status-go/vendor/github.com/flynn/noise/cipher_suite.go

226 lines
5.3 KiB
Go
Raw Normal View History

package noise
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"hash"
"io"
"golang.org/x/crypto/blake2b"
"golang.org/x/crypto/blake2s"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/crypto/curve25519"
)
// A DHKey is a keypair used for Diffie-Hellman key agreement.
type DHKey struct {
Private []byte
Public []byte
}
// A DHFunc implements Diffie-Hellman key agreement.
type DHFunc interface {
// GenerateKeypair generates a new keypair using random as a source of
// entropy.
GenerateKeypair(random io.Reader) (DHKey, error)
// DH performs a Diffie-Hellman calculation between the provided private and
// public keys and returns the result.
DH(privkey, pubkey []byte) []byte
// DHLen is the number of bytes returned by DH.
DHLen() int
// DHName is the name of the DH function.
DHName() string
}
// A HashFunc implements a cryptographic hash function.
type HashFunc interface {
// Hash returns a hash state.
Hash() hash.Hash
// HashName is the name of the hash function.
HashName() string
}
// A CipherFunc implements an AEAD symmetric cipher.
type CipherFunc interface {
// Cipher initializes the algorithm with the provided key and returns a Cipher.
Cipher(k [32]byte) Cipher
// CipherName is the name of the cipher.
CipherName() string
}
// A Cipher is a AEAD cipher that has been initialized with a key.
type Cipher interface {
// Encrypt encrypts the provided plaintext with a nonce and then appends the
// ciphertext to out along with an authentication tag over the ciphertext
// and optional authenticated data.
Encrypt(out []byte, n uint64, ad, plaintext []byte) []byte
// Decrypt authenticates the ciphertext and optional authenticated data and
// then decrypts the provided ciphertext using the provided nonce and
// appends it to out.
Decrypt(out []byte, n uint64, ad, ciphertext []byte) ([]byte, error)
}
// A CipherSuite is a set of cryptographic primitives used in a Noise protocol.
// It should be constructed with NewCipherSuite.
type CipherSuite interface {
DHFunc
CipherFunc
HashFunc
Name() []byte
}
// NewCipherSuite returns a CipherSuite constructed from the specified
// primitives.
func NewCipherSuite(dh DHFunc, c CipherFunc, h HashFunc) CipherSuite {
return ciphersuite{
DHFunc: dh,
CipherFunc: c,
HashFunc: h,
name: []byte(dh.DHName() + "_" + c.CipherName() + "_" + h.HashName()),
}
}
type ciphersuite struct {
DHFunc
CipherFunc
HashFunc
name []byte
}
func (s ciphersuite) Name() []byte { return s.name }
// DH25519 is the Curve25519 ECDH function.
var DH25519 DHFunc = dh25519{}
type dh25519 struct{}
func (dh25519) GenerateKeypair(rng io.Reader) (DHKey, error) {
var pubkey, privkey [32]byte
if rng == nil {
rng = rand.Reader
}
if _, err := io.ReadFull(rng, privkey[:]); err != nil {
return DHKey{}, err
}
curve25519.ScalarBaseMult(&pubkey, &privkey)
return DHKey{Private: privkey[:], Public: pubkey[:]}, nil
}
func (dh25519) DH(privkey, pubkey []byte) []byte {
var dst, in, base [32]byte
copy(in[:], privkey)
copy(base[:], pubkey)
curve25519.ScalarMult(&dst, &in, &base)
return dst[:]
}
func (dh25519) DHLen() int { return 32 }
func (dh25519) DHName() string { return "25519" }
type cipherFn struct {
fn func([32]byte) Cipher
name string
}
func (c cipherFn) Cipher(k [32]byte) Cipher { return c.fn(k) }
func (c cipherFn) CipherName() string { return c.name }
// CipherAESGCM is the AES256-GCM AEAD cipher.
var CipherAESGCM CipherFunc = cipherFn{cipherAESGCM, "AESGCM"}
func cipherAESGCM(k [32]byte) Cipher {
c, err := aes.NewCipher(k[:])
if err != nil {
panic(err)
}
gcm, err := cipher.NewGCM(c)
if err != nil {
panic(err)
}
return aeadCipher{
gcm,
func(n uint64) []byte {
var nonce [12]byte
binary.BigEndian.PutUint64(nonce[4:], n)
return nonce[:]
},
}
}
// CipherChaChaPoly is the ChaCha20-Poly1305 AEAD cipher construction.
var CipherChaChaPoly CipherFunc = cipherFn{cipherChaChaPoly, "ChaChaPoly"}
func cipherChaChaPoly(k [32]byte) Cipher {
c, err := chacha20poly1305.New(k[:])
if err != nil {
panic(err)
}
return aeadCipher{
c,
func(n uint64) []byte {
var nonce [12]byte
binary.LittleEndian.PutUint64(nonce[4:], n)
return nonce[:]
},
}
}
type aeadCipher struct {
cipher.AEAD
nonce func(uint64) []byte
}
func (c aeadCipher) Encrypt(out []byte, n uint64, ad, plaintext []byte) []byte {
return c.Seal(out, c.nonce(n), plaintext, ad)
}
func (c aeadCipher) Decrypt(out []byte, n uint64, ad, ciphertext []byte) ([]byte, error) {
return c.Open(out, c.nonce(n), ciphertext, ad)
}
type hashFn struct {
fn func() hash.Hash
name string
}
func (h hashFn) Hash() hash.Hash { return h.fn() }
func (h hashFn) HashName() string { return h.name }
// HashSHA256 is the SHA-256 hash function.
var HashSHA256 HashFunc = hashFn{sha256.New, "SHA256"}
// HashSHA512 is the SHA-512 hash function.
var HashSHA512 HashFunc = hashFn{sha512.New, "SHA512"}
func blake2bNew() hash.Hash {
h, err := blake2b.New512(nil)
if err != nil {
panic(err)
}
return h
}
// HashBLAKE2b is the BLAKE2b hash function.
var HashBLAKE2b HashFunc = hashFn{blake2bNew, "BLAKE2b"}
func blake2sNew() hash.Hash {
h, err := blake2s.New256(nil)
if err != nil {
panic(err)
}
return h
}
// HashBLAKE2s is the BLAKE2s hash function.
var HashBLAKE2s HashFunc = hashFn{blake2sNew, "BLAKE2s"}