status-go/services/wallet/router/router_v2.go

1279 lines
44 KiB
Go
Raw Normal View History

package router
import (
"context"
"fmt"
"math"
"math/big"
"sort"
"strings"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/log"
"github.com/status-im/status-go/errors"
"github.com/status-im/status-go/params"
"github.com/status-im/status-go/services/ens"
"github.com/status-im/status-go/services/wallet/async"
2024-06-05 07:56:02 +00:00
walletCommon "github.com/status-im/status-go/services/wallet/common"
"github.com/status-im/status-go/services/wallet/router/pathprocessor"
walletToken "github.com/status-im/status-go/services/wallet/token"
"github.com/status-im/status-go/signal"
)
const (
hexAddressLength = 42
)
var (
routerTask = async.TaskType{
ID: 1,
Policy: async.ReplacementPolicyCancelOld,
}
)
2024-06-05 07:56:02 +00:00
var (
supportedNetworks = map[uint64]bool{
walletCommon.EthereumMainnet: true,
walletCommon.OptimismMainnet: true,
walletCommon.ArbitrumMainnet: true,
}
supportedTestNetworks = map[uint64]bool{
walletCommon.EthereumSepolia: true,
walletCommon.OptimismSepolia: true,
walletCommon.ArbitrumSepolia: true,
}
)
type RouteInputParams struct {
Uuid string `json:"uuid"`
SendType SendType `json:"sendType" validate:"required"`
AddrFrom common.Address `json:"addrFrom" validate:"required"`
AddrTo common.Address `json:"addrTo" validate:"required"`
AmountIn *hexutil.Big `json:"amountIn" validate:"required"`
2024-06-12 20:14:30 +00:00
AmountOut *hexutil.Big `json:"amountOut"`
TokenID string `json:"tokenID" validate:"required"`
ToTokenID string `json:"toTokenID"`
DisabledFromChainIDs []uint64 `json:"disabledFromChainIDs"`
DisabledToChainIDs []uint64 `json:"disabledToChainIDs"`
GasFeeMode GasFeeMode `json:"gasFeeMode" validate:"required"`
FromLockedAmount map[uint64]*hexutil.Big `json:"fromLockedAmount"`
testnetMode bool
2024-06-05 07:56:02 +00:00
// For send types like EnsRegister, EnsRelease, EnsSetPubKey, StickersBuy
2024-06-13 13:38:08 +00:00
Username string `json:"username"`
PublicKey string `json:"publicKey"`
PackID *hexutil.Big `json:"packID"`
// TODO: Remove two fields below once we implement a better solution for tests
// Currently used for tests only
testsMode bool
testParams *routerTestParams
}
type routerTestParams struct {
tokenFrom *walletToken.Token
tokenPrices map[string]float64
estimationMap map[string]pathprocessor.Estimation // [processor-name, estimation]
bonderFeeMap map[string]*big.Int // [token-symbol, bonder-fee]
suggestedFees *SuggestedFees
baseFee *big.Int
balanceMap map[string]*big.Int // [token-symbol, balance]
approvalGasEstimation uint64
approvalL1Fee uint64
}
type amountOption struct {
amount *big.Int
locked bool
subtractFees bool
}
func makeBalanceKey(chainID uint64, symbol string) string {
return fmt.Sprintf("%d-%s", chainID, symbol)
}
type PathV2 struct {
ProcessorName string
FromChain *params.Network // Source chain
ToChain *params.Network // Destination chain
2024-06-30 21:38:32 +00:00
FromToken *walletToken.Token // Source token
ToToken *walletToken.Token // Destination token, set if applicable
AmountIn *hexutil.Big // Amount that will be sent from the source chain
AmountInLocked bool // Is the amount locked
AmountOut *hexutil.Big // Amount that will be received on the destination chain
SuggestedLevelsForMaxFeesPerGas *MaxFeesLevels // Suggested max fees for the transaction (in ETH WEI)
MaxFeesPerGas *hexutil.Big // Max fees per gas (determined by client via GasFeeMode, in ETH WEI)
TxBaseFee *hexutil.Big // Base fee for the transaction (in ETH WEI)
TxPriorityFee *hexutil.Big // Priority fee for the transaction (in ETH WEI)
TxGasAmount uint64 // Gas used for the transaction
TxBonderFees *hexutil.Big // Bonder fees for the transaction - used for Hop bridge (in selected token)
TxTokenFees *hexutil.Big // Token fees for the transaction - used for bridges (represent the difference between the amount in and the amount out, in selected token)
TxFee *hexutil.Big // fee for the transaction (includes tx fee only, doesn't include approval fees, l1 fees, l1 approval fees, token fees or bonders fees, in ETH WEI)
TxL1Fee *hexutil.Big // L1 fee for the transaction - used for for transactions placed on L2 chains (in ETH WEI)
ApprovalRequired bool // Is approval required for the transaction
ApprovalAmountRequired *hexutil.Big // Amount required for the approval transaction
ApprovalContractAddress *common.Address // Address of the contract that needs to be approved
ApprovalBaseFee *hexutil.Big // Base fee for the approval transaction (in ETH WEI)
ApprovalPriorityFee *hexutil.Big // Priority fee for the approval transaction (in ETH WEI)
ApprovalGasAmount uint64 // Gas used for the approval transaction
ApprovalFee *hexutil.Big // Total fee for the approval transaction (includes approval tx fees only, doesn't include approval l1 fees, in ETH WEI)
ApprovalL1Fee *hexutil.Big // L1 fee for the approval transaction - used for for transactions placed on L2 chains (in ETH WEI)
TxTotalFee *hexutil.Big // Total fee for the transaction (includes tx fees, approval fees, l1 fees, l1 approval fees, in ETH WEI)
EstimatedTime TransactionEstimation
requiredTokenBalance *big.Int // (in selected token)
requiredNativeBalance *big.Int // (in ETH WEI)
subtractFees bool
}
type ProcessorError struct {
ProcessorName string
Error error
}
func (p *PathV2) Equal(o *PathV2) bool {
return p.FromChain.ChainID == o.FromChain.ChainID && p.ToChain.ChainID == o.ToChain.ChainID
}
type SuggestedRoutesV2 struct {
Uuid string
Best []*PathV2
Candidates []*PathV2
TokenPrice float64
NativeChainTokenPrice float64
}
type SuggestedRoutesV2Response struct {
Uuid string `json:"Uuid"`
Best []*PathV2 `json:"Best,omitempty"`
Candidates []*PathV2 `json:"Candidates,omitempty"`
TokenPrice *float64 `json:"TokenPrice,omitempty"`
NativeChainTokenPrice *float64 `json:"NativeChainTokenPrice,omitempty"`
ErrorResponse *errors.ErrorResponse `json:"ErrorResponse,omitempty"`
}
type GraphV2 []*NodeV2
type NodeV2 struct {
Path *PathV2
Children GraphV2
}
func newSuggestedRoutesV2(
uuid string,
amountIn *big.Int,
candidates []*PathV2,
fromLockedAmount map[uint64]*hexutil.Big,
tokenPrice float64,
nativeChainTokenPrice float64,
) (*SuggestedRoutesV2, [][]*PathV2) {
suggestedRoutes := &SuggestedRoutesV2{
Uuid: uuid,
Candidates: candidates,
TokenPrice: tokenPrice,
NativeChainTokenPrice: nativeChainTokenPrice,
}
if len(candidates) == 0 {
return suggestedRoutes, nil
}
node := &NodeV2{
Path: nil,
Children: buildGraphV2(amountIn, candidates, 0, []uint64{}),
}
allRoutes := node.buildAllRoutesV2()
allRoutes = filterRoutesV2(allRoutes, amountIn, fromLockedAmount)
if len(allRoutes) > 0 {
sort.Slice(allRoutes, func(i, j int) bool {
iRoute := getRoutePriority(allRoutes[i])
jRoute := getRoutePriority(allRoutes[j])
return iRoute <= jRoute
})
}
return suggestedRoutes, allRoutes
}
func newNodeV2(path *PathV2) *NodeV2 {
return &NodeV2{Path: path, Children: make(GraphV2, 0)}
}
func buildGraphV2(AmountIn *big.Int, routes []*PathV2, level int, sourceChainIDs []uint64) GraphV2 {
graph := make(GraphV2, 0)
for _, route := range routes {
found := false
for _, chainID := range sourceChainIDs {
if chainID == route.FromChain.ChainID {
found = true
break
}
}
if found {
continue
}
node := newNodeV2(route)
newRoutes := make([]*PathV2, 0)
for _, r := range routes {
if route.Equal(r) {
continue
}
newRoutes = append(newRoutes, r)
}
newAmountIn := new(big.Int).Sub(AmountIn, route.AmountIn.ToInt())
if newAmountIn.Sign() > 0 {
newSourceChainIDs := make([]uint64, len(sourceChainIDs))
copy(newSourceChainIDs, sourceChainIDs)
newSourceChainIDs = append(newSourceChainIDs, route.FromChain.ChainID)
node.Children = buildGraphV2(newAmountIn, newRoutes, level+1, newSourceChainIDs)
if len(node.Children) == 0 {
continue
}
}
graph = append(graph, node)
}
return graph
}
func (n NodeV2) buildAllRoutesV2() [][]*PathV2 {
res := make([][]*PathV2, 0)
if len(n.Children) == 0 && n.Path != nil {
res = append(res, []*PathV2{n.Path})
}
for _, node := range n.Children {
for _, route := range node.buildAllRoutesV2() {
extendedRoute := route
if n.Path != nil {
extendedRoute = append([]*PathV2{n.Path}, route...)
}
res = append(res, extendedRoute)
}
}
return res
}
func findBestV2(routes [][]*PathV2, tokenPrice float64, nativeTokenPrice float64) []*PathV2 {
var best []*PathV2
bestCost := big.NewFloat(math.Inf(1))
for _, route := range routes {
currentCost := big.NewFloat(0)
for _, path := range route {
2024-05-23 12:38:39 +00:00
tokenDenominator := big.NewFloat(math.Pow(10, float64(path.FromToken.Decimals)))
// calculate the cost of the path
nativeTokenPrice := new(big.Float).SetFloat64(nativeTokenPrice)
// tx fee
txFeeInEth := gweiToEth(weiToGwei(path.TxFee.ToInt()))
pathCost := new(big.Float).Mul(txFeeInEth, nativeTokenPrice)
if path.TxL1Fee.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 {
txL1FeeInEth := gweiToEth(weiToGwei(path.TxL1Fee.ToInt()))
pathCost.Add(pathCost, new(big.Float).Mul(txL1FeeInEth, nativeTokenPrice))
}
if path.TxBonderFees != nil && path.TxBonderFees.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 {
2024-05-23 12:38:39 +00:00
pathCost.Add(pathCost, new(big.Float).Mul(
new(big.Float).Quo(new(big.Float).SetInt(path.TxBonderFees.ToInt()), tokenDenominator),
new(big.Float).SetFloat64(tokenPrice)))
}
if path.TxTokenFees != nil && path.TxTokenFees.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 && path.FromToken != nil {
pathCost.Add(pathCost, new(big.Float).Mul(
2024-05-23 12:38:39 +00:00
new(big.Float).Quo(new(big.Float).SetInt(path.TxTokenFees.ToInt()), tokenDenominator),
new(big.Float).SetFloat64(tokenPrice)))
}
if path.ApprovalRequired {
// tx approval fee
approvalFeeInEth := gweiToEth(weiToGwei(path.ApprovalFee.ToInt()))
pathCost.Add(pathCost, new(big.Float).Mul(approvalFeeInEth, nativeTokenPrice))
if path.ApprovalL1Fee.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 {
approvalL1FeeInEth := gweiToEth(weiToGwei(path.ApprovalL1Fee.ToInt()))
pathCost.Add(pathCost, new(big.Float).Mul(approvalL1FeeInEth, nativeTokenPrice))
}
}
currentCost = new(big.Float).Add(currentCost, pathCost)
}
if currentCost.Cmp(bestCost) == -1 {
best = route
bestCost = currentCost
}
}
return best
}
2024-06-05 07:56:02 +00:00
func validateInputData(input *RouteInputParams) error {
if input.SendType == ENSRegister {
if input.Username == "" || input.PublicKey == "" {
return ErrENSRegisterRequiresUsernameAndPubKey
2024-06-05 07:56:02 +00:00
}
if input.testnetMode {
if input.TokenID != pathprocessor.SttSymbol {
return ErrENSRegisterTestnetSTTOnly
2024-06-05 07:56:02 +00:00
}
} else {
if input.TokenID != pathprocessor.SntSymbol {
return ErrENSRegisterMainnetSNTOnly
2024-06-05 07:56:02 +00:00
}
}
return nil
}
2024-06-05 12:46:10 +00:00
if input.SendType == ENSRelease {
if input.Username == "" {
return ErrENSReleaseRequiresUsername
2024-06-05 12:46:10 +00:00
}
}
if input.SendType == ENSSetPubKey {
if input.Username == "" || input.PublicKey == "" {
return ErrENSSetPubKeyRequiresUsernameAndPubKey
}
if ens.ValidateENSUsername(input.Username) != nil {
return ErrENSSetPubKeyInvalidUsername
}
}
if input.SendType == StickersBuy {
if input.PackID == nil {
return ErrStickersBuyRequiresPackID
}
}
2024-06-12 20:14:30 +00:00
if input.SendType == Swap {
if input.ToTokenID == "" {
return ErrSwapRequiresToTokenID
2024-06-12 20:14:30 +00:00
}
if input.TokenID == input.ToTokenID {
return ErrSwapTokenIDMustBeDifferent
2024-06-12 20:14:30 +00:00
}
if input.AmountIn != nil &&
2024-06-12 20:14:30 +00:00
input.AmountOut != nil &&
input.AmountIn.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 &&
2024-06-12 20:14:30 +00:00
input.AmountOut.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 {
return ErrSwapAmountInAmountOutMustBeExclusive
2024-06-12 20:14:30 +00:00
}
if input.AmountIn != nil && input.AmountIn.ToInt().Sign() < 0 {
return ErrSwapAmountInMustBePositive
2024-06-12 20:14:30 +00:00
}
if input.AmountOut != nil && input.AmountOut.ToInt().Sign() < 0 {
return ErrSwapAmountOutMustBePositive
2024-06-12 20:14:30 +00:00
}
}
return validateFromLockedAmount(input)
}
func validateFromLockedAmount(input *RouteInputParams) error {
if input.FromLockedAmount == nil || len(input.FromLockedAmount) == 0 {
return nil
}
var suppNetworks map[uint64]bool
if input.testnetMode {
suppNetworks = copyMapGeneric(supportedTestNetworks, nil).(map[uint64]bool)
} else {
suppNetworks = copyMapGeneric(supportedNetworks, nil).(map[uint64]bool)
}
if suppNetworks == nil {
return ErrCannotCheckLockedAmounts
}
totalLockedAmount := big.NewInt(0)
excludedChainCount := 0
for chainID, amount := range input.FromLockedAmount {
if arrayContainsElement(chainID, input.DisabledFromChainIDs) {
return ErrDisabledChainFoundAmongLockedNetworks
}
if input.testnetMode {
if !supportedTestNetworks[chainID] {
return ErrLockedAmountNotSupportedForNetwork
}
} else {
if !supportedNetworks[chainID] {
return ErrLockedAmountNotSupportedForNetwork
}
}
if amount == nil || amount.ToInt().Sign() < 0 {
return ErrLockedAmountNotNegative
}
if !(amount.ToInt().Sign() > 0) {
excludedChainCount++
}
delete(suppNetworks, chainID)
totalLockedAmount = new(big.Int).Add(totalLockedAmount, amount.ToInt())
}
if (!input.testnetMode && excludedChainCount == len(supportedNetworks)) ||
(input.testnetMode && excludedChainCount == len(supportedTestNetworks)) {
return ErrLockedAmountExcludesAllSupported
}
if totalLockedAmount.Cmp(input.AmountIn.ToInt()) > 0 {
return ErrLockedAmountExceedsTotalSendAmount
} else if totalLockedAmount.Cmp(input.AmountIn.ToInt()) < 0 && len(suppNetworks) == 0 {
return ErrLockedAmountLessThanSendAmountAllNetworks
}
2024-06-05 07:56:02 +00:00
return nil
}
func (r *Router) SuggestedRoutesV2Async(input *RouteInputParams) {
r.scheduler.Enqueue(routerTask, func(ctx context.Context) (interface{}, error) {
return r.SuggestedRoutesV2(ctx, input)
}, func(result interface{}, taskType async.TaskType, err error) {
routesResponse := SuggestedRoutesV2Response{
Uuid: input.Uuid,
}
if err != nil {
errorResponse := errors.CreateErrorResponseFromError(err)
routesResponse.ErrorResponse = errorResponse.(*errors.ErrorResponse)
}
if suggestedRoutes, ok := result.(*SuggestedRoutesV2); ok && suggestedRoutes != nil {
routesResponse.Best = suggestedRoutes.Best
routesResponse.Candidates = suggestedRoutes.Candidates
routesResponse.TokenPrice = &suggestedRoutes.TokenPrice
routesResponse.NativeChainTokenPrice = &suggestedRoutes.NativeChainTokenPrice
}
signal.SendWalletEvent(signal.SuggestedRoutes, routesResponse)
})
}
func (r *Router) StopSuggestedRoutesV2AsyncCalcualtion() {
r.scheduler.Stop()
}
func (r *Router) SuggestedRoutesV2(ctx context.Context, input *RouteInputParams) (*SuggestedRoutesV2, error) {
testnetMode, err := r.rpcClient.NetworkManager.GetTestNetworksEnabled()
if err != nil {
return nil, errors.CreateErrorResponseFromError(err)
}
input.testnetMode = testnetMode
// clear all processors
for _, processor := range r.pathProcessors {
if clearable, ok := processor.(pathprocessor.PathProcessorClearable); ok {
clearable.Clear()
}
}
err = validateInputData(input)
if err != nil {
return nil, errors.CreateErrorResponseFromError(err)
}
selectedFromChains, selectedToChains, err := r.getSelectedChains(input)
if err != nil {
return nil, errors.CreateErrorResponseFromError(err)
}
balanceMap, err := r.getBalanceMapForTokenOnChains(ctx, input, selectedFromChains)
// return only if there are no balances, otherwise try to resolve the candidates for chains we know the balances for
if len(balanceMap) == 0 {
if err != nil {
return nil, errors.CreateErrorResponseFromError(err)
}
} else {
noBalanceOnAnyChain := true
for _, value := range balanceMap {
if value.Cmp(pathprocessor.ZeroBigIntValue) > 0 {
noBalanceOnAnyChain = false
break
}
}
if noBalanceOnAnyChain {
return nil, ErrNoPositiveBalance
}
}
candidates, processorErrors, err := r.resolveCandidates(ctx, input, selectedFromChains, selectedToChains, balanceMap)
if err != nil {
return nil, errors.CreateErrorResponseFromError(err)
}
suggestedRoutes, err := r.resolveRoutes(ctx, input, candidates, balanceMap)
if err == nil && (suggestedRoutes == nil || len(suggestedRoutes.Best) == 0) {
// No best route found, but no error given.
if len(processorErrors) > 0 {
// Return one of the path processor errors if present.
// Give precedence to the custom error message.
for _, processorError := range processorErrors {
if processorError.Error != nil && pathprocessor.IsCustomError(processorError.Error) {
err = processorError.Error
break
}
}
if err == nil {
err = errors.CreateErrorResponseFromError(processorErrors[0].Error)
}
} else {
err = ErrNoBestRouteFound
}
}
mapError := func(err error) error {
if err == nil {
return nil
}
pattern := "insufficient funds for gas * price + value: address "
addressIndex := strings.Index(errors.DetailsFromError(err), pattern)
if addressIndex != -1 {
addressIndex += len(pattern) + hexAddressLength
return errors.CreateErrorResponseFromError(&errors.ErrorResponse{
Code: errors.ErrorCodeFromError(err),
Details: errors.DetailsFromError(err)[:addressIndex],
})
}
return err
}
// map some errors to more user-friendly messages
return suggestedRoutes, mapError(err)
}
// getBalanceMapForTokenOnChains returns the balance map for passed address, where the key is in format "chainID-tokenSymbol" and
// value is the balance of the token. Native token (EHT) is always added to the balance map.
func (r *Router) getBalanceMapForTokenOnChains(ctx context.Context, input *RouteInputParams, selectedFromChains []*params.Network) (balanceMap map[string]*big.Int, err error) {
if input.testsMode {
return input.testParams.balanceMap, nil
}
balanceMap = make(map[string]*big.Int)
chainError := func(chainId uint64, token string, intErr error) {
if err == nil {
err = fmt.Errorf("chain %d, token %s: %w", chainId, token, intErr)
} else {
err = fmt.Errorf("%s; chain %d, token %s: %w", err.Error(), chainId, token, intErr)
}
}
for _, chain := range selectedFromChains {
// check token existence
token := input.SendType.FindToken(r.tokenManager, r.collectiblesService, input.AddrFrom, chain, input.TokenID)
if token == nil {
chainError(chain.ChainID, input.TokenID, ErrTokenNotFound)
continue
}
// check native token existence
nativeToken := r.tokenManager.FindToken(chain, chain.NativeCurrencySymbol)
if nativeToken == nil {
chainError(chain.ChainID, chain.NativeCurrencySymbol, ErrNativeTokenNotFound)
continue
}
// add token balance for the chain
var tokenBalance *big.Int
if input.SendType == ERC721Transfer {
tokenBalance = big.NewInt(1)
} else if input.SendType == ERC1155Transfer {
tokenBalance, err = r.getERC1155Balance(ctx, chain, token, input.AddrFrom)
if err != nil {
chainError(chain.ChainID, token.Symbol, errors.CreateErrorResponseFromError(err))
}
} else {
tokenBalance, err = r.getBalance(ctx, chain.ChainID, token, input.AddrFrom)
if err != nil {
chainError(chain.ChainID, token.Symbol, errors.CreateErrorResponseFromError(err))
}
}
// add only if balance is not nil
if tokenBalance != nil {
balanceMap[makeBalanceKey(chain.ChainID, token.Symbol)] = tokenBalance
}
if token.IsNative() {
continue
}
// add native token balance for the chain
nativeBalance, err := r.getBalance(ctx, chain.ChainID, nativeToken, input.AddrFrom)
if err != nil {
chainError(chain.ChainID, token.Symbol, errors.CreateErrorResponseFromError(err))
}
// add only if balance is not nil
if nativeBalance != nil {
balanceMap[makeBalanceKey(chain.ChainID, nativeToken.Symbol)] = nativeBalance
}
}
return
}
func (r *Router) getSelectedUnlockedChains(input *RouteInputParams, processingChain *params.Network, selectedFromChains []*params.Network) []*params.Network {
selectedButNotLockedChains := []*params.Network{processingChain} // always add the processing chain at the beginning
for _, net := range selectedFromChains {
if net.ChainID == processingChain.ChainID {
continue
}
if _, ok := input.FromLockedAmount[net.ChainID]; !ok {
selectedButNotLockedChains = append(selectedButNotLockedChains, net)
}
}
return selectedButNotLockedChains
}
func (r *Router) getOptionsForAmoutToSplitAccrossChainsForProcessingChain(input *RouteInputParams, amountToSplit *big.Int, processingChain *params.Network,
selectedFromChains []*params.Network, balanceMap map[string]*big.Int) map[uint64][]amountOption {
selectedButNotLockedChains := r.getSelectedUnlockedChains(input, processingChain, selectedFromChains)
crossChainAmountOptions := make(map[uint64][]amountOption)
for _, chain := range selectedButNotLockedChains {
2024-06-05 07:56:02 +00:00
var (
ok bool
tokenBalance *big.Int
2024-06-05 07:56:02 +00:00
)
if tokenBalance, ok = balanceMap[makeBalanceKey(chain.ChainID, input.TokenID)]; !ok {
continue
}
if tokenBalance.Cmp(pathprocessor.ZeroBigIntValue) > 0 {
if tokenBalance.Cmp(amountToSplit) <= 0 {
crossChainAmountOptions[chain.ChainID] = append(crossChainAmountOptions[chain.ChainID], amountOption{
amount: tokenBalance,
locked: false,
subtractFees: true, // for chains where we're taking the full balance, we want to subtract the fees
})
amountToSplit = new(big.Int).Sub(amountToSplit, tokenBalance)
} else if amountToSplit.Cmp(pathprocessor.ZeroBigIntValue) > 0 {
crossChainAmountOptions[chain.ChainID] = append(crossChainAmountOptions[chain.ChainID], amountOption{
amount: amountToSplit,
locked: false,
})
// break since amountToSplit is fully addressed and the rest is 0
break
}
}
}
return crossChainAmountOptions
}
func (r *Router) getCrossChainsOptionsForSendingAmount(input *RouteInputParams, selectedFromChains []*params.Network,
balanceMap map[string]*big.Int) map[uint64][]amountOption {
// All we do in this block we're free to do, because of the validateInputData function which checks if the locked amount
// was properly set and if there is something unexpected it will return an error and we will not reach this point
finalCrossChainAmountOptions := make(map[uint64][]amountOption) // represents all possible amounts that can be sent from the "from" chain
for _, selectedFromChain := range selectedFromChains {
amountLocked := false
amountToSend := input.AmountIn.ToInt()
if amountToSend.Cmp(pathprocessor.ZeroBigIntValue) == 0 {
finalCrossChainAmountOptions[selectedFromChain.ChainID] = append(finalCrossChainAmountOptions[selectedFromChain.ChainID], amountOption{
amount: amountToSend,
locked: false,
})
continue
}
lockedAmount, fromChainLocked := input.FromLockedAmount[selectedFromChain.ChainID]
if fromChainLocked {
amountToSend = lockedAmount.ToInt()
amountLocked = true
} else if len(input.FromLockedAmount) > 0 {
for chainID, lockedAmount := range input.FromLockedAmount {
if chainID == selectedFromChain.ChainID {
continue
}
amountToSend = new(big.Int).Sub(amountToSend, lockedAmount.ToInt())
}
}
if amountToSend.Cmp(pathprocessor.ZeroBigIntValue) > 0 {
// add full amount always, cause we want to check for balance errors at the end of the routing algorithm
// TODO: once we introduce bettwer error handling and start checking for the balance at the beginning of the routing algorithm
// we can remove this line and optimize the routing algorithm more
finalCrossChainAmountOptions[selectedFromChain.ChainID] = append(finalCrossChainAmountOptions[selectedFromChain.ChainID], amountOption{
amount: amountToSend,
locked: amountLocked,
})
if amountLocked {
continue
}
// If the amount that need to be send is bigger than the balance on the chain, then we want to check options if that
// amount can be splitted and sent across multiple chains.
if input.SendType == Transfer && len(selectedFromChains) > 1 {
// All we do in this block we're free to do, because of the validateInputData function which checks if the locked amount
// was properly set and if there is something unexpected it will return an error and we will not reach this point
amountToSplitAccrossChains := new(big.Int).Set(amountToSend)
crossChainAmountOptions := r.getOptionsForAmoutToSplitAccrossChainsForProcessingChain(input, amountToSend, selectedFromChain, selectedFromChains, balanceMap)
// sum up all the allocated amounts accorss all chains
allocatedAmount := big.NewInt(0)
for _, amountOptions := range crossChainAmountOptions {
for _, amountOption := range amountOptions {
allocatedAmount = new(big.Int).Add(allocatedAmount, amountOption.amount)
}
}
// if the allocated amount is the same as the amount that need to be sent, then we can add the options to the finalCrossChainAmountOptions
if allocatedAmount.Cmp(amountToSplitAccrossChains) == 0 {
for cID, amountOptions := range crossChainAmountOptions {
finalCrossChainAmountOptions[cID] = append(finalCrossChainAmountOptions[cID], amountOptions...)
}
}
}
}
}
return finalCrossChainAmountOptions
}
func (r *Router) findOptionsForSendingAmount(input *RouteInputParams, selectedFromChains []*params.Network,
balanceMap map[string]*big.Int) (map[uint64][]amountOption, error) {
2024-06-05 07:56:02 +00:00
crossChainAmountOptions := r.getCrossChainsOptionsForSendingAmount(input, selectedFromChains, balanceMap)
// filter out duplicates values for the same chain
for chainID, amountOptions := range crossChainAmountOptions {
uniqueAmountOptions := make(map[string]amountOption)
for _, amountOption := range amountOptions {
uniqueAmountOptions[amountOption.amount.String()] = amountOption
}
crossChainAmountOptions[chainID] = make([]amountOption, 0)
for _, amountOption := range uniqueAmountOptions {
crossChainAmountOptions[chainID] = append(crossChainAmountOptions[chainID], amountOption)
}
}
return crossChainAmountOptions, nil
}
func (r *Router) getSelectedChains(input *RouteInputParams) (selectedFromChains []*params.Network, selectedToChains []*params.Network, err error) {
var networks []*params.Network
networks, err = r.rpcClient.NetworkManager.Get(false)
if err != nil {
return nil, nil, errors.CreateErrorResponseFromError(err)
}
for _, network := range networks {
if network.IsTest != input.testnetMode {
continue
}
if !arrayContainsElement(network.ChainID, input.DisabledFromChainIDs) {
selectedFromChains = append(selectedFromChains, network)
}
if !arrayContainsElement(network.ChainID, input.DisabledToChainIDs) {
selectedToChains = append(selectedToChains, network)
}
}
return selectedFromChains, selectedToChains, nil
}
2024-06-19 09:20:41 +00:00
func (r *Router) resolveCandidates(ctx context.Context, input *RouteInputParams, selectedFromChains []*params.Network,
selectedToChains []*params.Network, balanceMap map[string]*big.Int) (candidates []*PathV2, processorErrors []*ProcessorError, err error) {
var (
testsMode = input.testsMode && input.testParams != nil
group = async.NewAtomicGroup(ctx)
mu sync.Mutex
)
crossChainAmountOptions, err := r.findOptionsForSendingAmount(input, selectedFromChains, balanceMap)
if err != nil {
return nil, nil, errors.CreateErrorResponseFromError(err)
}
appendProcessorErrorFn := func(processorName string, sendType SendType, fromChainID uint64, toChainID uint64, amount *big.Int, err error) {
log.Error("routerv2.resolveCandidates error", "processor", processorName, "sendType", sendType, "fromChainId: ", fromChainID, "toChainId", toChainID, "amount", amount, "err", err)
mu.Lock()
defer mu.Unlock()
processorErrors = append(processorErrors, &ProcessorError{
ProcessorName: processorName,
Error: err,
})
}
appendPathFn := func(path *PathV2) {
mu.Lock()
defer mu.Unlock()
candidates = append(candidates, path)
}
for networkIdx := range selectedFromChains {
network := selectedFromChains[networkIdx]
if !input.SendType.isAvailableFor(network) {
continue
}
var (
token *walletToken.Token
toToken *walletToken.Token
)
if testsMode {
token = input.testParams.tokenFrom
} else {
token = input.SendType.FindToken(r.tokenManager, r.collectiblesService, input.AddrFrom, network, input.TokenID)
}
if token == nil {
continue
}
if input.SendType == Swap {
toToken = input.SendType.FindToken(r.tokenManager, r.collectiblesService, common.Address{}, network, input.ToTokenID)
}
var fees *SuggestedFees
if testsMode {
fees = input.testParams.suggestedFees
} else {
fees, err = r.feesManager.SuggestedFees(ctx, network.ChainID)
if err != nil {
continue
}
}
group.Add(func(c context.Context) error {
for _, amountOption := range crossChainAmountOptions[network.ChainID] {
for _, pProcessor := range r.pathProcessors {
// With the condition below we're eliminating `Swap` as potential path that can participate in calculating the best route
// once we decide to inlcude `Swap` in the calculation we need to update `canUseProcessor` function.
// This also applies to including another (Celer) bridge in the calculation.
// TODO:
// this algorithm, includeing finding the best route, has to be updated to include more bridges and one (for now) or more swap options
// it means that candidates should not be treated linearly, but improve the logic to have multiple routes with different processors of the same type.
// Example:
// Routes for sending SNT from Ethereum to Optimism can be:
// 1. Swap SNT(mainnet) to ETH(mainnet); then bridge via Hop ETH(mainnet) to ETH(opt); then Swap ETH(opt) to SNT(opt); then send SNT (opt) to the destination
// 2. Swap SNT(mainnet) to ETH(mainnet); then bridge via Celer ETH(mainnet) to ETH(opt); then Swap ETH(opt) to SNT(opt); then send SNT (opt) to the destination
// 3. Swap SNT(mainnet) to USDC(mainnet); then bridge via Hop USDC(mainnet) to USDC(opt); then Swap USDC(opt) to SNT(opt); then send SNT (opt) to the destination
// 4. Swap SNT(mainnet) to USDC(mainnet); then bridge via Celer USDC(mainnet) to USDC(opt); then Swap USDC(opt) to SNT(opt); then send SNT (opt) to the destination
// 5. ...
// 6. ...
//
// With the current routing algorithm atm we're not able to generate all possible routes.
if !input.SendType.canUseProcessor(pProcessor) {
continue
}
// if we're doing a single chain operation, we can skip bridge processors
if isSingleChainOperation(selectedFromChains, selectedToChains) && pathprocessor.IsProcessorBridge(pProcessor.Name()) {
continue
}
if !input.SendType.processZeroAmountInProcessor(amountOption.amount, input.AmountOut.ToInt(), pProcessor.Name()) {
continue
}
for _, dest := range selectedToChains {
if !input.SendType.isAvailableFor(network) {
continue
}
if !input.SendType.isAvailableBetween(network, dest) {
continue
}
processorInputParams := pathprocessor.ProcessorInputParams{
FromChain: network,
ToChain: dest,
FromToken: token,
ToToken: toToken,
ToAddr: input.AddrTo,
FromAddr: input.AddrFrom,
AmountIn: amountOption.amount,
AmountOut: input.AmountOut.ToInt(),
Username: input.Username,
PublicKey: input.PublicKey,
PackID: input.PackID.ToInt(),
}
if input.testsMode {
processorInputParams.TestsMode = input.testsMode
processorInputParams.TestEstimationMap = input.testParams.estimationMap
processorInputParams.TestBonderFeeMap = input.testParams.bonderFeeMap
processorInputParams.TestApprovalGasEstimation = input.testParams.approvalGasEstimation
processorInputParams.TestApprovalL1Fee = input.testParams.approvalL1Fee
}
can, err := pProcessor.AvailableFor(processorInputParams)
if err != nil {
appendProcessorErrorFn(pProcessor.Name(), input.SendType, processorInputParams.FromChain.ChainID, processorInputParams.ToChain.ChainID, processorInputParams.AmountIn, err)
continue
}
if !can {
continue
}
bonderFees, tokenFees, err := pProcessor.CalculateFees(processorInputParams)
if err != nil {
appendProcessorErrorFn(pProcessor.Name(), input.SendType, processorInputParams.FromChain.ChainID, processorInputParams.ToChain.ChainID, processorInputParams.AmountIn, err)
continue
}
gasLimit, err := pProcessor.EstimateGas(processorInputParams)
if err != nil {
appendProcessorErrorFn(pProcessor.Name(), input.SendType, processorInputParams.FromChain.ChainID, processorInputParams.ToChain.ChainID, processorInputParams.AmountIn, err)
continue
}
approvalContractAddress, err := pProcessor.GetContractAddress(processorInputParams)
if err != nil {
appendProcessorErrorFn(pProcessor.Name(), input.SendType, processorInputParams.FromChain.ChainID, processorInputParams.ToChain.ChainID, processorInputParams.AmountIn, err)
continue
}
approvalRequired, approvalAmountRequired, approvalGasLimit, l1ApprovalFee, err := r.requireApproval(ctx, input.SendType, &approvalContractAddress, processorInputParams)
if err != nil {
appendProcessorErrorFn(pProcessor.Name(), input.SendType, processorInputParams.FromChain.ChainID, processorInputParams.ToChain.ChainID, processorInputParams.AmountIn, err)
continue
}
// TODO: keep l1 fees at 0 until we have the correct algorithm, as we do base fee x 2 that should cover the l1 fees
var l1FeeWei uint64 = 0
// if input.SendType.needL1Fee() {
// txInputData, err := pProcessor.PackTxInputData(processorInputParams)
// if err != nil {
// continue
// }
// l1FeeWei, _ = r.feesManager.GetL1Fee(ctx, network.ChainID, txInputData)
// }
amountOut, err := pProcessor.CalculateAmountOut(processorInputParams)
if err != nil {
appendProcessorErrorFn(pProcessor.Name(), input.SendType, processorInputParams.FromChain.ChainID, processorInputParams.ToChain.ChainID, processorInputParams.AmountIn, err)
continue
}
maxFeesPerGas := fees.feeFor(input.GasFeeMode)
estimatedTime := r.feesManager.TransactionEstimatedTime(ctx, network.ChainID, maxFeesPerGas)
if approvalRequired && estimatedTime < MoreThanFiveMinutes {
estimatedTime += 1
}
// calculate ETH fees
ethTotalFees := big.NewInt(0)
txFeeInWei := new(big.Int).Mul(maxFeesPerGas, big.NewInt(int64(gasLimit)))
ethTotalFees.Add(ethTotalFees, txFeeInWei)
txL1FeeInWei := big.NewInt(0)
if l1FeeWei > 0 {
txL1FeeInWei = big.NewInt(int64(l1FeeWei))
ethTotalFees.Add(ethTotalFees, txL1FeeInWei)
}
approvalFeeInWei := big.NewInt(0)
approvalL1FeeInWei := big.NewInt(0)
if approvalRequired {
approvalFeeInWei.Mul(maxFeesPerGas, big.NewInt(int64(approvalGasLimit)))
ethTotalFees.Add(ethTotalFees, approvalFeeInWei)
if l1ApprovalFee > 0 {
approvalL1FeeInWei = big.NewInt(int64(l1ApprovalFee))
ethTotalFees.Add(ethTotalFees, approvalL1FeeInWei)
}
}
// calculate required balances (bonder and token fees are already included in the amountIn by Hop bridge (once we include Celar we need to check how they handle the fees))
requiredNativeBalance := big.NewInt(0)
requiredTokenBalance := big.NewInt(0)
if token.IsNative() {
requiredNativeBalance.Add(requiredNativeBalance, amountOption.amount)
if !amountOption.subtractFees {
requiredNativeBalance.Add(requiredNativeBalance, ethTotalFees)
}
} else {
requiredTokenBalance.Add(requiredTokenBalance, amountOption.amount)
requiredNativeBalance.Add(requiredNativeBalance, ethTotalFees)
}
appendPathFn(&PathV2{
ProcessorName: pProcessor.Name(),
FromChain: network,
ToChain: dest,
FromToken: token,
ToToken: toToken,
AmountIn: (*hexutil.Big)(amountOption.amount),
AmountInLocked: amountOption.locked,
AmountOut: (*hexutil.Big)(amountOut),
SuggestedLevelsForMaxFeesPerGas: fees.MaxFeesLevels,
MaxFeesPerGas: (*hexutil.Big)(maxFeesPerGas),
TxBaseFee: (*hexutil.Big)(fees.BaseFee),
TxPriorityFee: (*hexutil.Big)(fees.MaxPriorityFeePerGas),
TxGasAmount: gasLimit,
TxBonderFees: (*hexutil.Big)(bonderFees),
TxTokenFees: (*hexutil.Big)(tokenFees),
TxFee: (*hexutil.Big)(txFeeInWei),
TxL1Fee: (*hexutil.Big)(txL1FeeInWei),
ApprovalRequired: approvalRequired,
ApprovalAmountRequired: (*hexutil.Big)(approvalAmountRequired),
ApprovalContractAddress: &approvalContractAddress,
ApprovalBaseFee: (*hexutil.Big)(fees.BaseFee),
ApprovalPriorityFee: (*hexutil.Big)(fees.MaxPriorityFeePerGas),
ApprovalGasAmount: approvalGasLimit,
ApprovalFee: (*hexutil.Big)(approvalFeeInWei),
ApprovalL1Fee: (*hexutil.Big)(approvalL1FeeInWei),
TxTotalFee: (*hexutil.Big)(ethTotalFees),
EstimatedTime: estimatedTime,
subtractFees: amountOption.subtractFees,
requiredTokenBalance: requiredTokenBalance,
requiredNativeBalance: requiredNativeBalance,
})
}
}
}
return nil
})
}
sort.Slice(candidates, func(i, j int) bool {
iChain := getChainPriority(candidates[i].FromChain.ChainID)
jChain := getChainPriority(candidates[j].FromChain.ChainID)
return iChain <= jChain
})
group.Wait()
return candidates, processorErrors, nil
}
func (r *Router) checkBalancesForTheBestRoute(ctx context.Context, bestRoute []*PathV2, balanceMap map[string]*big.Int) (hasPositiveBalance bool, err error) {
balanceMapCopy := copyMapGeneric(balanceMap, func(v interface{}) interface{} {
return new(big.Int).Set(v.(*big.Int))
}).(map[string]*big.Int)
if balanceMapCopy == nil {
return false, ErrCannotCheckBalance
}
// check the best route for the required balances
for _, path := range bestRoute {
tokenKey := makeBalanceKey(path.FromChain.ChainID, path.FromToken.Symbol)
if tokenBalance, ok := balanceMapCopy[tokenKey]; ok {
if tokenBalance.Cmp(pathprocessor.ZeroBigIntValue) > 0 {
hasPositiveBalance = true
}
}
if path.ProcessorName == pathprocessor.ProcessorBridgeHopName {
if path.TxBonderFees.ToInt().Cmp(path.AmountOut.ToInt()) > 0 {
return hasPositiveBalance, ErrLowAmountInForHopBridge
}
}
if path.requiredTokenBalance != nil && path.requiredTokenBalance.Cmp(pathprocessor.ZeroBigIntValue) > 0 {
if tokenBalance, ok := balanceMapCopy[tokenKey]; ok {
if tokenBalance.Cmp(path.requiredTokenBalance) == -1 {
err := &errors.ErrorResponse{
Code: ErrNotEnoughTokenBalance.Code,
Details: fmt.Sprintf(ErrNotEnoughTokenBalance.Details, path.FromToken.Symbol, path.FromChain.ChainID),
}
return hasPositiveBalance, err
}
balanceMapCopy[tokenKey].Sub(tokenBalance, path.requiredTokenBalance)
} else {
return hasPositiveBalance, ErrTokenNotFound
}
}
ethKey := makeBalanceKey(path.FromChain.ChainID, pathprocessor.EthSymbol)
if nativeBalance, ok := balanceMapCopy[ethKey]; ok {
if nativeBalance.Cmp(path.requiredNativeBalance) == -1 {
err := &errors.ErrorResponse{
Code: ErrNotEnoughNativeBalance.Code,
Details: fmt.Sprintf(ErrNotEnoughNativeBalance.Details, pathprocessor.EthSymbol, path.FromChain.ChainID),
}
return hasPositiveBalance, err
}
balanceMapCopy[ethKey].Sub(nativeBalance, path.requiredNativeBalance)
} else {
return hasPositiveBalance, ErrNativeTokenNotFound
}
}
return hasPositiveBalance, nil
}
func removeBestRouteFromAllRouters(allRoutes [][]*PathV2, best []*PathV2) [][]*PathV2 {
for i := len(allRoutes) - 1; i >= 0; i-- {
route := allRoutes[i]
routeFound := true
for _, p := range route {
found := false
for _, b := range best {
if p.ProcessorName == b.ProcessorName &&
(p.FromChain == nil && b.FromChain == nil || p.FromChain.ChainID == b.FromChain.ChainID) &&
(p.ToChain == nil && b.ToChain == nil || p.ToChain.ChainID == b.ToChain.ChainID) &&
(p.FromToken == nil && b.FromToken == nil || p.FromToken.Symbol == b.FromToken.Symbol) {
found = true
break
}
}
if !found {
routeFound = false
break
}
}
if routeFound {
return append(allRoutes[:i], allRoutes[i+1:]...)
}
}
return nil
}
func getChainPriority(chainID uint64) int {
switch chainID {
case walletCommon.EthereumMainnet, walletCommon.EthereumSepolia:
return 1
case walletCommon.OptimismMainnet, walletCommon.OptimismSepolia:
return 2
case walletCommon.ArbitrumMainnet, walletCommon.ArbitrumSepolia:
return 3
default:
return 0
}
}
func getRoutePriority(route []*PathV2) int {
priority := 0
for _, path := range route {
priority += getChainPriority(path.FromChain.ChainID)
}
return priority
}
func (r *Router) resolveRoutes(ctx context.Context, input *RouteInputParams, candidates []*PathV2, balanceMap map[string]*big.Int) (suggestedRoutes *SuggestedRoutesV2, err error) {
var prices map[string]float64
if input.testsMode {
prices = input.testParams.tokenPrices
} else {
prices, err = input.SendType.FetchPrices(r.marketManager, input.TokenID)
if err != nil {
return nil, errors.CreateErrorResponseFromError(err)
}
}
tokenPrice := prices[input.TokenID]
nativeTokenPrice := prices[pathprocessor.EthSymbol]
var allRoutes [][]*PathV2
suggestedRoutes, allRoutes = newSuggestedRoutesV2(input.Uuid, input.AmountIn.ToInt(), candidates, input.FromLockedAmount, tokenPrice, nativeTokenPrice)
defer func() {
if suggestedRoutes.Best != nil && len(suggestedRoutes.Best) > 0 {
sort.Slice(suggestedRoutes.Best, func(i, j int) bool {
iChain := getChainPriority(suggestedRoutes.Best[i].FromChain.ChainID)
jChain := getChainPriority(suggestedRoutes.Best[j].FromChain.ChainID)
return iChain <= jChain
})
}
}()
var (
bestRoute []*PathV2
lastBestRouteWithPositiveBalance []*PathV2
lastBestRouteErr error
)
for len(allRoutes) > 0 {
bestRoute = findBestV2(allRoutes, tokenPrice, nativeTokenPrice)
var hasPositiveBalance bool
hasPositiveBalance, err = r.checkBalancesForTheBestRoute(ctx, bestRoute, balanceMap)
if err != nil {
// If it's about transfer or bridge and there is more routes, but on the best (cheapest) one there is not enugh balance
// we shold check other routes even though there are not the cheapest ones
if input.SendType == Transfer ||
input.SendType == Bridge {
if hasPositiveBalance {
lastBestRouteWithPositiveBalance = bestRoute
lastBestRouteErr = err
}
if len(allRoutes) > 1 {
allRoutes = removeBestRouteFromAllRouters(allRoutes, bestRoute)
continue
} else {
break
}
}
}
break
}
// if none of the routes have positive balance, we should return the last best route with positive balance
if err != nil && lastBestRouteWithPositiveBalance != nil {
bestRoute = lastBestRouteWithPositiveBalance
err = lastBestRouteErr
}
if len(bestRoute) > 0 {
// At this point we have to do the final check and update the amountIn (subtracting fees) if complete balance is going to be sent for native token (ETH)
for _, path := range bestRoute {
if path.subtractFees && path.FromToken.IsNative() {
path.AmountIn.ToInt().Sub(path.AmountIn.ToInt(), path.TxFee.ToInt())
if path.TxL1Fee.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 {
path.AmountIn.ToInt().Sub(path.AmountIn.ToInt(), path.TxL1Fee.ToInt())
}
if path.ApprovalRequired {
path.AmountIn.ToInt().Sub(path.AmountIn.ToInt(), path.ApprovalFee.ToInt())
if path.ApprovalL1Fee.ToInt().Cmp(pathprocessor.ZeroBigIntValue) > 0 {
path.AmountIn.ToInt().Sub(path.AmountIn.ToInt(), path.ApprovalL1Fee.ToInt())
}
}
}
}
}
suggestedRoutes.Best = bestRoute
return suggestedRoutes, err
}