mirror of
https://github.com/status-im/status-go.git
synced 2025-01-10 22:56:40 +00:00
289 lines
6.6 KiB
C
289 lines
6.6 KiB
C
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
||
|
*
|
||
|
* LibTomCrypt is a library that provides various cryptographic
|
||
|
* algorithms in a highly modular and flexible manner.
|
||
|
*
|
||
|
* The library is free for all purposes without any express
|
||
|
* guarantee it works.
|
||
|
*
|
||
|
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||
|
*/
|
||
|
#include "tomcrypt.h"
|
||
|
|
||
|
/**
|
||
|
@file sha1.c
|
||
|
LTC_SHA1 code by Tom St Denis
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifdef LTC_SHA1
|
||
|
|
||
|
const struct ltc_hash_descriptor sha1_desc =
|
||
|
{
|
||
|
"sha1",
|
||
|
2,
|
||
|
20,
|
||
|
64,
|
||
|
|
||
|
/* OID */
|
||
|
{ 1, 3, 14, 3, 2, 26, },
|
||
|
6,
|
||
|
|
||
|
&sha1_init,
|
||
|
&sha1_process,
|
||
|
&sha1_done,
|
||
|
&sha1_test,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
#define F0(x,y,z) (z ^ (x & (y ^ z)))
|
||
|
#define F1(x,y,z) (x ^ y ^ z)
|
||
|
#define F2(x,y,z) ((x & y) | (z & (x | y)))
|
||
|
#define F3(x,y,z) (x ^ y ^ z)
|
||
|
|
||
|
#ifdef LTC_CLEAN_STACK
|
||
|
static int _sha1_compress(hash_state *md, unsigned char *buf)
|
||
|
#else
|
||
|
static int sha1_compress(hash_state *md, unsigned char *buf)
|
||
|
#endif
|
||
|
{
|
||
|
ulong32 a,b,c,d,e,W[80],i;
|
||
|
#ifdef LTC_SMALL_CODE
|
||
|
ulong32 t;
|
||
|
#endif
|
||
|
|
||
|
/* copy the state into 512-bits into W[0..15] */
|
||
|
for (i = 0; i < 16; i++) {
|
||
|
LOAD32H(W[i], buf + (4*i));
|
||
|
}
|
||
|
|
||
|
/* copy state */
|
||
|
a = md->sha1.state[0];
|
||
|
b = md->sha1.state[1];
|
||
|
c = md->sha1.state[2];
|
||
|
d = md->sha1.state[3];
|
||
|
e = md->sha1.state[4];
|
||
|
|
||
|
/* expand it */
|
||
|
for (i = 16; i < 80; i++) {
|
||
|
W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
|
||
|
}
|
||
|
|
||
|
/* compress */
|
||
|
/* round one */
|
||
|
#define FF0(a,b,c,d,e,i) e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30);
|
||
|
#define FF1(a,b,c,d,e,i) e = (ROLc(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30);
|
||
|
#define FF2(a,b,c,d,e,i) e = (ROLc(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30);
|
||
|
#define FF3(a,b,c,d,e,i) e = (ROLc(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30);
|
||
|
|
||
|
#ifdef LTC_SMALL_CODE
|
||
|
|
||
|
for (i = 0; i < 20; ) {
|
||
|
FF0(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
|
||
|
}
|
||
|
|
||
|
for (; i < 40; ) {
|
||
|
FF1(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
|
||
|
}
|
||
|
|
||
|
for (; i < 60; ) {
|
||
|
FF2(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
|
||
|
}
|
||
|
|
||
|
for (; i < 80; ) {
|
||
|
FF3(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
for (i = 0; i < 20; ) {
|
||
|
FF0(a,b,c,d,e,i++);
|
||
|
FF0(e,a,b,c,d,i++);
|
||
|
FF0(d,e,a,b,c,i++);
|
||
|
FF0(c,d,e,a,b,i++);
|
||
|
FF0(b,c,d,e,a,i++);
|
||
|
}
|
||
|
|
||
|
/* round two */
|
||
|
for (; i < 40; ) {
|
||
|
FF1(a,b,c,d,e,i++);
|
||
|
FF1(e,a,b,c,d,i++);
|
||
|
FF1(d,e,a,b,c,i++);
|
||
|
FF1(c,d,e,a,b,i++);
|
||
|
FF1(b,c,d,e,a,i++);
|
||
|
}
|
||
|
|
||
|
/* round three */
|
||
|
for (; i < 60; ) {
|
||
|
FF2(a,b,c,d,e,i++);
|
||
|
FF2(e,a,b,c,d,i++);
|
||
|
FF2(d,e,a,b,c,i++);
|
||
|
FF2(c,d,e,a,b,i++);
|
||
|
FF2(b,c,d,e,a,i++);
|
||
|
}
|
||
|
|
||
|
/* round four */
|
||
|
for (; i < 80; ) {
|
||
|
FF3(a,b,c,d,e,i++);
|
||
|
FF3(e,a,b,c,d,i++);
|
||
|
FF3(d,e,a,b,c,i++);
|
||
|
FF3(c,d,e,a,b,i++);
|
||
|
FF3(b,c,d,e,a,i++);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#undef FF0
|
||
|
#undef FF1
|
||
|
#undef FF2
|
||
|
#undef FF3
|
||
|
|
||
|
/* store */
|
||
|
md->sha1.state[0] = md->sha1.state[0] + a;
|
||
|
md->sha1.state[1] = md->sha1.state[1] + b;
|
||
|
md->sha1.state[2] = md->sha1.state[2] + c;
|
||
|
md->sha1.state[3] = md->sha1.state[3] + d;
|
||
|
md->sha1.state[4] = md->sha1.state[4] + e;
|
||
|
|
||
|
return CRYPT_OK;
|
||
|
}
|
||
|
|
||
|
#ifdef LTC_CLEAN_STACK
|
||
|
static int sha1_compress(hash_state *md, unsigned char *buf)
|
||
|
{
|
||
|
int err;
|
||
|
err = _sha1_compress(md, buf);
|
||
|
burn_stack(sizeof(ulong32) * 87);
|
||
|
return err;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
Initialize the hash state
|
||
|
@param md The hash state you wish to initialize
|
||
|
@return CRYPT_OK if successful
|
||
|
*/
|
||
|
int sha1_init(hash_state * md)
|
||
|
{
|
||
|
LTC_ARGCHK(md != NULL);
|
||
|
md->sha1.state[0] = 0x67452301UL;
|
||
|
md->sha1.state[1] = 0xefcdab89UL;
|
||
|
md->sha1.state[2] = 0x98badcfeUL;
|
||
|
md->sha1.state[3] = 0x10325476UL;
|
||
|
md->sha1.state[4] = 0xc3d2e1f0UL;
|
||
|
md->sha1.curlen = 0;
|
||
|
md->sha1.length = 0;
|
||
|
return CRYPT_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Process a block of memory though the hash
|
||
|
@param md The hash state
|
||
|
@param in The data to hash
|
||
|
@param inlen The length of the data (octets)
|
||
|
@return CRYPT_OK if successful
|
||
|
*/
|
||
|
HASH_PROCESS(sha1_process, sha1_compress, sha1, 64)
|
||
|
|
||
|
/**
|
||
|
Terminate the hash to get the digest
|
||
|
@param md The hash state
|
||
|
@param out [out] The destination of the hash (20 bytes)
|
||
|
@return CRYPT_OK if successful
|
||
|
*/
|
||
|
int sha1_done(hash_state * md, unsigned char *out)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
LTC_ARGCHK(md != NULL);
|
||
|
LTC_ARGCHK(out != NULL);
|
||
|
|
||
|
if (md->sha1.curlen >= sizeof(md->sha1.buf)) {
|
||
|
return CRYPT_INVALID_ARG;
|
||
|
}
|
||
|
|
||
|
/* increase the length of the message */
|
||
|
md->sha1.length += md->sha1.curlen * 8;
|
||
|
|
||
|
/* append the '1' bit */
|
||
|
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
|
||
|
|
||
|
/* if the length is currently above 56 bytes we append zeros
|
||
|
* then compress. Then we can fall back to padding zeros and length
|
||
|
* encoding like normal.
|
||
|
*/
|
||
|
if (md->sha1.curlen > 56) {
|
||
|
while (md->sha1.curlen < 64) {
|
||
|
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
|
||
|
}
|
||
|
sha1_compress(md, md->sha1.buf);
|
||
|
md->sha1.curlen = 0;
|
||
|
}
|
||
|
|
||
|
/* pad upto 56 bytes of zeroes */
|
||
|
while (md->sha1.curlen < 56) {
|
||
|
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
|
||
|
}
|
||
|
|
||
|
/* store length */
|
||
|
STORE64H(md->sha1.length, md->sha1.buf+56);
|
||
|
sha1_compress(md, md->sha1.buf);
|
||
|
|
||
|
/* copy output */
|
||
|
for (i = 0; i < 5; i++) {
|
||
|
STORE32H(md->sha1.state[i], out+(4*i));
|
||
|
}
|
||
|
#ifdef LTC_CLEAN_STACK
|
||
|
zeromem(md, sizeof(hash_state));
|
||
|
#endif
|
||
|
return CRYPT_OK;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Self-test the hash
|
||
|
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
|
||
|
*/
|
||
|
int sha1_test(void)
|
||
|
{
|
||
|
#ifndef LTC_TEST
|
||
|
return CRYPT_NOP;
|
||
|
#else
|
||
|
static const struct {
|
||
|
char *msg;
|
||
|
unsigned char hash[20];
|
||
|
} tests[] = {
|
||
|
{ "abc",
|
||
|
{ 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
|
||
|
0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
|
||
|
0x9c, 0xd0, 0xd8, 0x9d }
|
||
|
},
|
||
|
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
||
|
{ 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
|
||
|
0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
|
||
|
0xE5, 0x46, 0x70, 0xF1 }
|
||
|
}
|
||
|
};
|
||
|
|
||
|
int i;
|
||
|
unsigned char tmp[20];
|
||
|
hash_state md;
|
||
|
|
||
|
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
|
||
|
sha1_init(&md);
|
||
|
sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
|
||
|
sha1_done(&md, tmp);
|
||
|
if (XMEMCMP(tmp, tests[i].hash, 20) != 0) {
|
||
|
return CRYPT_FAIL_TESTVECTOR;
|
||
|
}
|
||
|
}
|
||
|
return CRYPT_OK;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
/* $Source$ */
|
||
|
/* $Revision$ */
|
||
|
/* $Date$ */
|