status-go/server/certs.go

226 lines
5.8 KiB
Go
Raw Normal View History

package server
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"crypto/tls"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"encoding/pem"
"fmt"
"math/big"
"net"
"net/url"
"time"
)
var globalCertificate *tls.Certificate = nil
var globalPem string
func makeRandomSerialNumber() (*big.Int, error) {
serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128)
return rand.Int(rand.Reader, serialNumberLimit)
}
func makeSerialNumberFromKey(pk *ecdsa.PrivateKey) *big.Int {
h := sha256.New()
h.Write(append(pk.D.Bytes(), append(pk.Y.Bytes(), pk.X.Bytes()...)...))
return new(big.Int).SetBytes(h.Sum(nil))
}
func GenerateX509Cert(sn *big.Int, from, to time.Time, hostname string) *x509.Certificate {
c := &x509.Certificate{
SerialNumber: sn,
Subject: pkix.Name{Organization: []string{"Self-signed cert"}},
NotBefore: from,
NotAfter: to,
KeyUsage: x509.KeyUsageDigitalSignature | x509.KeyUsageCertSign,
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth},
BasicConstraintsValid: true,
IsCA: true,
}
ip := net.ParseIP(hostname)
if ip != nil {
c.IPAddresses = []net.IP{ip}
} else {
c.DNSNames = []string{hostname}
}
return c
}
func GenerateX509PEMs(cert *x509.Certificate, key *ecdsa.PrivateKey) (certPem, keyPem []byte, err error) {
derBytes, err := x509.CreateCertificate(rand.Reader, cert, cert, &key.PublicKey, key)
if err != nil {
return
}
certPem = pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: derBytes})
privBytes, err := x509.MarshalPKCS8PrivateKey(key)
if err != nil {
return
}
keyPem = pem.EncodeToMemory(&pem.Block{Type: "PRIVATE KEY", Bytes: privBytes})
return
}
func generateTLSCert() error {
if globalCertificate != nil {
return nil
}
priv, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
return err
}
notBefore := time.Now()
notAfter := notBefore.Add(365 * 24 * time.Hour)
sn, err := makeRandomSerialNumber()
if err != nil {
return err
}
cert := GenerateX509Cert(sn, notBefore, notAfter, localhost)
certPem, keyPem, err := GenerateX509PEMs(cert, priv)
if err != nil {
return err
}
finalCert, err := tls.X509KeyPair(certPem, keyPem)
if err != nil {
return err
}
globalCertificate = &finalCert
globalPem = string(certPem)
return nil
}
func PublicTLSCert() (string, error) {
err := generateTLSCert()
if err != nil {
return "", err
}
return globalPem, nil
}
func GenerateCertFromKey(pk *ecdsa.PrivateKey, from time.Time, hostname string) (tls.Certificate, []byte, error) {
cert := GenerateX509Cert(makeSerialNumberFromKey(pk), from, from.Add(time.Hour), hostname)
certPem, keyPem, err := GenerateX509PEMs(cert, pk)
if err != nil {
return tls.Certificate{}, nil, err
}
tlsCert, err := tls.X509KeyPair(certPem, keyPem)
if err != nil {
return tls.Certificate{}, nil, err
}
block, _ := pem.Decode(certPem)
if block == nil {
return tls.Certificate{}, nil, fmt.Errorf("failed to decode certPem")
}
leaf, err := x509.ParseCertificate(block.Bytes)
if err != nil {
return tls.Certificate{}, nil, err
}
tlsCert.Leaf = leaf
return tlsCert, certPem, nil
}
// ToECDSA takes a []byte of D and uses it to create an ecdsa.PublicKey on the elliptic.P256 curve
// this function is basically a P256 curve version of eth-node/crypto.ToECDSA without all the nice validation
func ToECDSA(d []byte) *ecdsa.PrivateKey {
k := new(ecdsa.PrivateKey)
k.D = new(big.Int).SetBytes(d)
k.PublicKey.Curve = elliptic.P256()
k.PublicKey.X, k.PublicKey.Y = k.PublicKey.Curve.ScalarBaseMult(d)
return k
}
// verifyCertPublicKey checks that the ecdsa.PublicKey using in a x509.Certificate matches a known ecdsa.PublicKey
func verifyCertPublicKey(cert *x509.Certificate, publicKey *ecdsa.PublicKey) error {
certKey, ok := cert.PublicKey.(*ecdsa.PublicKey)
if !ok {
return fmt.Errorf("unexpected public key type, expected ecdsa.PublicKey")
}
if !certKey.Equal(publicKey) {
return fmt.Errorf("server certificate MUST match the given public key")
}
return nil
}
// verifyCertSig checks that a x509.Certificate's Signature verifies against x509.Certificate's PublicKey
// If the x509.Certificate's PublicKey is not an ecdsa.PublicKey an error will be thrown
func verifyCertSig(cert *x509.Certificate) (bool, error) {
var esig struct {
R, S *big.Int
}
if _, err := asn1.Unmarshal(cert.Signature, &esig); err != nil {
return false, err
}
hash := sha256.New()
hash.Write(cert.RawTBSCertificate)
ecKey, ok := cert.PublicKey.(*ecdsa.PublicKey)
if !ok {
return false, fmt.Errorf("certificate public is not an ecdsa.PublicKey")
}
verified := ecdsa.Verify(ecKey, hash.Sum(nil), esig.R, esig.S)
return verified, nil
}
// verifyCert verifies an x509.Certificate against a known ecdsa.PublicKey
// combining the checks of verifyCertPublicKey and verifyCertSig.
// If an x509.Certificate fails to verify an error is also thrown
func verifyCert(cert *x509.Certificate, publicKey *ecdsa.PublicKey) error {
err := verifyCertPublicKey(cert, publicKey)
if err != nil {
return err
}
verified, err := verifyCertSig(cert)
if err != nil {
return err
}
if !verified {
return fmt.Errorf("server certificate signature MUST verify")
}
return nil
}
// getServerCert pings a given tls host, extracts and returns its x509.Certificate
// the function expects there to be only 1 certificate
func getServerCert(URL *url.URL) (*x509.Certificate, error) {
conf := &tls.Config{
InsecureSkipVerify: true, // nolint: gosec // Only skip verify to get the server's TLS cert. DO NOT skip for any other reason.
}
conn, err := tls.Dial("tcp", URL.Host, conf)
if err != nil {
return nil, err
}
defer conn.Close()
certs := conn.ConnectionState().PeerCertificates
if len(certs) != 1 {
return nil, fmt.Errorf("expected 1 TLS certificate, received '%d'", len(certs))
}
return certs[0], nil
}