2021-09-09 16:28:54 +02:00
|
|
|
package transfer
|
2019-06-14 13:16:30 +03:00
|
|
|
|
|
|
|
import (
|
|
|
|
"context"
|
|
|
|
"errors"
|
|
|
|
"math/big"
|
|
|
|
"time"
|
|
|
|
|
2023-11-27 11:08:17 +01:00
|
|
|
"golang.org/x/exp/slices" // since 1.21, this is in the standard library
|
|
|
|
|
2019-06-14 13:16:30 +03:00
|
|
|
"github.com/ethereum/go-ethereum"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
2023-01-10 14:49:03 +01:00
|
|
|
"github.com/ethereum/go-ethereum/core"
|
2019-06-14 13:16:30 +03:00
|
|
|
"github.com/ethereum/go-ethereum/core/types"
|
|
|
|
"github.com/ethereum/go-ethereum/log"
|
2023-05-19 18:31:45 +03:00
|
|
|
|
2023-02-20 10:32:45 +01:00
|
|
|
"github.com/status-im/status-go/rpc/chain"
|
2023-05-19 18:31:45 +03:00
|
|
|
w_common "github.com/status-im/status-go/services/wallet/common"
|
2019-06-14 13:16:30 +03:00
|
|
|
)
|
|
|
|
|
|
|
|
var (
|
|
|
|
zero = big.NewInt(0)
|
|
|
|
one = big.NewInt(1)
|
|
|
|
two = big.NewInt(2)
|
|
|
|
)
|
|
|
|
|
2023-06-02 17:08:45 -03:00
|
|
|
// Partial transaction info obtained by ERC20Downloader.
|
2023-11-02 18:24:23 +01:00
|
|
|
// A PreloadedTransaction represents a Transaction which contains one
|
|
|
|
// ERC20/ERC721/ERC1155 transfer event.
|
|
|
|
// To be converted into one Transfer object post-indexing.
|
2023-06-02 17:08:45 -03:00
|
|
|
type PreloadedTransaction struct {
|
2023-11-02 18:24:23 +01:00
|
|
|
Type w_common.Type `json:"type"`
|
|
|
|
ID common.Hash `json:"-"`
|
|
|
|
Address common.Address `json:"address"`
|
2023-06-02 17:08:45 -03:00
|
|
|
// Log that was used to generate preloaded transaction.
|
2023-11-02 18:24:23 +01:00
|
|
|
Log *types.Log `json:"log"`
|
|
|
|
TokenID *big.Int `json:"tokenId"`
|
|
|
|
Value *big.Int `json:"value"`
|
2023-06-02 17:08:45 -03:00
|
|
|
}
|
|
|
|
|
2019-06-14 13:16:30 +03:00
|
|
|
// Transfer stores information about transfer.
|
2023-06-02 17:08:45 -03:00
|
|
|
// A Transfer represents a plain ETH transfer or some token activity inside a Transaction
|
2023-11-02 18:24:23 +01:00
|
|
|
// Since ERC1155 transfers can contain multiple tokens, a single Transfer represents a single token transfer,
|
|
|
|
// that means ERC1155 batch transfers will be represented by multiple Transfer objects.
|
2019-06-14 13:16:30 +03:00
|
|
|
type Transfer struct {
|
2023-05-19 18:31:45 +03:00
|
|
|
Type w_common.Type `json:"type"`
|
2019-06-14 13:16:30 +03:00
|
|
|
ID common.Hash `json:"-"`
|
|
|
|
Address common.Address `json:"address"`
|
|
|
|
BlockNumber *big.Int `json:"blockNumber"`
|
|
|
|
BlockHash common.Hash `json:"blockhash"`
|
2019-07-10 12:08:43 +03:00
|
|
|
Timestamp uint64 `json:"timestamp"`
|
2019-06-14 13:16:30 +03:00
|
|
|
Transaction *types.Transaction `json:"transaction"`
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
Loaded bool
|
2020-10-28 10:56:14 +03:00
|
|
|
NetworkID uint64
|
2019-07-10 12:08:43 +03:00
|
|
|
// From is derived from tx signature in order to offload this computation from UI component.
|
|
|
|
From common.Address `json:"from"`
|
|
|
|
Receipt *types.Receipt `json:"receipt"`
|
2019-07-15 14:16:07 +03:00
|
|
|
// Log that was used to generate erc20 transfer. Nil for eth transfer.
|
2023-11-02 18:24:23 +01:00
|
|
|
Log *types.Log `json:"log"`
|
|
|
|
// TokenID is the id of the transferred token. Nil for eth transfer.
|
|
|
|
TokenID *big.Int `json:"tokenId"`
|
|
|
|
// TokenValue is the value of the token transfer. Nil for eth transfer.
|
|
|
|
TokenValue *big.Int `json:"tokenValue"`
|
2022-09-09 20:22:59 +02:00
|
|
|
BaseGasFees string
|
2023-02-15 14:28:19 +02:00
|
|
|
// Internal field that is used to track multi-transaction transfers.
|
|
|
|
MultiTransactionID MultiTransactionIDType `json:"multi_transaction_id"`
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
// ETHDownloader downloads regular eth transfers and tokens transfers.
|
2021-09-09 16:28:54 +02:00
|
|
|
type ETHDownloader struct {
|
2023-09-20 10:41:23 +02:00
|
|
|
chainClient chain.ClientInterface
|
2021-09-09 16:28:54 +02:00
|
|
|
accounts []common.Address
|
|
|
|
signer types.Signer
|
|
|
|
db *Database
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
|
|
|
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
var errLogsDownloaderStuck = errors.New("logs downloader stuck")
|
|
|
|
|
2021-09-09 16:28:54 +02:00
|
|
|
func (d *ETHDownloader) GetTransfersByNumber(ctx context.Context, number *big.Int) ([]Transfer, error) {
|
|
|
|
blk, err := d.chainClient.BlockByNumber(ctx, number)
|
2019-06-14 13:16:30 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
rst, err := d.getTransfersInBlock(ctx, blk, d.accounts)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
return rst, err
|
|
|
|
}
|
|
|
|
|
2023-06-02 17:08:45 -03:00
|
|
|
// Only used by status-mobile
|
2023-09-20 10:41:23 +02:00
|
|
|
func getTransferByHash(ctx context.Context, client chain.ClientInterface, signer types.Signer, address common.Address, hash common.Hash) (*Transfer, error) {
|
2021-11-24 14:59:45 +02:00
|
|
|
transaction, _, err := client.TransactionByHash(ctx, hash)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
receipt, err := client.TransactionReceipt(ctx, hash)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2023-05-19 18:31:45 +03:00
|
|
|
eventType, transactionLog := w_common.GetFirstEvent(receipt.Logs)
|
|
|
|
transactionType := w_common.EventTypeToSubtransactionType(eventType)
|
2021-11-24 14:59:45 +02:00
|
|
|
|
|
|
|
from, err := types.Sender(signer, transaction)
|
|
|
|
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2022-09-26 12:04:19 +02:00
|
|
|
baseGasFee, err := client.GetBaseFeeFromBlock(big.NewInt(int64(transactionLog.BlockNumber)))
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2023-06-02 17:08:45 -03:00
|
|
|
transfer := &Transfer{
|
|
|
|
Type: transactionType,
|
2021-11-24 14:59:45 +02:00
|
|
|
ID: hash,
|
|
|
|
Address: address,
|
|
|
|
BlockNumber: receipt.BlockNumber,
|
|
|
|
BlockHash: receipt.BlockHash,
|
|
|
|
Timestamp: uint64(time.Now().Unix()),
|
|
|
|
Transaction: transaction,
|
|
|
|
From: from,
|
|
|
|
Receipt: receipt,
|
2022-09-26 12:04:19 +02:00
|
|
|
Log: transactionLog,
|
|
|
|
BaseGasFees: baseGasFee,
|
|
|
|
}
|
2021-11-24 14:59:45 +02:00
|
|
|
|
|
|
|
return transfer, nil
|
|
|
|
}
|
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
func (d *ETHDownloader) getTransfersInBlock(ctx context.Context, blk *types.Block, accounts []common.Address) ([]Transfer, error) {
|
2023-05-08 08:02:00 +02:00
|
|
|
startTs := time.Now()
|
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
rst := make([]Transfer, 0, len(blk.Transactions()))
|
|
|
|
|
|
|
|
receiptsByAddressAndTxHash := make(map[common.Address]map[common.Hash]*types.Receipt)
|
|
|
|
txsByAddressAndTxHash := make(map[common.Address]map[common.Hash]*types.Transaction)
|
|
|
|
|
|
|
|
addReceiptToCache := func(address common.Address, txHash common.Hash, receipt *types.Receipt) {
|
|
|
|
if receiptsByAddressAndTxHash[address] == nil {
|
|
|
|
receiptsByAddressAndTxHash[address] = make(map[common.Hash]*types.Receipt)
|
|
|
|
}
|
|
|
|
receiptsByAddressAndTxHash[address][txHash] = receipt
|
|
|
|
}
|
|
|
|
|
|
|
|
addTxToCache := func(address common.Address, txHash common.Hash, tx *types.Transaction) {
|
|
|
|
if txsByAddressAndTxHash[address] == nil {
|
|
|
|
txsByAddressAndTxHash[address] = make(map[common.Hash]*types.Transaction)
|
|
|
|
}
|
|
|
|
txsByAddressAndTxHash[address][txHash] = tx
|
|
|
|
}
|
|
|
|
|
|
|
|
getReceiptFromCache := func(address common.Address, txHash common.Hash) *types.Receipt {
|
|
|
|
if receiptsByAddressAndTxHash[address] == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return receiptsByAddressAndTxHash[address][txHash]
|
|
|
|
}
|
|
|
|
|
|
|
|
getTxFromCache := func(address common.Address, txHash common.Hash) *types.Transaction {
|
|
|
|
if txsByAddressAndTxHash[address] == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return txsByAddressAndTxHash[address][txHash]
|
|
|
|
}
|
|
|
|
|
|
|
|
getReceipt := func(address common.Address, txHash common.Hash) (receipt *types.Receipt, err error) {
|
|
|
|
receipt = getReceiptFromCache(address, txHash)
|
|
|
|
if receipt == nil {
|
|
|
|
receipt, err = d.fetchTransactionReceipt(ctx, txHash)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
addReceiptToCache(address, txHash, receipt)
|
|
|
|
}
|
|
|
|
return receipt, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
getTx := func(address common.Address, txHash common.Hash) (tx *types.Transaction, err error) {
|
|
|
|
tx = getTxFromCache(address, txHash)
|
|
|
|
if tx == nil {
|
|
|
|
tx, err = d.fetchTransaction(ctx, txHash)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
addTxToCache(address, txHash, tx)
|
|
|
|
}
|
|
|
|
return tx, nil
|
|
|
|
}
|
|
|
|
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
for _, address := range accounts {
|
2023-11-02 18:24:23 +01:00
|
|
|
// During block discovery, we should have populated the DB with 1 item per transfer log containing
|
|
|
|
// erc20/erc721/erc1155 transfers.
|
|
|
|
// ID is a hash of the tx hash and the log index. log_index is unique per ERC20/721 tx, but not per ERC1155 tx.
|
2023-09-20 10:41:23 +02:00
|
|
|
transactionsToLoad, err := d.db.GetTransactionsToLoad(d.chainClient.NetworkID(), address, blk.Number())
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
2023-06-13 11:20:48 -03:00
|
|
|
|
|
|
|
areSubTxsCheckedForTxHash := make(map[common.Hash]bool)
|
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
log.Debug("getTransfersInBlock", "block", blk.Number(), "transactionsToLoad", len(transactionsToLoad))
|
|
|
|
|
2023-06-02 17:08:45 -03:00
|
|
|
for _, t := range transactionsToLoad {
|
2023-11-02 18:24:23 +01:00
|
|
|
receipt, err := getReceipt(address, t.Log.TxHash)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
tx, err := getTx(address, t.Log.TxHash)
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
if err != nil {
|
2023-11-02 18:24:23 +01:00
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
subtransactions, err := d.subTransactionsFromPreloaded(t, tx, receipt, blk)
|
|
|
|
if err != nil {
|
|
|
|
log.Error("can't fetch subTxs for erc20/erc721/erc1155 transfer", "error", err)
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
return nil, err
|
|
|
|
}
|
2023-06-02 17:08:45 -03:00
|
|
|
rst = append(rst, subtransactions...)
|
2023-06-13 11:20:48 -03:00
|
|
|
areSubTxsCheckedForTxHash[t.Log.TxHash] = true
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
for _, tx := range blk.Transactions() {
|
2021-09-09 16:28:54 +02:00
|
|
|
if tx.ChainId().Cmp(big.NewInt(0)) != 0 && tx.ChainId().Cmp(d.chainClient.ToBigInt()) != 0 {
|
2023-09-20 10:41:23 +02:00
|
|
|
log.Info("chain id mismatch", "tx hash", tx.Hash(), "tx chain id", tx.ChainId(), "expected chain id", d.chainClient.NetworkID())
|
2021-03-19 15:39:01 +02:00
|
|
|
continue
|
|
|
|
}
|
2019-08-27 12:16:09 +03:00
|
|
|
from, err := types.Sender(d.signer, tx)
|
2021-03-19 15:39:01 +02:00
|
|
|
|
2019-06-14 13:16:30 +03:00
|
|
|
if err != nil {
|
2023-01-10 14:49:03 +01:00
|
|
|
if err == core.ErrTxTypeNotSupported {
|
2023-07-03 14:32:44 -03:00
|
|
|
log.Error("Tx Type not supported", "tx chain id", tx.ChainId(), "type", tx.Type(), "error", err)
|
2023-01-10 14:49:03 +01:00
|
|
|
continue
|
|
|
|
}
|
2019-06-14 13:16:30 +03:00
|
|
|
return nil, err
|
|
|
|
}
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
|
2023-06-13 11:20:48 -03:00
|
|
|
isPlainTransfer := from == address || (tx.To() != nil && *tx.To() == address)
|
|
|
|
mustCheckSubTxs := false
|
|
|
|
|
|
|
|
if !isPlainTransfer {
|
|
|
|
// We might miss some subTransactions of interest for some transaction types. We need to check if we
|
|
|
|
// find the address in the transaction data.
|
|
|
|
switch tx.Type() {
|
2023-07-03 14:32:44 -03:00
|
|
|
case types.DynamicFeeTxType, types.OptimismDepositTxType, types.ArbitrumDepositTxType, types.ArbitrumRetryTxType:
|
2023-06-13 11:20:48 -03:00
|
|
|
mustCheckSubTxs = !areSubTxsCheckedForTxHash[tx.Hash()] && w_common.TxDataContainsAddress(tx.Type(), tx.Data(), address)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if isPlainTransfer || mustCheckSubTxs {
|
2023-11-02 18:24:23 +01:00
|
|
|
receipt, err := getReceipt(address, tx.Hash())
|
2022-09-09 20:22:59 +02:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2023-06-13 11:20:48 -03:00
|
|
|
// Since we've already got the receipt, check for subTxs of
|
|
|
|
// interest in case we haven't already.
|
|
|
|
if !areSubTxsCheckedForTxHash[tx.Hash()] {
|
2023-11-02 18:24:23 +01:00
|
|
|
subtransactions, err := d.subTransactionsFromTransactionData(address, from, tx, receipt, blk)
|
2023-06-13 11:20:48 -03:00
|
|
|
if err != nil {
|
|
|
|
log.Error("can't fetch subTxs for eth transfer", "error", err)
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
rst = append(rst, subtransactions...)
|
|
|
|
areSubTxsCheckedForTxHash[tx.Hash()] = true
|
|
|
|
}
|
|
|
|
|
|
|
|
// If it's a plain ETH transfer, add it to the list
|
|
|
|
if isPlainTransfer {
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
rst = append(rst, Transfer{
|
2023-05-19 18:31:45 +03:00
|
|
|
Type: w_common.EthTransfer,
|
2023-06-13 11:20:48 -03:00
|
|
|
NetworkID: tx.ChainId().Uint64(),
|
2023-06-02 17:08:45 -03:00
|
|
|
ID: tx.Hash(),
|
|
|
|
Address: address,
|
|
|
|
BlockNumber: blk.Number(),
|
|
|
|
BlockHash: receipt.BlockHash,
|
|
|
|
Timestamp: blk.Time(),
|
|
|
|
Transaction: tx,
|
|
|
|
From: from,
|
|
|
|
Receipt: receipt,
|
|
|
|
Log: nil,
|
2023-11-02 18:24:23 +01:00
|
|
|
BaseGasFees: blk.BaseFee().String(),
|
2023-06-02 17:08:45 -03:00
|
|
|
MultiTransactionID: NoMultiTransactionID})
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
}
|
2019-08-27 12:16:09 +03:00
|
|
|
}
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
|
|
|
}
|
2023-05-08 08:02:00 +02:00
|
|
|
log.Debug("getTransfersInBlock found", "block", blk.Number(), "len", len(rst), "time", time.Since(startTs))
|
2019-06-14 13:16:30 +03:00
|
|
|
// TODO(dshulyak) test that balance difference was covered by transactions
|
|
|
|
return rst, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewERC20TransfersDownloader returns new instance.
|
2023-10-05 11:11:47 +02:00
|
|
|
func NewERC20TransfersDownloader(client chain.ClientInterface, accounts []common.Address, signer types.Signer, incomingOnly bool) *ERC20TransfersDownloader {
|
2023-05-19 18:31:45 +03:00
|
|
|
signature := w_common.GetEventSignatureHash(w_common.Erc20_721TransferEventSignature)
|
2023-06-02 17:08:45 -03:00
|
|
|
|
2019-06-14 13:16:30 +03:00
|
|
|
return &ERC20TransfersDownloader{
|
2023-09-22 18:09:14 +02:00
|
|
|
client: client,
|
|
|
|
accounts: accounts,
|
|
|
|
signature: signature,
|
|
|
|
incomingOnly: incomingOnly,
|
|
|
|
signatureErc1155Single: w_common.GetEventSignatureHash(w_common.Erc1155TransferSingleEventSignature),
|
|
|
|
signatureErc1155Batch: w_common.GetEventSignatureHash(w_common.Erc1155TransferBatchEventSignature),
|
|
|
|
signer: signer,
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-02-28 00:09:40 -03:00
|
|
|
// ERC20TransfersDownloader is a downloader for erc20 and erc721 tokens transfers.
|
|
|
|
// Since both transaction types share the same signature, both will be assigned
|
2023-05-19 18:31:45 +03:00
|
|
|
// type Erc20Transfer. Until the downloader gets refactored and a migration of the
|
2023-02-28 00:09:40 -03:00
|
|
|
// database gets implemented, differentiation between erc20 and erc721 will handled
|
|
|
|
// in the controller.
|
2019-06-14 13:16:30 +03:00
|
|
|
type ERC20TransfersDownloader struct {
|
2023-10-05 11:11:47 +02:00
|
|
|
client chain.ClientInterface
|
|
|
|
accounts []common.Address
|
|
|
|
incomingOnly bool
|
2019-06-14 13:16:30 +03:00
|
|
|
|
|
|
|
// hash of the Transfer event signature
|
2023-09-22 18:09:14 +02:00
|
|
|
signature common.Hash
|
|
|
|
signatureErc1155Single common.Hash
|
|
|
|
signatureErc1155Batch common.Hash
|
2019-07-10 12:08:43 +03:00
|
|
|
|
|
|
|
// signer is used to derive tx sender from tx signature
|
|
|
|
signer types.Signer
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
|
|
|
|
2023-11-27 11:08:17 +01:00
|
|
|
func topicFromAddressSlice(addresses []common.Address) []common.Hash {
|
|
|
|
rst := make([]common.Hash, len(addresses))
|
|
|
|
for i, address := range addresses {
|
|
|
|
rst[i] = common.BytesToHash(address.Bytes())
|
|
|
|
}
|
2019-06-14 13:16:30 +03:00
|
|
|
return rst
|
|
|
|
}
|
|
|
|
|
2023-11-27 11:08:17 +01:00
|
|
|
func (d *ERC20TransfersDownloader) inboundTopics(addresses []common.Address) [][]common.Hash {
|
|
|
|
return [][]common.Hash{{d.signature}, {}, topicFromAddressSlice(addresses)}
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
|
|
|
|
2023-11-27 11:08:17 +01:00
|
|
|
func (d *ERC20TransfersDownloader) outboundTopics(addresses []common.Address) [][]common.Hash {
|
|
|
|
return [][]common.Hash{{d.signature}, topicFromAddressSlice(addresses), {}}
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
|
|
|
|
2023-11-27 11:08:17 +01:00
|
|
|
func (d *ERC20TransfersDownloader) inboundERC20OutboundERC1155Topics(addresses []common.Address) [][]common.Hash {
|
|
|
|
return [][]common.Hash{{d.signature, d.signatureErc1155Single, d.signatureErc1155Batch}, {}, topicFromAddressSlice(addresses)}
|
2023-09-22 18:09:14 +02:00
|
|
|
}
|
|
|
|
|
2023-11-27 11:08:17 +01:00
|
|
|
func (d *ERC20TransfersDownloader) inboundTopicsERC1155(addresses []common.Address) [][]common.Hash {
|
|
|
|
return [][]common.Hash{{d.signatureErc1155Single, d.signatureErc1155Batch}, {}, {}, topicFromAddressSlice(addresses)}
|
2023-09-22 18:09:14 +02:00
|
|
|
}
|
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
func (d *ETHDownloader) fetchTransactionReceipt(parent context.Context, txHash common.Hash) (*types.Receipt, error) {
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
ctx, cancel := context.WithTimeout(parent, 3*time.Second)
|
2023-06-13 11:20:48 -03:00
|
|
|
receipt, err := d.chainClient.TransactionReceipt(ctx, txHash)
|
|
|
|
cancel()
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
if err != nil {
|
2023-06-02 17:08:45 -03:00
|
|
|
return nil, err
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
}
|
2023-11-02 18:24:23 +01:00
|
|
|
return receipt, nil
|
|
|
|
}
|
2023-06-13 11:20:48 -03:00
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
func (d *ETHDownloader) fetchTransaction(parent context.Context, txHash common.Hash) (*types.Transaction, error) {
|
|
|
|
ctx, cancel := context.WithTimeout(parent, 3*time.Second)
|
|
|
|
tx, _, err := d.chainClient.TransactionByHash(ctx, txHash) // TODO Save on requests by checking in the DB first
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
cancel()
|
|
|
|
if err != nil {
|
2023-06-02 17:08:45 -03:00
|
|
|
return nil, err
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
}
|
2023-11-02 18:24:23 +01:00
|
|
|
return tx, nil
|
|
|
|
}
|
2022-09-09 20:22:59 +02:00
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
func (d *ETHDownloader) subTransactionsFromPreloaded(preloadedTx *PreloadedTransaction, tx *types.Transaction, receipt *types.Receipt, blk *types.Block) ([]Transfer, error) {
|
|
|
|
log.Debug("subTransactionsFromPreloaded start", "txHash", tx.Hash().Hex(), "address", preloadedTx.Address, "tokenID", preloadedTx.TokenID, "value", preloadedTx.Value)
|
|
|
|
address := preloadedTx.Address
|
|
|
|
txLog := preloadedTx.Log
|
2022-09-09 20:22:59 +02:00
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
rst := make([]Transfer, 0, 1)
|
2023-06-13 11:20:48 -03:00
|
|
|
|
|
|
|
from, err := types.Sender(d.signer, tx)
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
if err != nil {
|
2023-06-13 11:20:48 -03:00
|
|
|
if err == core.ErrTxTypeNotSupported {
|
|
|
|
return nil, nil
|
|
|
|
}
|
2023-06-02 17:08:45 -03:00
|
|
|
return nil, err
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
2022-09-09 20:22:59 +02:00
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
eventType := w_common.GetEventType(preloadedTx.Log)
|
|
|
|
// Only add ERC20/ERC721/ERC1155 transfers from/to the given account
|
|
|
|
// from/to matching is already handled by getLogs filter
|
|
|
|
switch eventType {
|
|
|
|
case w_common.Erc20TransferEventType,
|
|
|
|
w_common.Erc721TransferEventType,
|
|
|
|
w_common.Erc1155TransferSingleEventType, w_common.Erc1155TransferBatchEventType:
|
|
|
|
log.Debug("subTransactionsFromPreloaded transfer", "eventType", eventType, "logIdx", txLog.Index, "txHash", tx.Hash().Hex(), "address", address.Hex(), "tokenID", preloadedTx.TokenID, "value", preloadedTx.Value, "baseFee", blk.BaseFee().String())
|
|
|
|
|
|
|
|
transfer := Transfer{
|
|
|
|
Type: w_common.EventTypeToSubtransactionType(eventType),
|
|
|
|
ID: preloadedTx.ID,
|
|
|
|
Address: address,
|
|
|
|
BlockNumber: new(big.Int).SetUint64(txLog.BlockNumber),
|
|
|
|
BlockHash: txLog.BlockHash,
|
|
|
|
Loaded: true,
|
|
|
|
NetworkID: d.signer.ChainID().Uint64(),
|
|
|
|
From: from,
|
|
|
|
Log: txLog,
|
|
|
|
TokenID: preloadedTx.TokenID,
|
|
|
|
TokenValue: preloadedTx.Value,
|
|
|
|
BaseGasFees: blk.BaseFee().String(),
|
|
|
|
Transaction: tx,
|
|
|
|
Receipt: receipt,
|
|
|
|
Timestamp: blk.Time(),
|
|
|
|
MultiTransactionID: NoMultiTransactionID,
|
2023-06-02 17:08:45 -03:00
|
|
|
}
|
2023-11-02 18:24:23 +01:00
|
|
|
|
|
|
|
rst = append(rst, transfer)
|
|
|
|
}
|
|
|
|
|
|
|
|
log.Debug("subTransactionsFromPreloaded end", "txHash", tx.Hash().Hex(), "address", address.Hex(), "tokenID", preloadedTx.TokenID, "value", preloadedTx.Value)
|
|
|
|
return rst, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (d *ETHDownloader) subTransactionsFromTransactionData(address, from common.Address, tx *types.Transaction, receipt *types.Receipt, blk *types.Block) ([]Transfer, error) {
|
|
|
|
log.Debug("subTransactionsFromTransactionData start", "txHash", tx.Hash().Hex(), "address", address)
|
|
|
|
|
|
|
|
rst := make([]Transfer, 0, 1)
|
|
|
|
|
|
|
|
for _, txLog := range receipt.Logs {
|
|
|
|
eventType := w_common.GetEventType(txLog)
|
|
|
|
switch eventType {
|
|
|
|
case w_common.UniswapV2SwapEventType, w_common.UniswapV3SwapEventType,
|
|
|
|
w_common.HopBridgeTransferSentToL2EventType, w_common.HopBridgeTransferFromL1CompletedEventType,
|
|
|
|
w_common.HopBridgeWithdrawalBondedEventType, w_common.HopBridgeTransferSentEventType:
|
2023-06-02 17:08:45 -03:00
|
|
|
transfer := Transfer{
|
2023-05-19 18:31:45 +03:00
|
|
|
Type: w_common.EventTypeToSubtransactionType(eventType),
|
2023-11-02 18:24:23 +01:00
|
|
|
ID: w_common.GetLogSubTxID(*txLog),
|
2023-06-02 17:08:45 -03:00
|
|
|
Address: address,
|
2023-11-02 18:24:23 +01:00
|
|
|
BlockNumber: new(big.Int).SetUint64(txLog.BlockNumber),
|
|
|
|
BlockHash: txLog.BlockHash,
|
2023-06-02 17:08:45 -03:00
|
|
|
Loaded: true,
|
2023-06-13 11:20:48 -03:00
|
|
|
NetworkID: d.signer.ChainID().Uint64(),
|
2023-06-02 17:08:45 -03:00
|
|
|
From: from,
|
2023-11-02 18:24:23 +01:00
|
|
|
Log: txLog,
|
|
|
|
BaseGasFees: blk.BaseFee().String(),
|
2023-06-02 17:08:45 -03:00
|
|
|
Transaction: tx,
|
|
|
|
Receipt: receipt,
|
|
|
|
Timestamp: blk.Time(),
|
|
|
|
MultiTransactionID: NoMultiTransactionID,
|
|
|
|
}
|
2019-06-14 13:16:30 +03:00
|
|
|
|
2023-06-02 17:08:45 -03:00
|
|
|
rst = append(rst, transfer)
|
2019-07-15 14:16:07 +03:00
|
|
|
}
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
2023-06-02 17:08:45 -03:00
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
log.Debug("subTransactionsFromTransactionData end", "txHash", tx.Hash().Hex(), "address", address.Hex())
|
2023-06-02 17:08:45 -03:00
|
|
|
return rst, nil
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
|
|
|
|
2023-11-27 11:08:17 +01:00
|
|
|
func (d *ERC20TransfersDownloader) blocksFromLogs(parent context.Context, logs []types.Log) ([]*DBHeader, error) {
|
2023-05-08 08:02:00 +02:00
|
|
|
concurrent := NewConcurrentDownloader(parent, NoThreadLimit)
|
2023-11-02 18:24:23 +01:00
|
|
|
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
for i := range logs {
|
|
|
|
l := logs[i]
|
|
|
|
|
|
|
|
if l.Removed {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
|
2023-11-27 11:08:17 +01:00
|
|
|
var address common.Address
|
2023-11-02 18:24:23 +01:00
|
|
|
from, to, txIDs, tokenIDs, values, err := w_common.ParseTransferLog(l)
|
2022-09-26 12:04:19 +02:00
|
|
|
if err != nil {
|
2023-11-27 11:08:17 +01:00
|
|
|
log.Error("failed to parse transfer log", "log", l, "address", d.accounts, "error", err)
|
2023-11-02 18:24:23 +01:00
|
|
|
continue
|
2022-09-26 12:04:19 +02:00
|
|
|
}
|
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
// Double check provider returned the correct log
|
2023-11-27 11:08:17 +01:00
|
|
|
if slices.Contains(d.accounts, from) {
|
|
|
|
address = from
|
2024-01-10 15:11:09 -03:00
|
|
|
} else if slices.Contains(d.accounts, to) {
|
2023-11-27 11:08:17 +01:00
|
|
|
address = to
|
|
|
|
} else {
|
|
|
|
log.Error("from/to address mismatch", "log", l, "addresses", d.accounts)
|
2023-11-02 18:24:23 +01:00
|
|
|
continue
|
2023-09-22 18:09:14 +02:00
|
|
|
}
|
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
eventType := w_common.GetEventType(&l)
|
|
|
|
logType := w_common.EventTypeToSubtransactionType(eventType)
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
|
2023-11-02 18:24:23 +01:00
|
|
|
for i, txID := range txIDs {
|
2023-11-27 11:08:17 +01:00
|
|
|
log.Debug("block from logs", "block", l.BlockNumber, "log", l, "logType", logType, "txID", txID)
|
2023-11-02 18:24:23 +01:00
|
|
|
|
|
|
|
// For ERC20 there is no tokenID, so we use nil
|
|
|
|
var tokenID *big.Int
|
|
|
|
if len(tokenIDs) > i {
|
|
|
|
tokenID = tokenIDs[i]
|
|
|
|
}
|
|
|
|
|
|
|
|
header := &DBHeader{
|
2023-11-27 11:08:17 +01:00
|
|
|
Number: big.NewInt(int64(l.BlockNumber)),
|
|
|
|
Hash: l.BlockHash,
|
|
|
|
Address: address,
|
2023-11-02 18:24:23 +01:00
|
|
|
PreloadedTransactions: []*PreloadedTransaction{{
|
|
|
|
ID: txID,
|
|
|
|
Type: logType,
|
|
|
|
Log: &l,
|
|
|
|
TokenID: tokenID,
|
|
|
|
Value: values[i],
|
|
|
|
}},
|
|
|
|
Loaded: false,
|
|
|
|
}
|
|
|
|
|
|
|
|
concurrent.Add(func(ctx context.Context) error {
|
|
|
|
concurrent.PushHeader(header)
|
|
|
|
return nil
|
|
|
|
})
|
|
|
|
}
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
}
|
|
|
|
select {
|
|
|
|
case <-concurrent.WaitAsync():
|
|
|
|
case <-parent.Done():
|
|
|
|
return nil, errLogsDownloaderStuck
|
|
|
|
}
|
|
|
|
return concurrent.GetHeaders(), concurrent.Error()
|
|
|
|
}
|
|
|
|
|
|
|
|
// GetHeadersInRange returns transfers between two blocks.
|
2019-06-14 13:16:30 +03:00
|
|
|
// time to get logs for 100000 blocks = 1.144686979s. with 249 events in the result set.
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
func (d *ERC20TransfersDownloader) GetHeadersInRange(parent context.Context, from, to *big.Int) ([]*DBHeader, error) {
|
2019-06-14 13:16:30 +03:00
|
|
|
start := time.Now()
|
2023-09-19 13:17:36 +02:00
|
|
|
log.Debug("get erc20 transfers in range start", "chainID", d.client.NetworkID(), "from", from, "to", to)
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
headers := []*DBHeader{}
|
2023-03-28 14:46:46 +02:00
|
|
|
ctx := context.Background()
|
2023-10-05 11:11:47 +02:00
|
|
|
var err error
|
2023-11-27 11:08:17 +01:00
|
|
|
outbound := []types.Log{}
|
|
|
|
var inboundOrMixed []types.Log // inbound ERC20 or outbound ERC1155 share the same signature for our purposes
|
|
|
|
if !d.incomingOnly {
|
|
|
|
outbound, err = d.client.FilterLogs(ctx, ethereum.FilterQuery{
|
2019-06-14 13:16:30 +03:00
|
|
|
FromBlock: from,
|
|
|
|
ToBlock: to,
|
2023-11-27 11:08:17 +01:00
|
|
|
Topics: d.outboundTopics(d.accounts),
|
2019-06-14 13:16:30 +03:00
|
|
|
})
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
2023-11-27 11:08:17 +01:00
|
|
|
inboundOrMixed, err = d.client.FilterLogs(ctx, ethereum.FilterQuery{
|
|
|
|
FromBlock: from,
|
|
|
|
ToBlock: to,
|
|
|
|
Topics: d.inboundERC20OutboundERC1155Topics(d.accounts),
|
|
|
|
})
|
2019-06-14 13:16:30 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
2023-11-27 11:08:17 +01:00
|
|
|
} else {
|
|
|
|
inboundOrMixed, err = d.client.FilterLogs(ctx, ethereum.FilterQuery{
|
|
|
|
FromBlock: from,
|
|
|
|
ToBlock: to,
|
|
|
|
Topics: d.inboundTopics(d.accounts),
|
|
|
|
})
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
2023-06-14 12:00:56 +02:00
|
|
|
}
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
2023-09-22 18:09:14 +02:00
|
|
|
|
2023-11-27 11:08:17 +01:00
|
|
|
inbound1155, err := d.client.FilterLogs(ctx, ethereum.FilterQuery{
|
|
|
|
FromBlock: from,
|
|
|
|
ToBlock: to,
|
|
|
|
Topics: d.inboundTopicsERC1155(d.accounts),
|
|
|
|
})
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
logs := concatLogs(outbound, inboundOrMixed, inbound1155)
|
|
|
|
|
|
|
|
if len(logs) == 0 {
|
|
|
|
log.Debug("no logs found for account")
|
|
|
|
return nil, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
rst, err := d.blocksFromLogs(parent, logs)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
if len(rst) == 0 {
|
|
|
|
log.Warn("no headers found in logs for account", "chainID", d.client.NetworkID(), "addresses", d.accounts, "from", from, "to", to)
|
|
|
|
} else {
|
|
|
|
headers = append(headers, rst...)
|
|
|
|
log.Debug("found erc20 transfers for account", "chainID", d.client.NetworkID(), "addresses", d.accounts,
|
|
|
|
"from", from, "to", to, "headers", len(headers))
|
|
|
|
}
|
|
|
|
|
2023-09-19 13:17:36 +02:00
|
|
|
log.Debug("get erc20 transfers in range end", "chainID", d.client.NetworkID(),
|
2023-06-14 12:00:56 +02:00
|
|
|
"from", from, "to", to, "headers", len(headers), "took", time.Since(start))
|
status-im/status-react#9203 Faster tx fetching with less request
*** How it worked before this PR on multiaccount creation:
- On multiacc creation we scanned chain for eth and erc20 transfers. For
each address of a new empty multiaccount this scan required
1. two `eth_getBalance` requests to find out that there is no any
balance change between zero and the last block, for eth transfers
2. and `chain-size/100000` (currently ~100) `eth_getLogs` requests,
for erc20 transfers
- For some reason we scanned an address of the chat account as well, and
also accounts were not deduplicated. So even for an empty multiacc we
scanned chain twice for each chat and main wallet addresses, in result
app had to execute about 400 requests.
- As mentioned above, `eth_getBalance` requests were used to check if
there were any eth transfers, and that caused empty history in case
if user already used all available eth (so that both zero and latest
blocks show 0 eth for an address). There might have been transactions
but we wouldn't fetch/show them.
- There was no upper limit for the number of rpc requests during the
scan, so it could require indefinite number of requests; the scanning
algorithm was written so that we persisted the whole history of
transactions or tried to scan form the beginning again in case of
failure, giving up only after 10 minutes of failures. In result
addresses with sufficient number of transactions would never be fully
scanned and during these 10 minutes app could use gigabytes of
internet data.
- Failures were caused by `eth_getBlockByNumber`/`eth_getBlockByHash`
requests. These requests return significantly bigger responses than
`eth_getBalance`/`eth_transactionsCount` and it is likely that
execution of thousands of them in parallel caused failures for
accounts with hundreds of transactions. Even for an account with 12k
we could successfully determine blocks with transaction in a few
minutes using `eth_getBalance` requests, but `eth_getBlock...`
couldn't be processed for this acc.
- There was no caching for for `eth_getBalance` requests, and this
caused in average 3-4 times more such requests than is needed.
*** How it works now on multiaccount creation:
- On multiacc creation we scan chain for last ~30 eth transactions and
then check erc20 in the range where these eth transactions were found.
For an empty address in multiacc this means:
1. two `eth_getBalance` transactions to determine that there was no
balance change between zero and the last block; two
`eth_transactionsCount` requests to determine there are no outgoing
transactions for this address; total 4 requests for eth transfers
2. 20 `eth_getLogs` for erc20 transfers. This number can be lowered,
but that's not a big deal
- Deduplication of addresses is added and also we don't scan chat
account, so a new multiacc requires ~25 (we also request latest block
number and probably execute a few other calls) request to determine
that multiacc is empty (comparing to ~400 before)
- In case if address contains transactions we:
1. determine the range which contains 20-25 outgoing eth/erc20
transactions. This usually requires up to 10 `eth_transactionCount`
requests
2. then we scan chain for eth transfers using `eth_getBalance` and
`eth_transactionCount` (for double checking zero balances)
3. we make sure that we do not scan db for more than 30 blocks with
transfers. That's important for accounts with mostly incoming
transactions, because the range found on the first step might
contain any number of incoming transfers, but only 20-25 outgoing
transactions
4. when we found ~30 blocks in a given range, we update initial
range `from` block using the oldest found block
5. and now we scan db for erc20transfers using `eth_getLogs`
`oldest-found-eth-block`-`latest-block`, we make not more than 20 calls
6. when all blocks which contain incoming/outgoing transfers for a
given address are found, we save these blocks to db and mark that
transfers from these blocks are still to be fetched
7. Then we select latest ~30 (the number can be adjusted) blocks from
these which were found and fetch transfers, this requires 3-4
requests per transfer.
8. we persist scanned range so that we know were to start next time
9. we dispatch an event which tells client that transactions are found
10. client fetches latest 20 transfers
- when user presses "fetch more" button we check if app's db contains next
20 transfers, if not we scan chain again and return transfers after
small fixes
2019-12-18 13:01:46 +02:00
|
|
|
return headers, nil
|
2019-06-14 13:16:30 +03:00
|
|
|
}
|
2023-09-22 18:09:14 +02:00
|
|
|
|
|
|
|
func concatLogs(slices ...[]types.Log) []types.Log {
|
|
|
|
var totalLen int
|
|
|
|
for _, s := range slices {
|
|
|
|
totalLen += len(s)
|
|
|
|
}
|
|
|
|
tmp := make([]types.Log, totalLen)
|
|
|
|
var i int
|
|
|
|
for _, s := range slices {
|
|
|
|
i += copy(tmp[i:], s)
|
|
|
|
}
|
|
|
|
|
|
|
|
return tmp
|
|
|
|
}
|