status-go/vendor/github.com/pion/rtcp/receiver_estimated_maximum_...

284 lines
8.2 KiB
Go
Raw Normal View History

2022-03-10 09:44:48 +00:00
package rtcp
import (
"bytes"
"encoding/binary"
"fmt"
"math"
)
// ReceiverEstimatedMaximumBitrate contains the receiver's estimated maximum bitrate.
// see: https://tools.ietf.org/html/draft-alvestrand-rmcat-remb-03
type ReceiverEstimatedMaximumBitrate struct {
// SSRC of sender
SenderSSRC uint32
// Estimated maximum bitrate
Bitrate float32
// SSRC entries which this packet applies to
SSRCs []uint32
}
// Marshal serializes the packet and returns a byte slice.
func (p ReceiverEstimatedMaximumBitrate) Marshal() (buf []byte, err error) {
// Allocate a buffer of the exact output size.
buf = make([]byte, p.MarshalSize())
// Write to our buffer.
n, err := p.MarshalTo(buf)
if err != nil {
return nil, err
}
// This will always be true but just to be safe.
if n != len(buf) {
return nil, errWrongMarshalSize
}
return buf, nil
}
// MarshalSize returns the size of the packet when marshaled.
// This can be used in conjunction with `MarshalTo` to avoid allocations.
func (p ReceiverEstimatedMaximumBitrate) MarshalSize() (n int) {
return 20 + 4*len(p.SSRCs)
}
// MarshalTo serializes the packet to the given byte slice.
func (p ReceiverEstimatedMaximumBitrate) MarshalTo(buf []byte) (n int, err error) {
const bitratemax = 0x3FFFFp+63
/*
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P| FMT=15 | PT=206 | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SSRC of packet sender |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SSRC of media source |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unique identifier 'R' 'E' 'M' 'B' |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num SSRC | BR Exp | BR Mantissa |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SSRC feedback |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
*/
size := p.MarshalSize()
if len(buf) < size {
return 0, errPacketTooShort
}
buf[0] = 143 // v=2, p=0, fmt=15
buf[1] = 206
// Length of this packet in 32-bit words minus one.
length := uint16((p.MarshalSize() / 4) - 1)
binary.BigEndian.PutUint16(buf[2:4], length)
binary.BigEndian.PutUint32(buf[4:8], p.SenderSSRC)
binary.BigEndian.PutUint32(buf[8:12], 0) // always zero
// ALL HAIL REMB
buf[12] = 'R'
buf[13] = 'E'
buf[14] = 'M'
buf[15] = 'B'
// Write the length of the ssrcs to follow at the end
buf[16] = byte(len(p.SSRCs))
exp := 0
bitrate := p.Bitrate
if bitrate >= bitratemax {
bitrate = bitratemax
}
if bitrate < 0 {
return 0, errInvalidBitrate
}
for bitrate >= (1 << 18) {
bitrate /= 2.0
exp++
}
if exp >= (1 << 6) {
return 0, errInvalidBitrate
}
mantissa := uint(math.Floor(float64(bitrate)))
// We can't quite use the binary package because
// a) it's a uint24 and b) the exponent is only 6-bits
// Just trust me; this is big-endian encoding.
buf[17] = byte(exp<<2) | byte(mantissa>>16)
buf[18] = byte(mantissa >> 8)
buf[19] = byte(mantissa)
// Write the SSRCs at the very end.
n = 20
for _, ssrc := range p.SSRCs {
binary.BigEndian.PutUint32(buf[n:n+4], ssrc)
n += 4
}
return n, nil
}
// Unmarshal reads a REMB packet from the given byte slice.
func (p *ReceiverEstimatedMaximumBitrate) Unmarshal(buf []byte) (err error) {
const mantissamax = 0x7FFFFF
/*
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P| FMT=15 | PT=206 | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SSRC of packet sender |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SSRC of media source |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unique identifier 'R' 'E' 'M' 'B' |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num SSRC | BR Exp | BR Mantissa |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SSRC feedback |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
*/
// 20 bytes is the size of the packet with no SSRCs
if len(buf) < 20 {
return errPacketTooShort
}
// version must be 2
version := buf[0] >> 6
if version != 2 {
return fmt.Errorf("%w expected(2) actual(%d)", errBadVersion, version)
}
// padding must be unset
padding := (buf[0] >> 5) & 1
if padding != 0 {
return fmt.Errorf("%w expected(0) actual(%d)", errWrongPadding, padding)
}
// fmt must be 15
fmtVal := buf[0] & 31
if fmtVal != 15 {
return fmt.Errorf("%w expected(15) actual(%d)", errWrongFeedbackType, fmtVal)
}
// Must be payload specific feedback
if buf[1] != 206 {
return fmt.Errorf("%w expected(206) actual(%d)", errWrongPayloadType, buf[1])
}
// length is the number of 32-bit words, minus 1
length := binary.BigEndian.Uint16(buf[2:4])
size := int((length + 1) * 4)
// There's not way this could be legit
if size < 20 {
return errHeaderTooSmall
}
// Make sure the buffer is large enough.
if len(buf) < size {
return errPacketTooShort
}
// The sender SSRC is 32-bits
p.SenderSSRC = binary.BigEndian.Uint32(buf[4:8])
// The destination SSRC must be 0
media := binary.BigEndian.Uint32(buf[8:12])
if media != 0 {
return errSSRCMustBeZero
}
// REMB rules all around me
if !bytes.Equal(buf[12:16], []byte{'R', 'E', 'M', 'B'}) {
return errMissingREMBidentifier
}
// The next byte is the number of SSRC entries at the end.
num := int(buf[16])
// Now we know the expected size, make sure they match.
if size != 20+4*num {
return errSSRCNumAndLengthMismatch
}
// Get the 6-bit exponent value.
exp := buf[17] >> 2
exp += 127 // bias for IEEE754
exp += 23 // IEEE754 biases the decimal to the left, abs-send-time biases it to the right
// The remaining 2-bits plus the next 16-bits are the mantissa.
mantissa := uint32(buf[17]&3)<<16 | uint32(buf[18])<<8 | uint32(buf[19])
if mantissa != 0 {
// ieee754 requires an implicit leading bit
for (mantissa & (mantissamax + 1)) == 0 {
exp--
mantissa *= 2
}
}
// bitrate = mantissa * 2^exp
p.Bitrate = math.Float32frombits((uint32(exp) << 23) | (mantissa & mantissamax))
// Clear any existing SSRCs
p.SSRCs = nil
// Loop over and parse the SSRC entires at the end.
// We already verified that size == num * 4
for n := 20; n < size; n += 4 {
ssrc := binary.BigEndian.Uint32(buf[n : n+4])
p.SSRCs = append(p.SSRCs, ssrc)
}
return nil
}
// Header returns the Header associated with this packet.
func (p *ReceiverEstimatedMaximumBitrate) Header() Header {
return Header{
Count: FormatREMB,
Type: TypePayloadSpecificFeedback,
Length: uint16((p.MarshalSize() / 4) - 1),
}
}
// String prints the REMB packet in a human-readable format.
func (p *ReceiverEstimatedMaximumBitrate) String() string {
// Keep a table of powers to units for fast conversion.
bitUnits := []string{"b", "Kb", "Mb", "Gb", "Tb", "Pb", "Eb"}
// Do some unit conversions because b/s is far too difficult to read.
bitrate := p.Bitrate
powers := 0
// Keep dividing the bitrate until it's under 1000
for bitrate >= 1000.0 && powers < len(bitUnits) {
bitrate /= 1000.0
powers++
}
unit := bitUnits[powers]
return fmt.Sprintf("ReceiverEstimatedMaximumBitrate %x %.2f %s/s", p.SenderSSRC, bitrate, unit)
}
// DestinationSSRC returns an array of SSRC values that this packet refers to.
func (p *ReceiverEstimatedMaximumBitrate) DestinationSSRC() []uint32 {
return p.SSRCs
}