1135 lines
24 KiB
Go
Raw Normal View History

// uint256: Fixed size 256-bit math library
// Copyright 2018-2020 uint256 Authors
// SPDX-License-Identifier: BSD-3-Clause
// Package math provides integer math utilities.
package uint256
import (
"encoding/binary"
"math"
"math/bits"
)
// Int is represented as an array of 4 uint64, in little-endian order,
// so that Int[3] is the most significant, and Int[0] is the least significant
type Int [4]uint64
// NewInt returns a new initialized Int.
func NewInt(val uint64) *Int {
z := &Int{}
z.SetUint64(val)
return z
}
// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
// If buf is larger than 32 bytes, the last 32 bytes is used. This operation
// is semantically equivalent to `FromBig(new(big.Int).SetBytes(buf))`
func (z *Int) SetBytes(buf []byte) *Int {
switch l := len(buf); l {
case 0:
z.Clear()
case 1:
z.SetBytes1(buf)
case 2:
z.SetBytes2(buf)
case 3:
z.SetBytes3(buf)
case 4:
z.SetBytes4(buf)
case 5:
z.SetBytes5(buf)
case 6:
z.SetBytes6(buf)
case 7:
z.SetBytes7(buf)
case 8:
z.SetBytes8(buf)
case 9:
z.SetBytes9(buf)
case 10:
z.SetBytes10(buf)
case 11:
z.SetBytes11(buf)
case 12:
z.SetBytes12(buf)
case 13:
z.SetBytes13(buf)
case 14:
z.SetBytes14(buf)
case 15:
z.SetBytes15(buf)
case 16:
z.SetBytes16(buf)
case 17:
z.SetBytes17(buf)
case 18:
z.SetBytes18(buf)
case 19:
z.SetBytes19(buf)
case 20:
z.SetBytes20(buf)
case 21:
z.SetBytes21(buf)
case 22:
z.SetBytes22(buf)
case 23:
z.SetBytes23(buf)
case 24:
z.SetBytes24(buf)
case 25:
z.SetBytes25(buf)
case 26:
z.SetBytes26(buf)
case 27:
z.SetBytes27(buf)
case 28:
z.SetBytes28(buf)
case 29:
z.SetBytes29(buf)
case 30:
z.SetBytes30(buf)
case 31:
z.SetBytes31(buf)
default:
z.SetBytes32(buf[l-32:])
}
return z
}
// Bytes32 returns the value of z as a 32-byte big-endian array.
func (z *Int) Bytes32() [32]byte {
// The PutUint64()s are inlined and we get 4x (load, bswap, store) instructions.
var b [32]byte
binary.BigEndian.PutUint64(b[0:8], z[3])
binary.BigEndian.PutUint64(b[8:16], z[2])
binary.BigEndian.PutUint64(b[16:24], z[1])
binary.BigEndian.PutUint64(b[24:32], z[0])
return b
}
// Bytes20 returns the value of z as a 20-byte big-endian array.
func (z *Int) Bytes20() [20]byte {
var b [20]byte
// The PutUint*()s are inlined and we get 3x (load, bswap, store) instructions.
binary.BigEndian.PutUint32(b[0:4], uint32(z[2]))
binary.BigEndian.PutUint64(b[4:12], z[1])
binary.BigEndian.PutUint64(b[12:20], z[0])
return b
}
// Bytes returns the value of z as a big-endian byte slice.
func (z *Int) Bytes() []byte {
b := z.Bytes32()
return b[32-z.ByteLen():]
}
// WriteToSlice writes the content of z into the given byteslice.
// If dest is larger than 32 bytes, z will fill the first parts, and leave
// the end untouched.
// OBS! If dest is smaller than 32 bytes, only the end parts of z will be used
// for filling the array, making it useful for filling an Address object
func (z *Int) WriteToSlice(dest []byte) {
// ensure 32 bytes
// A too large buffer. Fill last 32 bytes
end := len(dest) - 1
if end > 31 {
end = 31
}
for i := 0; i <= end; i++ {
dest[end-i] = byte(z[i/8] >> uint64(8*(i%8)))
}
}
// WriteToArray32 writes all 32 bytes of z to the destination array, including zero-bytes
func (z *Int) WriteToArray32(dest *[32]byte) {
for i := 0; i < 32; i++ {
dest[31-i] = byte(z[i/8] >> uint64(8*(i%8)))
}
}
// WriteToArray20 writes the last 20 bytes of z to the destination array, including zero-bytes
func (z *Int) WriteToArray20(dest *[20]byte) {
for i := 0; i < 20; i++ {
dest[19-i] = byte(z[i/8] >> uint64(8*(i%8)))
}
}
// Uint64 returns the lower 64-bits of z
func (z *Int) Uint64() uint64 {
return z[0]
}
// Uint64WithOverflow returns the lower 64-bits of z and bool whether overflow occurred
func (z *Int) Uint64WithOverflow() (uint64, bool) {
return z[0], (z[1] | z[2] | z[3]) != 0
}
// Clone creates a new Int identical to z
func (z *Int) Clone() *Int {
return &Int{z[0], z[1], z[2], z[3]}
}
// Add sets z to the sum x+y
func (z *Int) Add(x, y *Int) *Int {
var carry uint64
z[0], carry = bits.Add64(x[0], y[0], 0)
z[1], carry = bits.Add64(x[1], y[1], carry)
z[2], carry = bits.Add64(x[2], y[2], carry)
z[3], _ = bits.Add64(x[3], y[3], carry)
return z
}
// AddOverflow sets z to the sum x+y, and returns z and whether overflow occurred
func (z *Int) AddOverflow(x, y *Int) (*Int, bool) {
var carry uint64
z[0], carry = bits.Add64(x[0], y[0], 0)
z[1], carry = bits.Add64(x[1], y[1], carry)
z[2], carry = bits.Add64(x[2], y[2], carry)
z[3], carry = bits.Add64(x[3], y[3], carry)
return z, carry != 0
}
// AddMod sets z to the sum ( x+y ) mod m, and returns z.
// If m == 0, z is set to 0 (OBS: differs from the big.Int)
func (z *Int) AddMod(x, y, m *Int) *Int {
if m.IsZero() {
return z.Clear()
}
if z == m { // z is an alias for m // TODO: Understand why needed and add tests for all "division" methods.
m = m.Clone()
}
if _, overflow := z.AddOverflow(x, y); overflow {
sum := [5]uint64{z[0], z[1], z[2], z[3], 1}
var quot [5]uint64
rem := udivrem(quot[:], sum[:], m)
return z.Set(&rem)
}
return z.Mod(z, m)
}
// AddUint64 sets z to x + y, where y is a uint64, and returns z
func (z *Int) AddUint64(x *Int, y uint64) *Int {
var carry uint64
z[0], carry = bits.Add64(x[0], y, 0)
z[1], carry = bits.Add64(x[1], 0, carry)
z[2], carry = bits.Add64(x[2], 0, carry)
z[3], _ = bits.Add64(x[3], 0, carry)
return z
}
// PaddedBytes encodes a Int as a 0-padded byte slice. The length
// of the slice is at least n bytes.
// Example, z =1, n = 20 => [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
func (z *Int) PaddedBytes(n int) []byte {
b := make([]byte, n)
for i := 0; i < 32 && i < n; i++ {
b[n-1-i] = byte(z[i/8] >> uint64(8*(i%8)))
}
return b
}
// SubUint64 set z to the difference x - y, where y is a uint64, and returns z
func (z *Int) SubUint64(x *Int, y uint64) *Int {
var carry uint64
z[0], carry = bits.Sub64(x[0], y, carry)
z[1], carry = bits.Sub64(x[1], 0, carry)
z[2], carry = bits.Sub64(x[2], 0, carry)
z[3], _ = bits.Sub64(x[3], 0, carry)
return z
}
// SubOverflow sets z to the difference x-y and returns z and true if the operation underflowed
func (z *Int) SubOverflow(x, y *Int) (*Int, bool) {
var carry uint64
z[0], carry = bits.Sub64(x[0], y[0], 0)
z[1], carry = bits.Sub64(x[1], y[1], carry)
z[2], carry = bits.Sub64(x[2], y[2], carry)
z[3], carry = bits.Sub64(x[3], y[3], carry)
return z, carry != 0
}
// Sub sets z to the difference x-y
func (z *Int) Sub(x, y *Int) *Int {
var carry uint64
z[0], carry = bits.Sub64(x[0], y[0], 0)
z[1], carry = bits.Sub64(x[1], y[1], carry)
z[2], carry = bits.Sub64(x[2], y[2], carry)
z[3], _ = bits.Sub64(x[3], y[3], carry)
return z
}
// umulStep computes (hi * 2^64 + lo) = z + (x * y) + carry.
func umulStep(z, x, y, carry uint64) (hi, lo uint64) {
hi, lo = bits.Mul64(x, y)
lo, carry = bits.Add64(lo, carry, 0)
hi, _ = bits.Add64(hi, 0, carry)
lo, carry = bits.Add64(lo, z, 0)
hi, _ = bits.Add64(hi, 0, carry)
return hi, lo
}
// umulHop computes (hi * 2^64 + lo) = z + (x * y)
func umulHop(z, x, y uint64) (hi, lo uint64) {
hi, lo = bits.Mul64(x, y)
lo, carry := bits.Add64(lo, z, 0)
hi, _ = bits.Add64(hi, 0, carry)
return hi, lo
}
// umul computes full 256 x 256 -> 512 multiplication.
func umul(x, y *Int) [8]uint64 {
var (
res [8]uint64
carry, carry4, carry5, carry6 uint64
res1, res2, res3, res4, res5 uint64
)
carry, res[0] = bits.Mul64(x[0], y[0])
carry, res1 = umulHop(carry, x[1], y[0])
carry, res2 = umulHop(carry, x[2], y[0])
carry4, res3 = umulHop(carry, x[3], y[0])
carry, res[1] = umulHop(res1, x[0], y[1])
carry, res2 = umulStep(res2, x[1], y[1], carry)
carry, res3 = umulStep(res3, x[2], y[1], carry)
carry5, res4 = umulStep(carry4, x[3], y[1], carry)
carry, res[2] = umulHop(res2, x[0], y[2])
carry, res3 = umulStep(res3, x[1], y[2], carry)
carry, res4 = umulStep(res4, x[2], y[2], carry)
carry6, res5 = umulStep(carry5, x[3], y[2], carry)
carry, res[3] = umulHop(res3, x[0], y[3])
carry, res[4] = umulStep(res4, x[1], y[3], carry)
carry, res[5] = umulStep(res5, x[2], y[3], carry)
res[7], res[6] = umulStep(carry6, x[3], y[3], carry)
return res
}
// Mul sets z to the product x*y
func (z *Int) Mul(x, y *Int) *Int {
var (
res Int
carry uint64
res1, res2, res3 uint64
)
carry, res[0] = bits.Mul64(x[0], y[0])
carry, res1 = umulHop(carry, x[1], y[0])
carry, res2 = umulHop(carry, x[2], y[0])
res3 = x[3]*y[0] + carry
carry, res[1] = umulHop(res1, x[0], y[1])
carry, res2 = umulStep(res2, x[1], y[1], carry)
res3 = res3 + x[2]*y[1] + carry
carry, res[2] = umulHop(res2, x[0], y[2])
res3 = res3 + x[1]*y[2] + carry
res[3] = res3 + x[0]*y[3]
return z.Set(&res)
}
// MulOverflow sets z to the product x*y, and returns z and whether overflow occurred
func (z *Int) MulOverflow(x, y *Int) (*Int, bool) {
p := umul(x, y)
copy(z[:], p[:4])
return z, (p[4] | p[5] | p[6] | p[7]) != 0
}
func (z *Int) squared() {
var (
res Int
carry0, carry1, carry2 uint64
res1, res2 uint64
)
carry0, res[0] = bits.Mul64(z[0], z[0])
carry0, res1 = umulHop(carry0, z[0], z[1])
carry0, res2 = umulHop(carry0, z[0], z[2])
carry1, res[1] = umulHop(res1, z[0], z[1])
carry1, res2 = umulStep(res2, z[1], z[1], carry1)
carry2, res[2] = umulHop(res2, z[0], z[2])
res[3] = 2*(z[0]*z[3]+z[1]*z[2]) + carry0 + carry1 + carry2
z.Set(&res)
}
// isBitSet returns true if bit n-th is set, where n = 0 is LSB.
// The n must be <= 255.
func (z *Int) isBitSet(n uint) bool {
return (z[n/64] & (1 << (n % 64))) != 0
}
// addTo computes x += y.
// Requires len(x) >= len(y).
func addTo(x, y []uint64) uint64 {
var carry uint64
for i := 0; i < len(y); i++ {
x[i], carry = bits.Add64(x[i], y[i], carry)
}
return carry
}
// subMulTo computes x -= y * multiplier.
// Requires len(x) >= len(y).
func subMulTo(x, y []uint64, multiplier uint64) uint64 {
var borrow uint64
for i := 0; i < len(y); i++ {
s, carry1 := bits.Sub64(x[i], borrow, 0)
ph, pl := bits.Mul64(y[i], multiplier)
t, carry2 := bits.Sub64(s, pl, 0)
x[i] = t
borrow = ph + carry1 + carry2
}
return borrow
}
// udivremBy1 divides u by single normalized word d and produces both quotient and remainder.
// The quotient is stored in provided quot.
func udivremBy1(quot, u []uint64, d uint64) (rem uint64) {
reciprocal := reciprocal2by1(d)
rem = u[len(u)-1] // Set the top word as remainder.
for j := len(u) - 2; j >= 0; j-- {
quot[j], rem = udivrem2by1(rem, u[j], d, reciprocal)
}
return rem
}
// udivremKnuth implements the division of u by normalized multiple word d from the Knuth's division algorithm.
// The quotient is stored in provided quot - len(u)-len(d) words.
// Updates u to contain the remainder - len(d) words.
func udivremKnuth(quot, u, d []uint64) {
dh := d[len(d)-1]
dl := d[len(d)-2]
reciprocal := reciprocal2by1(dh)
for j := len(u) - len(d) - 1; j >= 0; j-- {
u2 := u[j+len(d)]
u1 := u[j+len(d)-1]
u0 := u[j+len(d)-2]
var qhat, rhat uint64
if u2 >= dh { // Division overflows.
qhat = ^uint64(0)
// TODO: Add "qhat one to big" adjustment (not needed for correctness, but helps avoiding "add back" case).
} else {
qhat, rhat = udivrem2by1(u2, u1, dh, reciprocal)
ph, pl := bits.Mul64(qhat, dl)
if ph > rhat || (ph == rhat && pl > u0) {
qhat--
// TODO: Add "qhat one to big" adjustment (not needed for correctness, but helps avoiding "add back" case).
}
}
// Multiply and subtract.
borrow := subMulTo(u[j:], d, qhat)
u[j+len(d)] = u2 - borrow
if u2 < borrow { // Too much subtracted, add back.
qhat--
u[j+len(d)] += addTo(u[j:], d)
}
quot[j] = qhat // Store quotient digit.
}
}
// udivrem divides u by d and produces both quotient and remainder.
// The quotient is stored in provided quot - len(u)-len(d)+1 words.
// It loosely follows the Knuth's division algorithm (sometimes referenced as "schoolbook" division) using 64-bit words.
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
func udivrem(quot, u []uint64, d *Int) (rem Int) {
var dLen int
for i := len(d) - 1; i >= 0; i-- {
if d[i] != 0 {
dLen = i + 1
break
}
}
shift := uint(bits.LeadingZeros64(d[dLen-1]))
var dnStorage Int
dn := dnStorage[:dLen]
for i := dLen - 1; i > 0; i-- {
dn[i] = (d[i] << shift) | (d[i-1] >> (64 - shift))
}
dn[0] = d[0] << shift
var uLen int
for i := len(u) - 1; i >= 0; i-- {
if u[i] != 0 {
uLen = i + 1
break
}
}
var unStorage [9]uint64
un := unStorage[:uLen+1]
un[uLen] = u[uLen-1] >> (64 - shift)
for i := uLen - 1; i > 0; i-- {
un[i] = (u[i] << shift) | (u[i-1] >> (64 - shift))
}
un[0] = u[0] << shift
// TODO: Skip the highest word of numerator if not significant.
if dLen == 1 {
r := udivremBy1(quot, un, dn[0])
rem.SetUint64(r >> shift)
return rem
}
udivremKnuth(quot, un, dn)
for i := 0; i < dLen-1; i++ {
rem[i] = (un[i] >> shift) | (un[i+1] << (64 - shift))
}
rem[dLen-1] = un[dLen-1] >> shift
return rem
}
// Div sets z to the quotient x/y for returns z.
// If y == 0, z is set to 0
func (z *Int) Div(x, y *Int) *Int {
if y.IsZero() || y.Gt(x) {
return z.Clear()
}
if x.Eq(y) {
return z.SetOne()
}
// Shortcut some cases
if x.IsUint64() {
return z.SetUint64(x.Uint64() / y.Uint64())
}
// At this point, we know
// x/y ; x > y > 0
var quot Int
udivrem(quot[:], x[:], y)
return z.Set(&quot)
}
// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, z is set to 0 (OBS: differs from the big.Int)
func (z *Int) Mod(x, y *Int) *Int {
if x.IsZero() || y.IsZero() {
return z.Clear()
}
switch x.Cmp(y) {
case -1:
// x < y
copy(z[:], x[:])
return z
case 0:
// x == y
return z.Clear() // They are equal
}
// At this point:
// x != 0
// y != 0
// x > y
// Shortcut trivial case
if x.IsUint64() {
return z.SetUint64(x.Uint64() % y.Uint64())
}
var quot Int
rem := udivrem(quot[:], x[:], y)
return z.Set(&rem)
}
// SMod interprets x and y as two's complement signed integers,
// sets z to (sign x) * { abs(x) modulus abs(y) }
// If y == 0, z is set to 0 (OBS: differs from the big.Int)
func (z *Int) SMod(x, y *Int) *Int {
ys := y.Sign()
xs := x.Sign()
// abs x
if xs == -1 {
x = new(Int).Neg(x)
}
// abs y
if ys == -1 {
y = new(Int).Neg(y)
}
z.Mod(x, y)
if xs == -1 {
z.Neg(z)
}
return z
}
// MulMod calculates the modulo-m multiplication of x and y and
// returns z.
// If m == 0, z is set to 0 (OBS: differs from the big.Int)
func (z *Int) MulMod(x, y, m *Int) *Int {
if x.IsZero() || y.IsZero() || m.IsZero() {
return z.Clear()
}
p := umul(x, y)
var (
pl Int
ph Int
)
copy(pl[:], p[:4])
copy(ph[:], p[4:])
// If the multiplication is within 256 bits use Mod().
if ph.IsZero() {
return z.Mod(&pl, m)
}
var quot [8]uint64
rem := udivrem(quot[:], p[:], m)
return z.Set(&rem)
}
// Abs interprets x as a two's complement signed number,
// and sets z to the absolute value
// Abs(0) = 0
// Abs(1) = 1
// Abs(2**255) = -2**255
// Abs(2**256-1) = -1
func (z *Int) Abs(x *Int) *Int {
if x[3] < 0x8000000000000000 {
return z.Set(x)
}
return z.Sub(new(Int), x)
}
// Neg returns -x mod 2**256.
func (z *Int) Neg(x *Int) *Int {
return z.Sub(new(Int), x)
}
// SDiv interprets n and d as two's complement signed integers,
// does a signed division on the two operands and sets z to the result.
// If d == 0, z is set to 0
func (z *Int) SDiv(n, d *Int) *Int {
if n.Sign() > 0 {
if d.Sign() > 0 {
// pos / pos
z.Div(n, d)
return z
} else {
// pos / neg
z.Div(n, new(Int).Neg(d))
return z.Neg(z)
}
}
if d.Sign() < 0 {
// neg / neg
z.Div(new(Int).Neg(n), new(Int).Neg(d))
return z
}
// neg / pos
z.Div(new(Int).Neg(n), d)
return z.Neg(z)
}
// Sign returns:
// -1 if z < 0
// 0 if z == 0
// +1 if z > 0
// Where z is interpreted as a two's complement signed number
func (z *Int) Sign() int {
if z.IsZero() {
return 0
}
if z[3] < 0x8000000000000000 {
return 1
}
return -1
}
// BitLen returns the number of bits required to represent z
func (z *Int) BitLen() int {
switch {
case z[3] != 0:
return 192 + bits.Len64(z[3])
case z[2] != 0:
return 128 + bits.Len64(z[2])
case z[1] != 0:
return 64 + bits.Len64(z[1])
default:
return bits.Len64(z[0])
}
}
// ByteLen returns the number of bytes required to represent z
func (z *Int) ByteLen() int {
return (z.BitLen() + 7) / 8
}
func (z *Int) lsh64(x *Int) *Int {
z[3], z[2], z[1], z[0] = x[2], x[1], x[0], 0
return z
}
func (z *Int) lsh128(x *Int) *Int {
z[3], z[2], z[1], z[0] = x[1], x[0], 0, 0
return z
}
func (z *Int) lsh192(x *Int) *Int {
z[3], z[2], z[1], z[0] = x[0], 0, 0, 0
return z
}
func (z *Int) rsh64(x *Int) *Int {
z[3], z[2], z[1], z[0] = 0, x[3], x[2], x[1]
return z
}
func (z *Int) rsh128(x *Int) *Int {
z[3], z[2], z[1], z[0] = 0, 0, x[3], x[2]
return z
}
func (z *Int) rsh192(x *Int) *Int {
z[3], z[2], z[1], z[0] = 0, 0, 0, x[3]
return z
}
func (z *Int) srsh64(x *Int) *Int {
z[3], z[2], z[1], z[0] = math.MaxUint64, x[3], x[2], x[1]
return z
}
func (z *Int) srsh128(x *Int) *Int {
z[3], z[2], z[1], z[0] = math.MaxUint64, math.MaxUint64, x[3], x[2]
return z
}
func (z *Int) srsh192(x *Int) *Int {
z[3], z[2], z[1], z[0] = math.MaxUint64, math.MaxUint64, math.MaxUint64, x[3]
return z
}
// Not sets z = ^x and returns z.
func (z *Int) Not(x *Int) *Int {
z[3], z[2], z[1], z[0] = ^x[3], ^x[2], ^x[1], ^x[0]
return z
}
// Gt returns true if z > x
func (z *Int) Gt(x *Int) bool {
return x.Lt(z)
}
// Slt interprets z and x as signed integers, and returns
// true if z < x
func (z *Int) Slt(x *Int) bool {
zSign := z.Sign()
xSign := x.Sign()
switch {
case zSign >= 0 && xSign < 0:
return false
case zSign < 0 && xSign >= 0:
return true
default:
return z.Lt(x)
}
}
// Sgt interprets z and x as signed integers, and returns
// true if z > x
func (z *Int) Sgt(x *Int) bool {
zSign := z.Sign()
xSign := x.Sign()
switch {
case zSign >= 0 && xSign < 0:
return true
case zSign < 0 && xSign >= 0:
return false
default:
return z.Gt(x)
}
}
// Lt returns true if z < x
func (z *Int) Lt(x *Int) bool {
// z < x <=> z - x < 0 i.e. when subtraction overflows.
_, carry := bits.Sub64(z[0], x[0], 0)
_, carry = bits.Sub64(z[1], x[1], carry)
_, carry = bits.Sub64(z[2], x[2], carry)
_, carry = bits.Sub64(z[3], x[3], carry)
return carry != 0
}
// SetUint64 sets z to the value x
func (z *Int) SetUint64(x uint64) *Int {
z[3], z[2], z[1], z[0] = 0, 0, 0, x
return z
}
// Eq returns true if z == x
func (z *Int) Eq(x *Int) bool {
return (z[0] == x[0]) && (z[1] == x[1]) && (z[2] == x[2]) && (z[3] == x[3])
}
// Cmp compares z and x and returns:
//
// -1 if z < x
// 0 if z == x
// +1 if z > x
//
func (z *Int) Cmp(x *Int) (r int) {
if z.Gt(x) {
return 1
}
if z.Lt(x) {
return -1
}
return 0
}
// LtUint64 returns true if z is smaller than n
func (z *Int) LtUint64(n uint64) bool {
return z[0] < n && (z[1]|z[2]|z[3]) == 0
}
// GtUint64 returns true if z is larger than n
func (z *Int) GtUint64(n uint64) bool {
return z[0] > n || (z[1]|z[2]|z[3]) != 0
}
// IsUint64 reports whether z can be represented as a uint64.
func (z *Int) IsUint64() bool {
return (z[1] | z[2] | z[3]) == 0
}
// IsZero returns true if z == 0
func (z *Int) IsZero() bool {
return (z[0] | z[1] | z[2] | z[3]) == 0
}
// Clear sets z to 0
func (z *Int) Clear() *Int {
z[3], z[2], z[1], z[0] = 0, 0, 0, 0
return z
}
// SetAllOne sets all the bits of z to 1
func (z *Int) SetAllOne() *Int {
z[3], z[2], z[1], z[0] = math.MaxUint64, math.MaxUint64, math.MaxUint64, math.MaxUint64
return z
}
// SetOne sets z to 1
func (z *Int) SetOne() *Int {
z[3], z[2], z[1], z[0] = 0, 0, 0, 1
return z
}
// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
// n % 64 == 0
if n&0x3f == 0 {
switch n {
case 0:
return z.Set(x)
case 64:
return z.lsh64(x)
case 128:
return z.lsh128(x)
case 192:
return z.lsh192(x)
default:
return z.Clear()
}
}
var (
a, b uint64
)
// Big swaps first
switch {
case n > 192:
if n > 256 {
return z.Clear()
}
z.lsh192(x)
n -= 192
goto sh192
case n > 128:
z.lsh128(x)
n -= 128
goto sh128
case n > 64:
z.lsh64(x)
n -= 64
goto sh64
default:
z.Set(x)
}
// remaining shifts
a = z[0] >> (64 - n)
z[0] = z[0] << n
sh64:
b = z[1] >> (64 - n)
z[1] = (z[1] << n) | a
sh128:
a = z[2] >> (64 - n)
z[2] = (z[2] << n) | b
sh192:
z[3] = (z[3] << n) | a
return z
}
// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {
// n % 64 == 0
if n&0x3f == 0 {
switch n {
case 0:
return z.Set(x)
case 64:
return z.rsh64(x)
case 128:
return z.rsh128(x)
case 192:
return z.rsh192(x)
default:
return z.Clear()
}
}
var (
a, b uint64
)
// Big swaps first
switch {
case n > 192:
if n > 256 {
return z.Clear()
}
z.rsh192(x)
n -= 192
goto sh192
case n > 128:
z.rsh128(x)
n -= 128
goto sh128
case n > 64:
z.rsh64(x)
n -= 64
goto sh64
default:
z.Set(x)
}
// remaining shifts
a = z[3] << (64 - n)
z[3] = z[3] >> n
sh64:
b = z[2] << (64 - n)
z[2] = (z[2] >> n) | a
sh128:
a = z[1] << (64 - n)
z[1] = (z[1] >> n) | b
sh192:
z[0] = (z[0] >> n) | a
return z
}
// SRsh (Signed/Arithmetic right shift)
// considers z to be a signed integer, during right-shift
// and sets z = x >> n and returns z.
func (z *Int) SRsh(x *Int, n uint) *Int {
// If the MSB is 0, SRsh is same as Rsh.
if !x.isBitSet(255) {
return z.Rsh(x, n)
}
if n%64 == 0 {
switch n {
case 0:
return z.Set(x)
case 64:
return z.srsh64(x)
case 128:
return z.srsh128(x)
case 192:
return z.srsh192(x)
default:
return z.SetAllOne()
}
}
var (
a uint64 = math.MaxUint64 << (64 - n%64)
)
// Big swaps first
switch {
case n > 192:
if n > 256 {
return z.SetAllOne()
}
z.srsh192(x)
n -= 192
goto sh192
case n > 128:
z.srsh128(x)
n -= 128
goto sh128
case n > 64:
z.srsh64(x)
n -= 64
goto sh64
default:
z.Set(x)
}
// remaining shifts
z[3], a = (z[3]>>n)|a, z[3]<<(64-n)
sh64:
z[2], a = (z[2]>>n)|a, z[2]<<(64-n)
sh128:
z[1], a = (z[1]>>n)|a, z[1]<<(64-n)
sh192:
z[0] = (z[0] >> n) | a
return z
}
// Set sets z to x and returns z.
func (z *Int) Set(x *Int) *Int {
*z = *x
return z
}
// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {
z[0] = x[0] | y[0]
z[1] = x[1] | y[1]
z[2] = x[2] | y[2]
z[3] = x[3] | y[3]
return z
}
// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {
z[0] = x[0] & y[0]
z[1] = x[1] & y[1]
z[2] = x[2] & y[2]
z[3] = x[3] & y[3]
return z
}
// Xor sets z = x ^ y and returns z.
func (z *Int) Xor(x, y *Int) *Int {
z[0] = x[0] ^ y[0]
z[1] = x[1] ^ y[1]
z[2] = x[2] ^ y[2]
z[3] = x[3] ^ y[3]
return z
}
// Byte sets z to the value of the byte at position n,
// with 'z' considered as a big-endian 32-byte integer
// if 'n' > 32, f is set to 0
// Example: f = '5', n=31 => 5
func (z *Int) Byte(n *Int) *Int {
// in z, z[0] is the least significant
//
if number, overflow := n.Uint64WithOverflow(); !overflow {
if number < 32 {
number := z[4-1-number/8]
offset := (n[0] & 0x7) << 3 // 8*(n.d % 8)
z[0] = (number & (0xff00000000000000 >> offset)) >> (56 - offset)
z[3], z[2], z[1] = 0, 0, 0
return z
}
}
return z.Clear()
}
// Exp sets z = base**exponent mod 2**256, and returns z.
func (z *Int) Exp(base, exponent *Int) *Int {
res := Int{1, 0, 0, 0}
multiplier := *base
expBitLen := exponent.BitLen()
curBit := 0
word := exponent[0]
for ; curBit < expBitLen && curBit < 64; curBit++ {
if word&1 == 1 {
res.Mul(&res, &multiplier)
}
multiplier.squared()
word >>= 1
}
word = exponent[1]
for ; curBit < expBitLen && curBit < 128; curBit++ {
if word&1 == 1 {
res.Mul(&res, &multiplier)
}
multiplier.squared()
word >>= 1
}
word = exponent[2]
for ; curBit < expBitLen && curBit < 192; curBit++ {
if word&1 == 1 {
res.Mul(&res, &multiplier)
}
multiplier.squared()
word >>= 1
}
word = exponent[3]
for ; curBit < expBitLen && curBit < 256; curBit++ {
if word&1 == 1 {
res.Mul(&res, &multiplier)
}
multiplier.squared()
word >>= 1
}
return z.Set(&res)
}
// ExtendSign extends length of twos complement signed integer,
// sets z to
// - x if byteNum > 31
// - x interpreted as a signed number with sign-bit at (byteNum*8+7), extended to the full 256 bits
// and returns z.
func (z *Int) ExtendSign(x, byteNum *Int) *Int {
if byteNum.GtUint64(31) {
return z.Set(x)
}
bit := uint(byteNum.Uint64()*8 + 7)
mask := new(Int).SetOne()
mask.Lsh(mask, bit)
mask.SubUint64(mask, 1)
if x.isBitSet(bit) {
z.Or(x, mask.Not(mask))
} else {
z.And(x, mask)
}
return z
}