status-go/vendor/github.com/holiman/uint256/conversion.go

555 lines
17 KiB
Go
Raw Normal View History

// uint256: Fixed size 256-bit math library
// Copyright 2020 uint256 Authors
// SPDX-License-Identifier: BSD-3-Clause
package uint256
import (
"encoding/binary"
"errors"
"fmt"
"io"
"math/big"
"math/bits"
)
const (
maxWords = 256 / bits.UintSize // number of big.Words in 256-bit
// The constants below work as compile-time checks: in case evaluated to
// negative value it cannot be assigned to uint type and compilation fails.
// These particular expressions check if maxWords either 4 or 8 matching
// 32-bit and 64-bit architectures.
_ uint = -(maxWords & (maxWords - 1)) // maxWords is power of two.
_ uint = -(maxWords & ^(4 | 8)) // maxWords is 4 or 8.
)
// ToBig returns a big.Int version of z.
func (z *Int) ToBig() *big.Int {
b := new(big.Int)
switch maxWords { // Compile-time check.
case 4: // 64-bit architectures.
words := [4]big.Word{big.Word(z[0]), big.Word(z[1]), big.Word(z[2]), big.Word(z[3])}
b.SetBits(words[:])
case 8: // 32-bit architectures.
words := [8]big.Word{
big.Word(z[0]), big.Word(z[0] >> 32),
big.Word(z[1]), big.Word(z[1] >> 32),
big.Word(z[2]), big.Word(z[2] >> 32),
big.Word(z[3]), big.Word(z[3] >> 32),
}
b.SetBits(words[:])
}
return b
}
// FromBig is a convenience-constructor from big.Int.
// Returns a new Int and whether overflow occurred.
func FromBig(b *big.Int) (*Int, bool) {
z := &Int{}
overflow := z.SetFromBig(b)
return z, overflow
}
// fromHex is the internal implementation of parsing a hex-string.
func (z *Int) fromHex(hex string) error {
if err := checkNumberS(hex); err != nil {
return err
}
if len(hex) > 66 {
return ErrBig256Range
}
end := len(hex)
for i := 0; i < 4; i++ {
start := end - 16
if start < 2 {
start = 2
}
for ri := start; ri < end; ri++ {
nib := bintable[hex[ri]]
if nib == badNibble {
return ErrSyntax
}
z[i] = z[i] << 4
z[i] += uint64(nib)
}
end = start
}
return nil
}
// FromHex is a convenience-constructor to create an Int from
// a hexadecimal string. The string is required to be '0x'-prefixed
// Numbers larger than 256 bits are not accepted.
func FromHex(hex string) (*Int, error) {
var z Int
if err := z.fromHex(hex); err != nil {
return nil, err
}
return &z, nil
}
// UnmarshalText implements encoding.TextUnmarshaler
func (z *Int) UnmarshalText(input []byte) error {
return z.fromHex(string(input))
}
// SetFromBig converts a big.Int to Int and sets the value to z.
// TODO: Ensure we have sufficient testing, esp for negative bigints.
func (z *Int) SetFromBig(b *big.Int) bool {
z.Clear()
words := b.Bits()
overflow := len(words) > maxWords
switch maxWords { // Compile-time check.
case 4: // 64-bit architectures.
if len(words) > 0 {
z[0] = uint64(words[0])
if len(words) > 1 {
z[1] = uint64(words[1])
if len(words) > 2 {
z[2] = uint64(words[2])
if len(words) > 3 {
z[3] = uint64(words[3])
}
}
}
}
case 8: // 32-bit architectures.
numWords := len(words)
if overflow {
numWords = maxWords
}
for i := 0; i < numWords; i++ {
if i%2 == 0 {
z[i/2] = uint64(words[i])
} else {
z[i/2] |= uint64(words[i]) << 32
}
}
}
if b.Sign() == -1 {
z.Neg(z)
}
return overflow
}
// Format implements fmt.Formatter. It accepts the formats
// 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
// 'd' (decimal), 'x' (lowercase hexadecimal), and
// 'X' (uppercase hexadecimal).
// Also supported are the full suite of package fmt's format
// flags for integral types, including '+' and ' ' for sign
// control, '#' for leading zero in octal and for hexadecimal,
// a leading "0x" or "0X" for "%#x" and "%#X" respectively,
// specification of minimum digits precision, output field
// width, space or zero padding, and '-' for left or right
// justification.
//
func (z *Int) Format(s fmt.State, ch rune) {
z.ToBig().Format(s, ch)
}
// SetBytes8 is identical to SetBytes(in[:8]), but panics is input is too short
func (z *Int) SetBytes8(in []byte) *Int {
_ = in[7] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = binary.BigEndian.Uint64(in[0:8])
return z
}
// SetBytes16 is identical to SetBytes(in[:16]), but panics is input is too short
func (z *Int) SetBytes16(in []byte) *Int {
_ = in[15] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = binary.BigEndian.Uint64(in[0:8])
z[0] = binary.BigEndian.Uint64(in[8:16])
return z
}
// SetBytes16 is identical to SetBytes(in[:24]), but panics is input is too short
func (z *Int) SetBytes24(in []byte) *Int {
_ = in[23] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = binary.BigEndian.Uint64(in[0:8])
z[1] = binary.BigEndian.Uint64(in[8:16])
z[0] = binary.BigEndian.Uint64(in[16:24])
return z
}
func (z *Int) SetBytes32(in []byte) *Int {
_ = in[31] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = binary.BigEndian.Uint64(in[0:8])
z[2] = binary.BigEndian.Uint64(in[8:16])
z[1] = binary.BigEndian.Uint64(in[16:24])
z[0] = binary.BigEndian.Uint64(in[24:32])
return z
}
func (z *Int) SetBytes1(in []byte) *Int {
z[3], z[2], z[1] = 0, 0, 0
z[0] = uint64(in[0])
return z
}
func (z *Int) SetBytes9(in []byte) *Int {
_ = in[8] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = uint64(in[0])
z[0] = binary.BigEndian.Uint64(in[1:9])
return z
}
func (z *Int) SetBytes17(in []byte) *Int {
_ = in[16] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = uint64(in[0])
z[1] = binary.BigEndian.Uint64(in[1:9])
z[0] = binary.BigEndian.Uint64(in[9:17])
return z
}
func (z *Int) SetBytes25(in []byte) *Int {
_ = in[24] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = uint64(in[0])
z[2] = binary.BigEndian.Uint64(in[1:9])
z[1] = binary.BigEndian.Uint64(in[9:17])
z[0] = binary.BigEndian.Uint64(in[17:25])
return z
}
func (z *Int) SetBytes2(in []byte) *Int {
_ = in[1] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = uint64(binary.BigEndian.Uint16(in[0:2]))
return z
}
func (z *Int) SetBytes10(in []byte) *Int {
_ = in[9] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = uint64(binary.BigEndian.Uint16(in[0:2]))
z[0] = binary.BigEndian.Uint64(in[2:10])
return z
}
func (z *Int) SetBytes18(in []byte) *Int {
_ = in[17] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = uint64(binary.BigEndian.Uint16(in[0:2]))
z[1] = binary.BigEndian.Uint64(in[2:10])
z[0] = binary.BigEndian.Uint64(in[10:18])
return z
}
func (z *Int) SetBytes26(in []byte) *Int {
_ = in[25] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = uint64(binary.BigEndian.Uint16(in[0:2]))
z[2] = binary.BigEndian.Uint64(in[2:10])
z[1] = binary.BigEndian.Uint64(in[10:18])
z[0] = binary.BigEndian.Uint64(in[18:26])
return z
}
func (z *Int) SetBytes3(in []byte) *Int {
_ = in[2] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16
return z
}
func (z *Int) SetBytes11(in []byte) *Int {
_ = in[10] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16
z[0] = binary.BigEndian.Uint64(in[3:11])
return z
}
func (z *Int) SetBytes19(in []byte) *Int {
_ = in[18] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16
z[1] = binary.BigEndian.Uint64(in[3:11])
z[0] = binary.BigEndian.Uint64(in[11:19])
return z
}
func (z *Int) SetBytes27(in []byte) *Int {
_ = in[26] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16
z[2] = binary.BigEndian.Uint64(in[3:11])
z[1] = binary.BigEndian.Uint64(in[11:19])
z[0] = binary.BigEndian.Uint64(in[19:27])
return z
}
func (z *Int) SetBytes4(in []byte) *Int {
_ = in[3] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = uint64(binary.BigEndian.Uint32(in[0:4]))
return z
}
func (z *Int) SetBytes12(in []byte) *Int {
_ = in[11] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = uint64(binary.BigEndian.Uint32(in[0:4]))
z[0] = binary.BigEndian.Uint64(in[4:12])
return z
}
func (z *Int) SetBytes20(in []byte) *Int {
_ = in[19] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = uint64(binary.BigEndian.Uint32(in[0:4]))
z[1] = binary.BigEndian.Uint64(in[4:12])
z[0] = binary.BigEndian.Uint64(in[12:20])
return z
}
func (z *Int) SetBytes28(in []byte) *Int {
_ = in[27] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = uint64(binary.BigEndian.Uint32(in[0:4]))
z[2] = binary.BigEndian.Uint64(in[4:12])
z[1] = binary.BigEndian.Uint64(in[12:20])
z[0] = binary.BigEndian.Uint64(in[20:28])
return z
}
func (z *Int) SetBytes5(in []byte) *Int {
_ = in[4] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = bigEndianUint40(in[0:5])
return z
}
func (z *Int) SetBytes13(in []byte) *Int {
_ = in[12] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = bigEndianUint40(in[0:5])
z[0] = binary.BigEndian.Uint64(in[5:13])
return z
}
func (z *Int) SetBytes21(in []byte) *Int {
_ = in[20] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = bigEndianUint40(in[0:5])
z[1] = binary.BigEndian.Uint64(in[5:13])
z[0] = binary.BigEndian.Uint64(in[13:21])
return z
}
func (z *Int) SetBytes29(in []byte) *Int {
_ = in[23] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = bigEndianUint40(in[0:5])
z[2] = binary.BigEndian.Uint64(in[5:13])
z[1] = binary.BigEndian.Uint64(in[13:21])
z[0] = binary.BigEndian.Uint64(in[21:29])
return z
}
func (z *Int) SetBytes6(in []byte) *Int {
_ = in[5] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = bigEndianUint48(in[0:6])
return z
}
func (z *Int) SetBytes14(in []byte) *Int {
_ = in[13] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = bigEndianUint48(in[0:6])
z[0] = binary.BigEndian.Uint64(in[6:14])
return z
}
func (z *Int) SetBytes22(in []byte) *Int {
_ = in[21] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = bigEndianUint48(in[0:6])
z[1] = binary.BigEndian.Uint64(in[6:14])
z[0] = binary.BigEndian.Uint64(in[14:22])
return z
}
func (z *Int) SetBytes30(in []byte) *Int {
_ = in[29] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = bigEndianUint48(in[0:6])
z[2] = binary.BigEndian.Uint64(in[6:14])
z[1] = binary.BigEndian.Uint64(in[14:22])
z[0] = binary.BigEndian.Uint64(in[22:30])
return z
}
func (z *Int) SetBytes7(in []byte) *Int {
_ = in[6] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = bigEndianUint56(in[0:7])
return z
}
func (z *Int) SetBytes15(in []byte) *Int {
_ = in[14] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = bigEndianUint56(in[0:7])
z[0] = binary.BigEndian.Uint64(in[7:15])
return z
}
func (z *Int) SetBytes23(in []byte) *Int {
_ = in[22] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = bigEndianUint56(in[0:7])
z[1] = binary.BigEndian.Uint64(in[7:15])
z[0] = binary.BigEndian.Uint64(in[15:23])
return z
}
func (z *Int) SetBytes31(in []byte) *Int {
_ = in[30] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = bigEndianUint56(in[0:7])
z[2] = binary.BigEndian.Uint64(in[7:15])
z[1] = binary.BigEndian.Uint64(in[15:23])
z[0] = binary.BigEndian.Uint64(in[23:31])
return z
}
// Utility methods that are "missing" among the bigEndian.UintXX methods.
func bigEndianUint40(b []byte) uint64 {
_ = b[4] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[4]) | uint64(b[3])<<8 | uint64(b[2])<<16 | uint64(b[1])<<24 |
uint64(b[0])<<32
}
func bigEndianUint48(b []byte) uint64 {
_ = b[5] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[5]) | uint64(b[4])<<8 | uint64(b[3])<<16 | uint64(b[2])<<24 |
uint64(b[1])<<32 | uint64(b[0])<<40
}
func bigEndianUint56(b []byte) uint64 {
_ = b[6] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[6]) | uint64(b[5])<<8 | uint64(b[4])<<16 | uint64(b[3])<<24 |
uint64(b[2])<<32 | uint64(b[1])<<40 | uint64(b[0])<<48
}
// EncodeRLP implements the rlp.Encoder interface from go-ethereum
// and writes the RLP encoding of z to w.
func (z *Int) EncodeRLP(w io.Writer) error {
if z == nil {
_, err := w.Write([]byte{0x80})
return err
}
nBits := z.BitLen()
if nBits == 0 {
_, err := w.Write([]byte{0x80})
return err
}
if nBits <= 7 {
_, err := w.Write([]byte{byte(z[0])})
return err
}
nBytes := byte((nBits + 7) / 8)
var b [33]byte
binary.BigEndian.PutUint64(b[1:9], z[3])
binary.BigEndian.PutUint64(b[9:17], z[2])
binary.BigEndian.PutUint64(b[17:25], z[1])
binary.BigEndian.PutUint64(b[25:33], z[0])
b[32-nBytes] = 0x80 + nBytes
_, err := w.Write(b[32-nBytes:])
return err
}
// MarshalText implements encoding.TextMarshaler
func (z *Int) MarshalText() ([]byte, error) {
return []byte(z.Hex()), nil
}
// UnmarshalJSON implements json.Unmarshaler.
func (z *Int) UnmarshalJSON(input []byte) error {
if len(input) < 2 || input[0] != '"' || input[len(input)-1] != '"' {
return ErrNonString
}
return z.UnmarshalText(input[1 : len(input)-1])
}
// String returns the hex encoding of b.
func (z *Int) String() string {
return z.Hex()
}
const (
hextable = "0123456789abcdef"
bintable = "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x00\x01\x02\x03\x04\x05\x06\a\b\t\xff\xff\xff\xff\xff\xff\xff\n\v\f\r\x0e\x0f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\n\v\f\r\x0e\x0f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"
badNibble = 0xff
)
// Hex encodes z in 0x-prefixed hexadecimal form.
func (z *Int) Hex() string {
// This implementation is not optimal, it allocates a full
// 66-byte output buffer which it fills. It could instead allocate a smaller
// buffer, and omit the final crop-stage.
output := make([]byte, 66)
nibbles := (z.BitLen() + 3) / 4 // nibbles [0,64]
if nibbles == 0 {
nibbles = 1
}
// Start with the most significant
zWord := (nibbles - 1) / 16
for i := zWord; i >= 0; i-- {
off := (3 - i) * 16
output[off+2] = hextable[byte(z[i]>>60)&0xf]
output[off+3] = hextable[byte(z[i]>>56)&0xf]
output[off+4] = hextable[byte(z[i]>>52)&0xf]
output[off+5] = hextable[byte(z[i]>>48)&0xf]
output[off+6] = hextable[byte(z[i]>>44)&0xf]
output[off+7] = hextable[byte(z[i]>>40)&0xf]
output[off+8] = hextable[byte(z[i]>>36)&0xf]
output[off+9] = hextable[byte(z[i]>>32)&0xf]
output[off+10] = hextable[byte(z[i]>>28)&0xf]
output[off+11] = hextable[byte(z[i]>>24)&0xf]
output[off+12] = hextable[byte(z[i]>>20)&0xf]
output[off+13] = hextable[byte(z[i]>>16)&0xf]
output[off+14] = hextable[byte(z[i]>>12)&0xf]
output[off+15] = hextable[byte(z[i]>>8)&0xf]
output[off+16] = hextable[byte(z[i]>>4)&0xf]
output[off+17] = hextable[byte(z[i]&0xF)&0xf]
}
output[64-nibbles] = '0'
output[65-nibbles] = 'x'
return string(output[64-nibbles:])
}
var (
ErrEmptyString = errors.New("empty hex string")
ErrSyntax = errors.New("invalid hex string")
ErrMissingPrefix = errors.New("hex string without 0x prefix")
ErrEmptyNumber = errors.New("hex string \"0x\"")
ErrLeadingZero = errors.New("hex number with leading zero digits")
ErrBig256Range = errors.New("hex number > 256 bits")
ErrNonString = errors.New("non-string")
)
func checkNumberS(input string) error {
l := len(input)
if l == 0 {
return ErrEmptyString
}
if l < 2 || input[0] != '0' ||
(input[1] != 'x' && input[1] != 'X') {
return ErrMissingPrefix
}
if l == 2 {
return ErrEmptyNumber
}
if len(input) > 3 && input[2] == '0' {
return ErrLeadingZero
}
return nil
}