mark = new(XfrmMark)
policy.Mark.Value = mark.Value
policy.Mark.Mask = mark.Mask
}
}
return &policy, nil
}

129
vendor/github.com/vishvananda/netlink/xfrm_state.go generated vendored Normal file
View File

@ -0,0 +1,129 @@
package netlink
import (
"fmt"
"net"
"time"
)
// XfrmStateAlgo represents the algorithm to use for the ipsec encryption.
type XfrmStateAlgo struct {
Name string
Key []byte
TruncateLen int // Auth only
ICVLen int // AEAD only
}
func (a XfrmStateAlgo) String() string {
base := fmt.Sprintf("{Name: %s, Key: 0x%x", a.Name, a.Key)
if a.TruncateLen != 0 {
base = fmt.Sprintf("%s, Truncate length: %d", base, a.TruncateLen)
}
if a.ICVLen != 0 {
base = fmt.Sprintf("%s, ICV length: %d", base, a.ICVLen)
}
return fmt.Sprintf("%s}", base)
}
// EncapType is an enum representing the optional packet encapsulation.
type EncapType uint8
const (
XFRM_ENCAP_ESPINUDP_NONIKE EncapType = iota + 1
XFRM_ENCAP_ESPINUDP
)
func (e EncapType) String() string {
switch e {
case XFRM_ENCAP_ESPINUDP_NONIKE:
return "espinudp-non-ike"
case XFRM_ENCAP_ESPINUDP:
return "espinudp"
}
return "unknown"
}
// XfrmStateEncap represents the encapsulation to use for the ipsec encryption.
type XfrmStateEncap struct {
Type EncapType
SrcPort int
DstPort int
OriginalAddress net.IP
}
func (e XfrmStateEncap) String() string {
return fmt.Sprintf("{Type: %s, Srcport: %d, DstPort: %d, OriginalAddress: %v}",
e.Type, e.SrcPort, e.DstPort, e.OriginalAddress)
}
// XfrmStateLimits represents the configured limits for the state.
type XfrmStateLimits struct {
ByteSoft uint64
ByteHard uint64
PacketSoft uint64
PacketHard uint64
TimeSoft uint64
TimeHard uint64
TimeUseSoft uint64
TimeUseHard uint64
}
// XfrmStateStats represents the current number of bytes/packets
// processed by this State, the State's installation and first use
// time and the replay window counters.
type XfrmStateStats struct {
ReplayWindow uint32
Replay uint32
Failed uint32
Bytes uint64
Packets uint64
AddTime uint64
UseTime uint64
}
// XfrmState represents the state of an ipsec policy. It optionally
// contains an XfrmStateAlgo for encryption and one for authentication.
type XfrmState struct {
Dst net.IP
Src net.IP
Proto Proto
Mode Mode
Spi int
Reqid int
ReplayWindow int
Limits XfrmStateLimits
Statistics XfrmStateStats
Mark *XfrmMark
Auth *XfrmStateAlgo
Crypt *XfrmStateAlgo
Aead *XfrmStateAlgo
Encap *XfrmStateEncap
ESN bool
}
func (sa XfrmState) String() string {
return fmt.Sprintf("Dst: %v, Src: %v, Proto: %s, Mode: %s, SPI: 0x%x, ReqID: 0x%x, ReplayWindow: %d, Mark: %v, Auth: %v, Crypt: %v, Aead: %v, Encap: %v, ESN: %t",
sa.Dst, sa.Src, sa.Proto, sa.Mode, sa.Spi, sa.Reqid, sa.ReplayWindow, sa.Mark, sa.Auth, sa.Crypt, sa.Aead, sa.Encap, sa.ESN)
}
func (sa XfrmState) Print(stats bool) string {
if !stats {
return sa.String()
}
at := time.Unix(int64(sa.Statistics.AddTime), 0).Format(time.UnixDate)
ut := "-"
if sa.Statistics.UseTime > 0 {
ut = time.Unix(int64(sa.Statistics.UseTime), 0).Format(time.UnixDate)
}
return fmt.Sprintf("%s, ByteSoft: %s, ByteHard: %s, PacketSoft: %s, PacketHard: %s, TimeSoft: %d, TimeHard: %d, TimeUseSoft: %d, TimeUseHard: %d, Bytes: %d, Packets: %d, "+
"AddTime: %s, UseTime: %s, ReplayWindow: %d, Replay: %d, Failed: %d",
sa.String(), printLimit(sa.Limits.ByteSoft), printLimit(sa.Limits.ByteHard), printLimit(sa.Limits.PacketSoft), printLimit(sa.Limits.PacketHard),
sa.Limits.TimeSoft, sa.Limits.TimeHard, sa.Limits.TimeUseSoft, sa.Limits.TimeUseHard, sa.Statistics.Bytes, sa.Statistics.Packets, at, ut,
sa.Statistics.ReplayWindow, sa.Statistics.Replay, sa.Statistics.Failed)
}
func printLimit(lmt uint64) string {
if lmt == ^uint64(0) {
return "(INF)"
}
return fmt.Sprintf("%d", lmt)
}

View File

@ -0,0 +1,457 @@
package netlink
import (
"fmt"
"unsafe"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
func writeStateAlgo(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgo{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeStateAlgoAuth(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgoAuth{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgTruncLen: uint32(a.TruncateLen),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeStateAlgoAead(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgoAEAD{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgICVLen: uint32(a.ICVLen),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeMark(m *XfrmMark) []byte {
mark := &nl.XfrmMark{
Value: m.Value,
Mask: m.Mask,
}
if mark.Mask == 0 {
mark.Mask = ^uint32(0)
}
return mark.Serialize()
}
func writeReplayEsn(replayWindow int) []byte {
replayEsn := &nl.XfrmReplayStateEsn{
OSeq: 0,
Seq: 0,
OSeqHi: 0,
SeqHi: 0,
ReplayWindow: uint32(replayWindow),
}
// Linux stores the bitmap to identify the already received sequence packets in blocks of uint32 elements.
// Therefore bitmap length is the minimum number of uint32 elements needed. The following is a ceiling operation.
bytesPerElem := int(unsafe.Sizeof(replayEsn.BmpLen)) // Any uint32 variable is good for this
replayEsn.BmpLen = uint32((replayWindow + (bytesPerElem * 8) - 1) / (bytesPerElem * 8))
return replayEsn.Serialize()
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func XfrmStateAdd(state *XfrmState) error {
return pkgHandle.XfrmStateAdd(state)
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func (h *Handle) XfrmStateAdd(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_NEWSA)
}
// XfrmStateAllocSpi will allocate an xfrm state in the system.
// Equivalent to: `ip xfrm state allocspi`
func XfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
return pkgHandle.xfrmStateAllocSpi(state)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func XfrmStateUpdate(state *XfrmState) error {
return pkgHandle.XfrmStateUpdate(state)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func (h *Handle) XfrmStateUpdate(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_UPDSA)
}
func (h *Handle) xfrmStateAddOrUpdate(state *XfrmState, nlProto int) error {
// A state with spi 0 can't be deleted so don't allow it to be set
if state.Spi == 0 {
return fmt.Errorf("Spi must be set when adding xfrm state.")
}
req := h.newNetlinkRequest(nlProto, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
msg := xfrmUsersaInfoFromXfrmState(state)
if state.ESN {
if state.ReplayWindow == 0 {
return fmt.Errorf("ESN flag set without ReplayWindow")
}
msg.Flags |= nl.XFRM_STATE_ESN
msg.ReplayWindow = 0
}
limitsToLft(state.Limits, &msg.Lft)
req.AddData(msg)
if state.Auth != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_AUTH_TRUNC, writeStateAlgoAuth(state.Auth))
req.AddData(out)
}
if state.Crypt != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_CRYPT, writeStateAlgo(state.Crypt))
req.AddData(out)
}
if state.Aead != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_AEAD, writeStateAlgoAead(state.Aead))
req.AddData(out)
}
if state.Encap != nil {
encapData := make([]byte, nl.SizeofXfrmEncapTmpl)
encap := nl.DeserializeXfrmEncapTmpl(encapData)
encap.EncapType = uint16(state.Encap.Type)
encap.EncapSport = nl.Swap16(uint16(state.Encap.SrcPort))
encap.EncapDport = nl.Swap16(uint16(state.Encap.DstPort))
encap.EncapOa.FromIP(state.Encap.OriginalAddress)
out := nl.NewRtAttr(nl.XFRMA_ENCAP, encapData)
req.AddData(out)
}
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
if state.ESN {
out := nl.NewRtAttr(nl.XFRMA_REPLAY_ESN_VAL, writeReplayEsn(state.ReplayWindow))
req.AddData(out)
}
_, err := req.Execute(unix.NETLINK_XFRM, 0)
return err
}
func (h *Handle) xfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_ALLOCSPI,
unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
msg := &nl.XfrmUserSpiInfo{}
msg.XfrmUsersaInfo = *(xfrmUsersaInfoFromXfrmState(state))
// 1-255 is reserved by IANA for future use
msg.Min = 0x100
msg.Max = 0xffffffff
req.AddData(msg)
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
msgs, err := req.Execute(unix.NETLINK_XFRM, 0)
if err != nil {
return nil, err
}
s, err := parseXfrmState(msgs[0], FAMILY_ALL)
if err != nil {
return nil, err
}
return s, err
}
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func XfrmStateDel(state *XfrmState) error {
return pkgHandle.XfrmStateDel(state)
}
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func (h *Handle) XfrmStateDel(state *XfrmState) error {
_, err := h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_DELSA)
return err
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip [-4|-6] xfrm state show`.
// The list can be filtered by ip family.
func XfrmStateList(family int) ([]XfrmState, error) {
return pkgHandle.XfrmStateList(family)
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip xfrm state show`.
// The list can be filtered by ip family.
func (h *Handle) XfrmStateList(family int) ([]XfrmState, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_GETSA, unix.NLM_F_DUMP)
msgs, err := req.Execute(unix.NETLINK_XFRM, nl.XFRM_MSG_NEWSA)
if err != nil {
return nil, err
}
var res []XfrmState
for _, m := range msgs {
if state, err := parseXfrmState(m, family); err == nil {
res = append(res, *state)
} else if err == familyError {
continue
} else {
return nil, err
}
}
return res, nil
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return pkgHandle.XfrmStateGet(state)
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func (h *Handle) XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_GETSA)
}
func (h *Handle) xfrmStateGetOrDelete(state *XfrmState, nlProto int) (*XfrmState, error) {
req := h.newNetlinkRequest(nlProto, unix.NLM_F_ACK)
msg := &nl.XfrmUsersaId{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Daddr.FromIP(state.Dst)
msg.Proto = uint8(state.Proto)
msg.Spi = nl.Swap32(uint32(state.Spi))
req.AddData(msg)
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
if state.Src != nil {
out := nl.NewRtAttr(nl.XFRMA_SRCADDR, state.Src.To16())
req.AddData(out)
}
resType := nl.XFRM_MSG_NEWSA
if nlProto == nl.XFRM_MSG_DELSA {
resType = 0
}
msgs, err := req.Execute(unix.NETLINK_XFRM, uint16(resType))
if err != nil {
return nil, err
}
if nlProto == nl.XFRM_MSG_DELSA {
return nil, nil
}
s, err := parseXfrmState(msgs[0], FAMILY_ALL)
if err != nil {
return nil, err
}
return s, nil
}
var familyError = fmt.Errorf("family error")
func xfrmStateFromXfrmUsersaInfo(msg *nl.XfrmUsersaInfo) *XfrmState {
var state XfrmState
state.Dst = msg.Id.Daddr.ToIP()
state.Src = msg.Saddr.ToIP()
state.Proto = Proto(msg.Id.Proto)
state.Mode = Mode(msg.Mode)
state.Spi = int(nl.Swap32(msg.Id.Spi))
state.Reqid = int(msg.Reqid)
state.ReplayWindow = int(msg.ReplayWindow)
lftToLimits(&msg.Lft, &state.Limits)
curToStats(&msg.Curlft, &msg.Stats, &state.Statistics)
return &state
}
func parseXfrmState(m []byte, family int) (*XfrmState, error) {
msg := nl.DeserializeXfrmUsersaInfo(m)
// This is mainly for the state dump
if family != FAMILY_ALL && family != int(msg.Family) {
return nil, familyError
}
state := xfrmStateFromXfrmUsersaInfo(msg)
attrs, err := nl.ParseRouteAttr(m[nl.SizeofXfrmUsersaInfo:])
if err != nil {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.XFRMA_ALG_AUTH, nl.XFRMA_ALG_CRYPT:
var resAlgo *XfrmStateAlgo
if attr.Attr.Type == nl.XFRMA_ALG_AUTH {
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
resAlgo = state.Auth
} else {
state.Crypt = new(XfrmStateAlgo)
resAlgo = state.Crypt
}
algo := nl.DeserializeXfrmAlgo(attr.Value[:])
(*resAlgo).Name = nl.BytesToString(algo.AlgName[:])
(*resAlgo).Key = algo.AlgKey
case nl.XFRMA_ALG_AUTH_TRUNC:
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
algo := nl.DeserializeXfrmAlgoAuth(attr.Value[:])
state.Auth.Name = nl.BytesToString(algo.AlgName[:])
state.Auth.Key = algo.AlgKey
state.Auth.TruncateLen = int(algo.AlgTruncLen)
case nl.XFRMA_ALG_AEAD:
state.Aead = new(XfrmStateAlgo)
algo := nl.DeserializeXfrmAlgoAEAD(attr.Value[:])
state.Aead.Name = nl.BytesToString(algo.AlgName[:])
state.Aead.Key = algo.AlgKey
state.Aead.ICVLen = int(algo.AlgICVLen)
case nl.XFRMA_ENCAP:
encap := nl.DeserializeXfrmEncapTmpl(attr.Value[:])
state.Encap = new(XfrmStateEncap)
state.Encap.Type = EncapType(encap.EncapType)
state.Encap.SrcPort = int(nl.Swap16(encap.EncapSport))
state.Encap.DstPort = int(nl.Swap16(encap.EncapDport))
state.Encap.OriginalAddress = encap.EncapOa.ToIP()
case nl.XFRMA_MARK:
mark := nl.DeserializeXfrmMark(attr.Value[:])
state.Mark = new(XfrmMark)
state.Mark.Value = mark.Value
state.Mark.Mask = mark.Mask
}
}
return state, nil
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func XfrmStateFlush(proto Proto) error {
return pkgHandle.XfrmStateFlush(proto)
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func (h *Handle) XfrmStateFlush(proto Proto) error {
req := h.newNetlinkRequest(nl.XFRM_MSG_FLUSHSA, unix.NLM_F_ACK)
req.AddData(&nl.XfrmUsersaFlush{Proto: uint8(proto)})
_, err := req.Execute(unix.NETLINK_XFRM, 0)
if err != nil {
return err
}
return nil
}
func limitsToLft(lmts XfrmStateLimits, lft *nl.XfrmLifetimeCfg) {
if lmts.ByteSoft != 0 {
lft.SoftByteLimit = lmts.ByteSoft
} else {
lft.SoftByteLimit = nl.XFRM_INF
}
if lmts.ByteHard != 0 {
lft.HardByteLimit = lmts.ByteHard
} else {
lft.HardByteLimit = nl.XFRM_INF
}
if lmts.PacketSoft != 0 {
lft.SoftPacketLimit = lmts.PacketSoft
} else {
lft.SoftPacketLimit = nl.XFRM_INF
}
if lmts.PacketHard != 0 {
lft.HardPacketLimit = lmts.PacketHard
} else {
lft.HardPacketLimit = nl.XFRM_INF
}
lft.SoftAddExpiresSeconds = lmts.TimeSoft
lft.HardAddExpiresSeconds = lmts.TimeHard
lft.SoftUseExpiresSeconds = lmts.TimeUseSoft
lft.HardUseExpiresSeconds = lmts.TimeUseHard
}
func lftToLimits(lft *nl.XfrmLifetimeCfg, lmts *XfrmStateLimits) {
*lmts = *(*XfrmStateLimits)(unsafe.Pointer(lft))
}
func curToStats(cur *nl.XfrmLifetimeCur, wstats *nl.XfrmStats, stats *XfrmStateStats) {
stats.Bytes = cur.Bytes
stats.Packets = cur.Packets
stats.AddTime = cur.AddTime
stats.UseTime = cur.UseTime
stats.ReplayWindow = wstats.ReplayWindow
stats.Replay = wstats.Replay
stats.Failed = wstats.IntegrityFailed
}
func xfrmUsersaInfoFromXfrmState(state *XfrmState) *nl.XfrmUsersaInfo {
msg := &nl.XfrmUsersaInfo{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Id.Daddr.FromIP(state.Dst)
msg.Saddr.FromIP(state.Src)
msg.Id.Proto = uint8(state.Proto)
msg.Mode = uint8(state.Mode)
msg.Id.Spi = nl.Swap32(uint32(state.Spi))
msg.Reqid = uint32(state.Reqid)
msg.ReplayWindow = uint8(state.ReplayWindow)
return msg
}

192
vendor/github.com/vishvananda/netns/LICENSE generated vendored Normal file
View File

@ -0,0 +1,192 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
Copyright 2014 Vishvananda Ishaya.
Copyright 2014 Docker, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

51
vendor/github.com/vishvananda/netns/README.md generated vendored Normal file
View File

@ -0,0 +1,51 @@
# netns - network namespaces in go #
The netns package provides an ultra-simple interface for handling
network namespaces in go. Changing namespaces requires elevated
privileges, so in most cases this code needs to be run as root.
## Local Build and Test ##
You can use go get command:
go get github.com/vishvananda/netns
Testing (requires root):
sudo -E go test github.com/vishvananda/netns
## Example ##
```go
package main
import (
"fmt"
"net"
"runtime"
"github.com/vishvananda/netns"
)
func main() {
// Lock the OS Thread so we don't accidentally switch namespaces
runtime.LockOSThread()
defer runtime.UnlockOSThread()
// Save the current network namespace
origns, _ := netns.Get()
defer origns.Close()
// Create a new network namespace
newns, _ := netns.New()
netns.Set(newns)
defer newns.Close()
// Do something with the network namespace
ifaces, _ := net.Interfaces()
fmt.Printf("Interfaces: %v\n", ifaces)
// Switch back to the original namespace
netns.Set(origns)
}
```

80
vendor/github.com/vishvananda/netns/netns.go generated vendored Normal file
View File

@ -0,0 +1,80 @@
// Package netns allows ultra-simple network namespace handling. NsHandles
// can be retrieved and set. Note that the current namespace is thread
// local so actions that set and reset namespaces should use LockOSThread
// to make sure the namespace doesn't change due to a goroutine switch.
// It is best to close NsHandles when you are done with them. This can be
// accomplished via a `defer ns.Close()` on the handle. Changing namespaces
// requires elevated privileges, so in most cases this code needs to be run
// as root.
package netns
import (
"fmt"
"syscall"
)
// NsHandle is a handle to a network namespace. It can be cast directly
// to an int and used as a file descriptor.
type NsHandle int
// Equal determines if two network handles refer to the same network
// namespace. This is done by comparing the device and inode that the
// file descriptors point to.
func (ns NsHandle) Equal(other NsHandle) bool {
if ns == other {
return true
}
var s1, s2 syscall.Stat_t
if err := syscall.Fstat(int(ns), &s1); err != nil {
return false
}
if err := syscall.Fstat(int(other), &s2); err != nil {
return false
}
return (s1.Dev == s2.Dev) && (s1.Ino == s2.Ino)
}
// String shows the file descriptor number and its dev and inode.
func (ns NsHandle) String() string {
var s syscall.Stat_t
if ns == -1 {
return "NS(None)"
}
if err := syscall.Fstat(int(ns), &s); err != nil {
return fmt.Sprintf("NS(%d: unknown)", ns)
}
return fmt.Sprintf("NS(%d: %d, %d)", ns, s.Dev, s.Ino)
}
// UniqueId returns a string which uniquely identifies the namespace
// associated with the network handle.
func (ns NsHandle) UniqueId() string {
var s syscall.Stat_t
if ns == -1 {
return "NS(none)"
}
if err := syscall.Fstat(int(ns), &s); err != nil {
return "NS(unknown)"
}
return fmt.Sprintf("NS(%d:%d)", s.Dev, s.Ino)
}
// IsOpen returns true if Close() has not been called.
func (ns NsHandle) IsOpen() bool {
return ns != -1
}
// Close closes the NsHandle and resets its file descriptor to -1.
// It is not safe to use an NsHandle after Close() is called.
func (ns *NsHandle) Close() error {
if err := syscall.Close(int(*ns)); err != nil {
return err
}
(*ns) = -1
return nil
}
// None gets an empty (closed) NsHandle.
func None() NsHandle {
return NsHandle(-1)
}

226
vendor/github.com/vishvananda/netns/netns_linux.go generated vendored Normal file
View File

@ -0,0 +1,226 @@
// +build linux
package netns
import (
"fmt"
"io/ioutil"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"syscall"
)
// SYS_SETNS syscall allows changing the namespace of the current process.
var SYS_SETNS = map[string]uintptr{
"386": 346,
"amd64": 308,
"arm64": 268,
"arm": 375,
"mips": 4344,
"mipsle": 4344,
"ppc64": 350,
"ppc64le": 350,
"s390x": 339,
}[runtime.GOARCH]
// Deprecated: use syscall pkg instead (go >= 1.5 needed).
const (
CLONE_NEWUTS = 0x04000000 /* New utsname group? */
CLONE_NEWIPC = 0x08000000 /* New ipcs */
CLONE_NEWUSER = 0x10000000 /* New user namespace */
CLONE_NEWPID = 0x20000000 /* New pid namespace */
CLONE_NEWNET = 0x40000000 /* New network namespace */
CLONE_IO = 0x80000000 /* Get io context */
)
// Setns sets namespace using syscall. Note that this should be a method
// in syscall but it has not been added.
func Setns(ns NsHandle, nstype int) (err error) {
_, _, e1 := syscall.Syscall(SYS_SETNS, uintptr(ns), uintptr(nstype), 0)
if e1 != 0 {
err = e1
}
return
}
// Set sets the current network namespace to the namespace represented
// by NsHandle.
func Set(ns NsHandle) (err error) {
return Setns(ns, CLONE_NEWNET)
}
// New creates a new network namespace and returns a handle to it.
func New() (ns NsHandle, err error) {
if err := syscall.Unshare(CLONE_NEWNET); err != nil {
return -1, err
}
return Get()
}
// Get gets a handle to the current threads network namespace.
func Get() (NsHandle, error) {
return GetFromThread(os.Getpid(), syscall.Gettid())
}
// GetFromPath gets a handle to a network namespace
// identified by the path
func GetFromPath(path string) (NsHandle, error) {
fd, err := syscall.Open(path, syscall.O_RDONLY, 0)
if err != nil {
return -1, err
}
return NsHandle(fd), nil
}
// GetFromName gets a handle to a named network namespace such as one
// created by `ip netns add`.
func GetFromName(name string) (NsHandle, error) {
return GetFromPath(fmt.Sprintf("/var/run/netns/%s", name))
}
// GetFromPid gets a handle to the network namespace of a given pid.
func GetFromPid(pid int) (NsHandle, error) {
return GetFromPath(fmt.Sprintf("/proc/%d/ns/net", pid))
}
// GetFromThread gets a handle to the network namespace of a given pid and tid.
func GetFromThread(pid, tid int) (NsHandle, error) {
return GetFromPath(fmt.Sprintf("/proc/%d/task/%d/ns/net", pid, tid))
}
// GetFromDocker gets a handle to the network namespace of a docker container.
// Id is prefixed matched against the running docker containers, so a short
// identifier can be used as long as it isn't ambiguous.
func GetFromDocker(id string) (NsHandle, error) {
pid, err := getPidForContainer(id)
if err != nil {
return -1, err
}
return GetFromPid(pid)
}
// borrowed from docker/utils/utils.go
func findCgroupMountpoint(cgroupType string) (string, error) {
output, err := ioutil.ReadFile("/proc/mounts")
if err != nil {
return "", err
}
// /proc/mounts has 6 fields per line, one mount per line, e.g.
// cgroup /sys/fs/cgroup/devices cgroup rw,relatime,devices 0 0
for _, line := range strings.Split(string(output), "\n") {
parts := strings.Split(line, " ")
if len(parts) == 6 && parts[2] == "cgroup" {
for _, opt := range strings.Split(parts[3], ",") {
if opt == cgroupType {
return parts[1], nil
}
}
}
}
return "", fmt.Errorf("cgroup mountpoint not found for %s", cgroupType)
}
// Returns the relative path to the cgroup docker is running in.
// borrowed from docker/utils/utils.go
// modified to get the docker pid instead of using /proc/self
func getThisCgroup(cgroupType string) (string, error) {
dockerpid, err := ioutil.ReadFile("/var/run/docker.pid")
if err != nil {
return "", err
}
result := strings.Split(string(dockerpid), "\n")
if len(result) == 0 || len(result[0]) == 0 {
return "", fmt.Errorf("docker pid not found in /var/run/docker.pid")
}
pid, err := strconv.Atoi(result[0])
if err != nil {
return "", err
}
output, err := ioutil.ReadFile(fmt.Sprintf("/proc/%d/cgroup", pid))
if err != nil {
return "", err
}
for _, line := range strings.Split(string(output), "\n") {
parts := strings.Split(line, ":")
// any type used by docker should work
if parts[1] == cgroupType {
return parts[2], nil
}
}
return "", fmt.Errorf("cgroup '%s' not found in /proc/%d/cgroup", cgroupType, pid)
}
// Returns the first pid in a container.
// borrowed from docker/utils/utils.go
// modified to only return the first pid
// modified to glob with id
// modified to search for newer docker containers
func getPidForContainer(id string) (int, error) {
pid := 0
// memory is chosen randomly, any cgroup used by docker works
cgroupType := "memory"
cgroupRoot, err := findCgroupMountpoint(cgroupType)
if err != nil {
return pid, err
}
cgroupThis, err := getThisCgroup(cgroupType)
if err != nil {
return pid, err
}
id += "*"
attempts := []string{
filepath.Join(cgroupRoot, cgroupThis, id, "tasks"),
// With more recent lxc versions use, cgroup will be in lxc/
filepath.Join(cgroupRoot, cgroupThis, "lxc", id, "tasks"),
// With more recent docker, cgroup will be in docker/
filepath.Join(cgroupRoot, cgroupThis, "docker", id, "tasks"),
// Even more recent docker versions under systemd use docker-<id>.scope/
filepath.Join(cgroupRoot, "system.slice", "docker-"+id+".scope", "tasks"),
// Even more recent docker versions under cgroup/systemd/docker/<id>/
filepath.Join(cgroupRoot, "..", "systemd", "docker", id, "tasks"),
// Kubernetes with docker and CNI is even more different
filepath.Join(cgroupRoot, "..", "systemd", "kubepods", "*", "pod*", id, "tasks"),
}
var filename string
for _, attempt := range attempts {
filenames, _ := filepath.Glob(attempt)
if len(filenames) > 1 {
return pid, fmt.Errorf("Ambiguous id supplied: %v", filenames)
} else if len(filenames) == 1 {
filename = filenames[0]
break
}
}
if filename == "" {
return pid, fmt.Errorf("Unable to find container: %v", id[:len(id)-1])
}
output, err := ioutil.ReadFile(filename)
if err != nil {
return pid, err
}
result := strings.Split(string(output), "\n")
if len(result) == 0 || len(result[0]) == 0 {
return pid, fmt.Errorf("No pid found for container")
}
pid, err = strconv.Atoi(result[0])
if err != nil {
return pid, fmt.Errorf("Invalid pid '%s': %s", result[0], err)
}
return pid, nil
}

View File

@ -0,0 +1,43 @@
// +build !linux
package netns
import (
"errors"
)
var (
ErrNotImplemented = errors.New("not implemented")
)
func Set(ns NsHandle) (err error) {
return ErrNotImplemented
}
func New() (ns NsHandle, err error) {
return -1, ErrNotImplemented
}
func Get() (NsHandle, error) {
return -1, ErrNotImplemented
}
func GetFromPath(path string) (NsHandle, error) {
return -1, ErrNotImplemented
}
func GetFromName(name string) (NsHandle, error) {
return -1, ErrNotImplemented
}
func GetFromPid(pid int) (NsHandle, error) {
return -1, ErrNotImplemented
}
func GetFromThread(pid, tid int) (NsHandle, error) {
return -1, ErrNotImplemented
}
func GetFromDocker(id string) (NsHandle, error) {
return -1, ErrNotImplemented
}