mirror of
https://github.com/status-im/status-go.git
synced 2025-01-12 07:35:02 +00:00
249 lines
5.6 KiB
Go
249 lines
5.6 KiB
Go
|
// Copyright (c) 2016 The mathutil Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package mathutil // import "modernc.org/mathutil"
|
||
|
|
||
|
import (
|
||
|
"fmt"
|
||
|
"math/big"
|
||
|
)
|
||
|
|
||
|
func abs(n int) uint64 {
|
||
|
if n >= 0 {
|
||
|
return uint64(n)
|
||
|
}
|
||
|
|
||
|
return uint64(-n)
|
||
|
}
|
||
|
|
||
|
// QuadPolyDiscriminant returns the discriminant of a quadratic polynomial in
|
||
|
// one variable of the form a*x^2+b*x+c with integer coefficients a, b, c, or
|
||
|
// an error on overflow.
|
||
|
//
|
||
|
// ds is the square of the discriminant. If |ds| is a square number, d is set
|
||
|
// to sqrt(|ds|), otherwise d is < 0.
|
||
|
func QuadPolyDiscriminant(a, b, c int) (ds, d int, _ error) {
|
||
|
if 2*BitLenUint64(abs(b)) > IntBits-1 ||
|
||
|
2+BitLenUint64(abs(a))+BitLenUint64(abs(c)) > IntBits-1 {
|
||
|
return 0, 0, fmt.Errorf("overflow")
|
||
|
}
|
||
|
|
||
|
ds = b*b - 4*a*c
|
||
|
s := ds
|
||
|
if s < 0 {
|
||
|
s = -s
|
||
|
}
|
||
|
d64 := SqrtUint64(uint64(s))
|
||
|
if d64*d64 != uint64(s) {
|
||
|
return ds, -1, nil
|
||
|
}
|
||
|
|
||
|
return ds, int(d64), nil
|
||
|
}
|
||
|
|
||
|
// PolyFactor describes an irreducible factor of a polynomial in one variable
|
||
|
// with integer coefficients P, Q of the form P*x+Q.
|
||
|
type PolyFactor struct {
|
||
|
P, Q int
|
||
|
}
|
||
|
|
||
|
// QuadPolyFactors returns the content and the irreducible factors of the
|
||
|
// primitive part of a quadratic polynomial in one variable with integer
|
||
|
// coefficients a, b, c of the form a*x^2+b*x+c in integers, or an error on
|
||
|
// overflow.
|
||
|
//
|
||
|
// If the factorization in integers does not exists, the return value is (0,
|
||
|
// nil, nil).
|
||
|
//
|
||
|
// See also:
|
||
|
// https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization
|
||
|
func QuadPolyFactors(a, b, c int) (content int, primitivePart []PolyFactor, _ error) {
|
||
|
content = int(GCDUint64(abs(a), GCDUint64(abs(b), abs(c))))
|
||
|
switch {
|
||
|
case content == 0:
|
||
|
content = 1
|
||
|
case content > 0:
|
||
|
if a < 0 || a == 0 && b < 0 {
|
||
|
content = -content
|
||
|
}
|
||
|
}
|
||
|
a /= content
|
||
|
b /= content
|
||
|
c /= content
|
||
|
if a == 0 {
|
||
|
if b == 0 {
|
||
|
return content, []PolyFactor{{0, c}}, nil
|
||
|
}
|
||
|
|
||
|
if b < 0 && c < 0 {
|
||
|
b = -b
|
||
|
c = -c
|
||
|
}
|
||
|
if b < 0 {
|
||
|
b = -b
|
||
|
c = -c
|
||
|
}
|
||
|
return content, []PolyFactor{{b, c}}, nil
|
||
|
}
|
||
|
|
||
|
ds, d, err := QuadPolyDiscriminant(a, b, c)
|
||
|
if err != nil {
|
||
|
return 0, nil, err
|
||
|
}
|
||
|
|
||
|
if ds < 0 || d < 0 {
|
||
|
return 0, nil, nil
|
||
|
}
|
||
|
|
||
|
x1num := -b + d
|
||
|
x1denom := 2 * a
|
||
|
gcd := int(GCDUint64(abs(x1num), abs(x1denom)))
|
||
|
x1num /= gcd
|
||
|
x1denom /= gcd
|
||
|
|
||
|
x2num := -b - d
|
||
|
x2denom := 2 * a
|
||
|
gcd = int(GCDUint64(abs(x2num), abs(x2denom)))
|
||
|
x2num /= gcd
|
||
|
x2denom /= gcd
|
||
|
|
||
|
return content, []PolyFactor{{x1denom, -x1num}, {x2denom, -x2num}}, nil
|
||
|
}
|
||
|
|
||
|
// QuadPolyDiscriminantBig returns the discriminant of a quadratic polynomial
|
||
|
// in one variable of the form a*x^2+b*x+c with integer coefficients a, b, c.
|
||
|
//
|
||
|
// ds is the square of the discriminant. If |ds| is a square number, d is set
|
||
|
// to sqrt(|ds|), otherwise d is nil.
|
||
|
func QuadPolyDiscriminantBig(a, b, c *big.Int) (ds, d *big.Int) {
|
||
|
ds = big.NewInt(0).Set(b)
|
||
|
ds.Mul(ds, b)
|
||
|
x := big.NewInt(4)
|
||
|
x.Mul(x, a)
|
||
|
x.Mul(x, c)
|
||
|
ds.Sub(ds, x)
|
||
|
|
||
|
s := big.NewInt(0).Set(ds)
|
||
|
if s.Sign() < 0 {
|
||
|
s.Neg(s)
|
||
|
}
|
||
|
|
||
|
if s.Bit(1) != 0 { // s is not a square number
|
||
|
return ds, nil
|
||
|
}
|
||
|
|
||
|
d = SqrtBig(s)
|
||
|
x.Set(d)
|
||
|
x.Mul(x, x)
|
||
|
if x.Cmp(s) != 0 { // s is not a square number
|
||
|
d = nil
|
||
|
}
|
||
|
return ds, d
|
||
|
}
|
||
|
|
||
|
// PolyFactorBig describes an irreducible factor of a polynomial in one
|
||
|
// variable with integer coefficients P, Q of the form P*x+Q.
|
||
|
type PolyFactorBig struct {
|
||
|
P, Q *big.Int
|
||
|
}
|
||
|
|
||
|
// QuadPolyFactorsBig returns the content and the irreducible factors of the
|
||
|
// primitive part of a quadratic polynomial in one variable with integer
|
||
|
// coefficients a, b, c of the form a*x^2+b*x+c in integers.
|
||
|
//
|
||
|
// If the factorization in integers does not exists, the return value is (nil,
|
||
|
// nil).
|
||
|
//
|
||
|
// See also:
|
||
|
// https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization
|
||
|
func QuadPolyFactorsBig(a, b, c *big.Int) (content *big.Int, primitivePart []PolyFactorBig) {
|
||
|
content = bigGCD(bigAbs(a), bigGCD(bigAbs(b), bigAbs(c)))
|
||
|
switch {
|
||
|
case content.Sign() == 0:
|
||
|
content.SetInt64(1)
|
||
|
case content.Sign() > 0:
|
||
|
if a.Sign() < 0 || a.Sign() == 0 && b.Sign() < 0 {
|
||
|
content = bigNeg(content)
|
||
|
}
|
||
|
}
|
||
|
a = bigDiv(a, content)
|
||
|
b = bigDiv(b, content)
|
||
|
c = bigDiv(c, content)
|
||
|
|
||
|
if a.Sign() == 0 {
|
||
|
if b.Sign() == 0 {
|
||
|
return content, []PolyFactorBig{{big.NewInt(0), c}}
|
||
|
}
|
||
|
|
||
|
if b.Sign() < 0 && c.Sign() < 0 {
|
||
|
b = bigNeg(b)
|
||
|
c = bigNeg(c)
|
||
|
}
|
||
|
if b.Sign() < 0 {
|
||
|
b = bigNeg(b)
|
||
|
c = bigNeg(c)
|
||
|
}
|
||
|
return content, []PolyFactorBig{{b, c}}
|
||
|
}
|
||
|
|
||
|
ds, d := QuadPolyDiscriminantBig(a, b, c)
|
||
|
if ds.Sign() < 0 || d == nil {
|
||
|
return nil, nil
|
||
|
}
|
||
|
|
||
|
x1num := bigAdd(bigNeg(b), d)
|
||
|
x1denom := bigMul(_2, a)
|
||
|
gcd := bigGCD(bigAbs(x1num), bigAbs(x1denom))
|
||
|
x1num = bigDiv(x1num, gcd)
|
||
|
x1denom = bigDiv(x1denom, gcd)
|
||
|
|
||
|
x2num := bigAdd(bigNeg(b), bigNeg(d))
|
||
|
x2denom := bigMul(_2, a)
|
||
|
gcd = bigGCD(bigAbs(x2num), bigAbs(x2denom))
|
||
|
x2num = bigDiv(x2num, gcd)
|
||
|
x2denom = bigDiv(x2denom, gcd)
|
||
|
|
||
|
return content, []PolyFactorBig{{x1denom, bigNeg(x1num)}, {x2denom, bigNeg(x2num)}}
|
||
|
}
|
||
|
|
||
|
func bigAbs(n *big.Int) *big.Int {
|
||
|
n = big.NewInt(0).Set(n)
|
||
|
if n.Sign() >= 0 {
|
||
|
return n
|
||
|
}
|
||
|
|
||
|
return n.Neg(n)
|
||
|
}
|
||
|
|
||
|
func bigDiv(a, b *big.Int) *big.Int {
|
||
|
a = big.NewInt(0).Set(a)
|
||
|
return a.Div(a, b)
|
||
|
}
|
||
|
|
||
|
func bigGCD(a, b *big.Int) *big.Int {
|
||
|
a = big.NewInt(0).Set(a)
|
||
|
b = big.NewInt(0).Set(b)
|
||
|
for b.Sign() != 0 {
|
||
|
c := big.NewInt(0)
|
||
|
c.Mod(a, b)
|
||
|
a, b = b, c
|
||
|
}
|
||
|
return a
|
||
|
}
|
||
|
|
||
|
func bigNeg(n *big.Int) *big.Int {
|
||
|
n = big.NewInt(0).Set(n)
|
||
|
return n.Neg(n)
|
||
|
}
|
||
|
|
||
|
func bigMul(a, b *big.Int) *big.Int {
|
||
|
r := big.NewInt(0).Set(a)
|
||
|
return r.Mul(r, b)
|
||
|
}
|
||
|
|
||
|
func bigAdd(a, b *big.Int) *big.Int {
|
||
|
r := big.NewInt(0).Set(a)
|
||
|
return r.Add(r, b)
|
||
|
}
|