status-go/vendor/github.com/mutecomm/go-sqlcipher/v4/aes.c

293 lines
8.2 KiB
C
Raw Normal View History

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/**
@file aes.c
Implementation of AES
*/
#include "tomcrypt_private.h"
#ifdef LTC_RIJNDAEL
#include "mbtls_aes.h"
static __thread mbedtls_aes_context ctx_encrypt;
#ifndef ENCRYPT_ONLY
static __thread mbedtls_aes_context ctx_decrypt;
#define SETUP rijndael_setup
#define ECB_ENC rijndael_ecb_encrypt
#define ECB_DEC rijndael_ecb_decrypt
#define ECB_DONE rijndael_done
#define ECB_TEST rijndael_test
#define ECB_KS rijndael_keysize
const struct ltc_cipher_descriptor rijndael_desc =
{
"rijndael",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
const struct ltc_cipher_descriptor aes_desc =
{
"aes",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#else
#define SETUP rijndael_enc_setup
#define ECB_ENC rijndael_enc_ecb_encrypt
#define ECB_KS rijndael_enc_keysize
#define ECB_DONE rijndael_enc_done
const struct ltc_cipher_descriptor rijndael_enc_desc =
{
"rijndael",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
const struct ltc_cipher_descriptor aes_enc_desc =
{
"aes",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#endif
/**
Initialize the AES (Rijndael) block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) {
return CRYPT_INVALID_ROUNDS;
}
mbedtls_aes_init(&ctx_encrypt);
if (mbedtls_aes_setkey_enc(&ctx_encrypt, key, keylen*8) != 0)
return CRYPT_INVALID_KEYSIZE;
memcpy(skey->rijndael.eK, ctx_encrypt.buf, sizeof(skey->rijndael.eK));
#ifndef ENCRYPT_ONLY
mbedtls_aes_init(&ctx_decrypt);
if (mbedtls_aes_setkey_dec(&ctx_decrypt, key, keylen*8) != 0)
return CRYPT_INVALID_KEYSIZE;
memcpy(skey->rijndael.dK, ctx_decrypt.buf, sizeof(skey->rijndael.dK));
#endif
skey->rijndael.Nr = ctx_encrypt.nr;
return CRYPT_OK;
}
/**
Encrypts a block of text with AES
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
ctx_encrypt.nr = skey->rijndael.Nr;
memset(ctx_encrypt.buf, 0, sizeof(ctx_encrypt.buf));
memcpy(ctx_encrypt.buf, skey->rijndael.eK, sizeof(skey->rijndael.eK));
return mbedtls_aes_crypt_ecb(&ctx_encrypt, MBEDTLS_AES_ENCRYPT, pt, ct) == 0 ? CRYPT_OK : CRYPT_ERROR;
}
#ifdef LTC_CLEAN_STACK
int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
return s_rijndael_ecb_encrypt(pt, ct, skey);
}
#endif
#ifndef ENCRYPT_ONLY
/**
Decrypts a block of text with AES
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
ctx_decrypt.nr = skey->rijndael.Nr;
memset(ctx_decrypt.buf, 0, sizeof(ctx_decrypt.buf));
memcpy(ctx_decrypt.buf, skey->rijndael.dK, sizeof(skey->rijndael.dK));
return mbedtls_aes_crypt_ecb(&ctx_decrypt, MBEDTLS_AES_DECRYPT, ct, pt) == 0 ? CRYPT_OK : CRYPT_ERROR;
}
#ifdef LTC_CLEAN_STACK
int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
return s_rijndael_ecb_decrypt(ct, pt, skey);
}
#endif
/**
Performs a self-test of the AES block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int ECB_TEST(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
int err;
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{ 16,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
}, {
24,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
}, {
32,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
}
};
symmetric_key key;
unsigned char tmp[2][16];
int i, y;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
zeromem(&key, sizeof(key));
if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES Encrypt", i) ||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES Decrypt", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
#endif /* ENCRYPT_ONLY */
/** Terminate the context
@param skey The scheduled key
*/
void ECB_DONE(symmetric_key *skey)
{
mbedtls_aes_free(&ctx_encrypt);
#ifndef ENCRYPT_ONLY
mbedtls_aes_free(&ctx_decrypt);
#endif
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int ECB_KS(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize < 24) {
*keysize = 16;
return CRYPT_OK;
}
if (*keysize < 32) {
*keysize = 24;
return CRYPT_OK;
}
*keysize = 32;
return CRYPT_OK;
}
#endif