status-go/vendor/github.com/ethereum/go-ethereum/whisper/whisperv5/message.go

353 lines
10 KiB
Go
Raw Normal View History

2016-11-25 05:50:30 +00:00
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2017-02-23 00:22:43 +00:00
// Contains the Whisper protocol Message element.
2016-11-25 05:50:30 +00:00
package whisperv5
import (
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
crand "crypto/rand"
2017-05-16 07:42:30 +00:00
"encoding/binary"
2016-11-25 05:50:30 +00:00
"errors"
2017-05-16 07:42:30 +00:00
"strconv"
2016-11-25 05:50:30 +00:00
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/log"
2016-11-25 05:50:30 +00:00
)
// Options specifies the exact way a message should be wrapped into an Envelope.
type MessageParams struct {
TTL uint32
Src *ecdsa.PrivateKey
Dst *ecdsa.PublicKey
KeySym []byte
Topic TopicType
WorkTime uint32
PoW float64
Payload []byte
Padding []byte
}
// SentMessage represents an end-user data packet to transmit through the
// Whisper protocol. These are wrapped into Envelopes that need not be
// understood by intermediate nodes, just forwarded.
type sentMessage struct {
2016-11-25 05:50:30 +00:00
Raw []byte
}
// ReceivedMessage represents a data packet to be received through the
// Whisper protocol.
type ReceivedMessage struct {
Raw []byte
Payload []byte
Padding []byte
Signature []byte
PoW float64 // Proof of work as described in the Whisper spec
Sent uint32 // Time when the message was posted into the network
TTL uint32 // Maximum time to live allowed for the message
Src *ecdsa.PublicKey // Message recipient (identity used to decode the message)
Dst *ecdsa.PublicKey // Message recipient (identity used to decode the message)
Topic TopicType
SymKeyHash common.Hash // The Keccak256Hash of the key, associated with the Topic
EnvelopeHash common.Hash // Message envelope hash to act as a unique id
EnvelopeVersion uint64
}
func isMessageSigned(flags byte) bool {
return (flags & signatureFlag) != 0
}
func (msg *ReceivedMessage) isSymmetricEncryption() bool {
return msg.SymKeyHash != common.Hash{}
}
func (msg *ReceivedMessage) isAsymmetricEncryption() bool {
return msg.Dst != nil
}
// NewMessage creates and initializes a non-signed, non-encrypted Whisper message.
func NewSentMessage(params *MessageParams) (*sentMessage, error) {
msg := sentMessage{}
2017-05-16 07:42:30 +00:00
msg.Raw = make([]byte, 1, len(params.Payload)+len(params.Padding)+signatureLength+padSizeLimit)
2016-11-25 05:50:30 +00:00
msg.Raw[0] = 0 // set all the flags to zero
err := msg.appendPadding(params)
if err != nil {
2017-05-16 07:42:30 +00:00
return nil, err
}
2016-11-25 05:50:30 +00:00
msg.Raw = append(msg.Raw, params.Payload...)
2017-05-16 07:42:30 +00:00
return &msg, nil
}
// getSizeOfLength returns the number of bytes necessary to encode the entire size padding (including these bytes)
func getSizeOfLength(b []byte) (sz int, err error) {
sz = intSize(len(b)) // first iteration
sz = intSize(len(b) + sz) // second iteration
if sz > 3 {
err = errors.New("oversized padding parameter")
}
return sz, err
}
// sizeOfIntSize returns minimal number of bytes necessary to encode an integer value
func intSize(i int) (s int) {
for s = 1; i >= 256; s++ {
i /= 256
}
return s
2016-11-25 05:50:30 +00:00
}
// appendPadding appends the pseudorandom padding bytes and sets the padding flag.
// The last byte contains the size of padding (thus, its size must not exceed 256).
func (msg *sentMessage) appendPadding(params *MessageParams) error {
2017-05-16 07:42:30 +00:00
rawSize := len(params.Payload) + 1
2016-11-25 05:50:30 +00:00
if params.Src != nil {
2017-05-16 07:42:30 +00:00
rawSize += signatureLength
2016-11-25 05:50:30 +00:00
}
2017-05-16 07:42:30 +00:00
odd := rawSize % padSizeLimit
if len(params.Padding) != 0 {
padSize := len(params.Padding)
padLengthSize, err := getSizeOfLength(params.Padding)
if err != nil {
return err
}
totalPadSize := padSize + padLengthSize
buf := make([]byte, 8)
binary.LittleEndian.PutUint32(buf, uint32(totalPadSize))
buf = buf[:padLengthSize]
msg.Raw = append(msg.Raw, buf...)
msg.Raw = append(msg.Raw, params.Padding...)
msg.Raw[0] |= byte(padLengthSize) // number of bytes indicating the padding size
} else if odd != 0 {
totalPadSize := padSizeLimit - odd
if totalPadSize > 255 {
// this algorithm is only valid if padSizeLimit < 256.
// if padSizeLimit will ever change, please fix the algorithm
// (please see also ReceivedMessage.extractPadding() function).
2016-11-25 05:50:30 +00:00
panic("please fix the padding algorithm before releasing new version")
}
2017-05-16 07:42:30 +00:00
buf := make([]byte, totalPadSize)
_, err := crand.Read(buf[1:])
if err != nil {
return err
}
2017-05-16 07:42:30 +00:00
if totalPadSize > 6 && !validateSymmetricKey(buf) {
return errors.New("failed to generate random padding of size " + strconv.Itoa(totalPadSize))
2016-11-25 05:50:30 +00:00
}
2017-05-16 07:42:30 +00:00
buf[0] = byte(totalPadSize)
2016-11-25 05:50:30 +00:00
msg.Raw = append(msg.Raw, buf...)
msg.Raw[0] |= byte(0x1) // number of bytes indicating the padding size
}
return nil
2016-11-25 05:50:30 +00:00
}
// sign calculates and sets the cryptographic signature for the message,
// also setting the sign flag.
func (msg *sentMessage) sign(key *ecdsa.PrivateKey) error {
2016-11-25 05:50:30 +00:00
if isMessageSigned(msg.Raw[0]) {
// this should not happen, but no reason to panic
log.Error("failed to sign the message: already signed")
2016-11-25 05:50:30 +00:00
return nil
}
msg.Raw[0] |= signatureFlag
hash := crypto.Keccak256(msg.Raw)
signature, err := crypto.Sign(hash, key)
if err != nil {
msg.Raw[0] &= ^signatureFlag // clear the flag
return err
}
msg.Raw = append(msg.Raw, signature...)
return nil
}
// encryptAsymmetric encrypts a message with a public key.
func (msg *sentMessage) encryptAsymmetric(key *ecdsa.PublicKey) error {
2016-11-25 05:50:30 +00:00
if !ValidatePublicKey(key) {
return errors.New("invalid public key provided for asymmetric encryption")
2016-11-25 05:50:30 +00:00
}
encrypted, err := ecies.Encrypt(crand.Reader, ecies.ImportECDSAPublic(key), msg.Raw, nil, nil)
2016-11-25 05:50:30 +00:00
if err == nil {
msg.Raw = encrypted
}
return err
}
// encryptSymmetric encrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
func (msg *sentMessage) encryptSymmetric(key []byte) (nonce []byte, err error) {
2016-11-25 05:50:30 +00:00
if !validateSymmetricKey(key) {
2017-05-16 07:42:30 +00:00
return nil, errors.New("invalid key provided for symmetric encryption")
2016-11-25 05:50:30 +00:00
}
2017-05-16 07:42:30 +00:00
block, err := aes.NewCipher(key)
2016-11-25 05:50:30 +00:00
if err != nil {
2017-05-16 07:42:30 +00:00
return nil, err
2016-11-25 05:50:30 +00:00
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
2017-05-16 07:42:30 +00:00
return nil, err
2016-11-25 05:50:30 +00:00
}
// never use more than 2^32 random nonces with a given key
nonce = make([]byte, aesgcm.NonceSize())
_, err = crand.Read(nonce)
if err != nil {
2017-05-16 07:42:30 +00:00
return nil, err
2016-12-07 20:54:59 +00:00
} else if !validateSymmetricKey(nonce) {
2017-05-16 07:42:30 +00:00
return nil, errors.New("crypto/rand failed to generate nonce")
2016-11-25 05:50:30 +00:00
}
2016-12-07 20:54:59 +00:00
2016-11-25 05:50:30 +00:00
msg.Raw = aesgcm.Seal(nil, nonce, msg.Raw, nil)
2017-05-16 07:42:30 +00:00
return nonce, nil
2016-11-25 05:50:30 +00:00
}
// Wrap bundles the message into an Envelope to transmit over the network.
func (msg *sentMessage) Wrap(options *MessageParams) (envelope *Envelope, err error) {
2016-11-25 05:50:30 +00:00
if options.TTL == 0 {
options.TTL = DefaultTTL
}
if options.Src != nil {
if err = msg.sign(options.Src); err != nil {
2016-11-25 05:50:30 +00:00
return nil, err
}
}
2017-05-16 07:42:30 +00:00
var nonce []byte
2016-11-25 05:50:30 +00:00
if options.Dst != nil {
err = msg.encryptAsymmetric(options.Dst)
} else if options.KeySym != nil {
2017-05-16 07:42:30 +00:00
nonce, err = msg.encryptSymmetric(options.KeySym)
2016-11-25 05:50:30 +00:00
} else {
err = errors.New("unable to encrypt the message: neither symmetric nor assymmetric key provided")
2016-11-25 05:50:30 +00:00
}
if err != nil {
return nil, err
}
2017-05-16 07:42:30 +00:00
envelope = NewEnvelope(options.TTL, options.Topic, nonce, msg)
if err = envelope.Seal(options); err != nil {
2017-02-23 00:22:43 +00:00
return nil, err
}
2016-11-25 05:50:30 +00:00
return envelope, nil
}
// decryptSymmetric decrypts a message with a topic key, using AES-GCM-256.
// nonce size should be 12 bytes (see cipher.gcmStandardNonceSize).
2017-05-16 07:42:30 +00:00
func (msg *ReceivedMessage) decryptSymmetric(key []byte, nonce []byte) error {
block, err := aes.NewCipher(key)
2016-11-25 05:50:30 +00:00
if err != nil {
return err
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
return err
}
if len(nonce) != aesgcm.NonceSize() {
log.Error("decrypting the message", "AES nonce size", len(nonce))
return errors.New("wrong AES nonce size")
2016-11-25 05:50:30 +00:00
}
decrypted, err := aesgcm.Open(nil, nonce, msg.Raw, nil)
if err != nil {
return err
}
msg.Raw = decrypted
return nil
}
// decryptAsymmetric decrypts an encrypted payload with a private key.
func (msg *ReceivedMessage) decryptAsymmetric(key *ecdsa.PrivateKey) error {
decrypted, err := ecies.ImportECDSA(key).Decrypt(msg.Raw, nil, nil)
2016-11-25 05:50:30 +00:00
if err == nil {
msg.Raw = decrypted
}
return err
}
// Validate checks the validity and extracts the fields in case of success
func (msg *ReceivedMessage) Validate() bool {
end := len(msg.Raw)
if end < 1 {
return false
}
if isMessageSigned(msg.Raw[0]) {
end -= signatureLength
if end <= 1 {
return false
}
msg.Signature = msg.Raw[end:]
msg.Src = msg.SigToPubKey()
if msg.Src == nil {
return false
}
}
padSize, ok := msg.extractPadding(end)
if !ok {
return false
}
msg.Payload = msg.Raw[1+padSize : end]
return true
}
// extractPadding extracts the padding from raw message.
// although we don't support sending messages with padding size
// exceeding 255 bytes, such messages are perfectly valid, and
// can be successfully decrypted.
func (msg *ReceivedMessage) extractPadding(end int) (int, bool) {
paddingSize := 0
2017-05-16 07:42:30 +00:00
sz := int(msg.Raw[0] & paddingMask) // number of bytes indicating the entire size of padding (including these bytes)
// could be zero -- it means no padding
2016-11-25 05:50:30 +00:00
if sz != 0 {
paddingSize = int(bytesToUintLittleEndian(msg.Raw[1 : 1+sz]))
2016-11-25 05:50:30 +00:00
if paddingSize < sz || paddingSize+1 > end {
return 0, false
}
msg.Padding = msg.Raw[1+sz : 1+paddingSize]
}
return paddingSize, true
}
// Recover retrieves the public key of the message signer.
func (msg *ReceivedMessage) SigToPubKey() *ecdsa.PublicKey {
defer func() { recover() }() // in case of invalid signature
pub, err := crypto.SigToPub(msg.hash(), msg.Signature)
if err != nil {
log.Error("failed to recover public key from signature", "err", err)
2016-11-25 05:50:30 +00:00
return nil
}
return pub
}
// hash calculates the SHA3 checksum of the message flags, payload and padding.
func (msg *ReceivedMessage) hash() []byte {
if isMessageSigned(msg.Raw[0]) {
sz := len(msg.Raw) - signatureLength
return crypto.Keccak256(msg.Raw[:sz])
}
return crypto.Keccak256(msg.Raw)
}