status-go/vendor/olympos.io/encoding/edn/encode.go

1423 lines
35 KiB
Go
Raw Permalink Normal View History

2022-02-02 22:50:55 +00:00
// Copyright 2015 Jean Niklas L'orange. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package edn
import (
"bytes"
"encoding/base64"
"io"
"math"
"math/big"
"reflect"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"unicode"
"unicode/utf8"
)
// Marshal returns the EDN encoding of v.
//
// Marshal traverses the value v recursively.
// If an encountered value implements the Marshaler interface
// and is not a nil pointer, Marshal calls its MarshalEDN method
// to produce EDN. The nil pointer exception is not strictly necessary
// but mimics a similar, necessary exception in the behavior of
// UnmarshalEDN.
//
// Otherwise, Marshal uses the following type-dependent default encodings:
//
// Boolean values encode as EDN booleans.
//
// Integers encode as EDN integers.
//
// Floating point values encode as EDN floats.
//
// String values encode as EDN strings coerced to valid UTF-8,
// replacing invalid bytes with the Unicode replacement rune.
// The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
// to keep some browsers from misinterpreting EDN output as HTML.
// Ampersand "&" is also escaped to "\u0026" for the same reason.
//
// Array and slice values encode as EDN arrays, except that
// []byte encodes as a base64-encoded string, and a nil slice
// encodes as the nil EDN value.
//
// Struct values encode as EDN maps. Each exported struct field
// becomes a member of the map unless
// - the field's tag is "-", or
// - the field is empty and its tag specifies the "omitempty" option.
// The empty values are false, 0, any
// nil pointer or interface value, and any array, slice, map, or string of
// length zero. The map's default key is the struct field name as a keyword,
// but can be specified in the struct field's tag value. The "edn" key in
// the struct field's tag value is the key name, followed by an optional comma
// and options. Examples:
//
// // Field is ignored by this package.
// Field int `edn:"-"`
//
// // Field appears in EDN as key :my-name.
// Field int `edn:"myName"`
//
// // Field appears in EDN as key :my-name and
// // the field is omitted from the object if its value is empty,
// // as defined above.
// Field int `edn:"my-name,omitempty"`
//
// // Field appears in EDN as key :field (the default), but
// // the field is skipped if empty.
// // Note the leading comma.
// Field int `edn:",omitempty"`
//
// The "str", "key" and "sym" options signals that a field name should be
// written as a string, keyword or symbol, respectively. If none are specified,
// then the default behaviour is to emit them as keywords. Examples:
//
// // Default behaviour: field name will be encoded as :foo
// Foo int
//
// // Encode Foo as string with name "string-foo"
// Foo int `edn:"string-foo,str"`
//
// // Encode Foo as symbol with name sym-foo
// Foo int `edn:"sym-foo,sym"`
//
// Anonymous struct fields are usually marshaled as if their inner exported fields
// were fields in the outer struct, subject to the usual Go visibility rules amended
// as described in the next paragraph.
// An anonymous struct field with a name given in its EDN tag is treated as
// having that name, rather than being anonymous.
// An anonymous struct field of interface type is treated the same as having
// that type as its name, rather than being anonymous.
//
// The Go visibility rules for struct fields are amended for EDN when
// deciding which field to marshal or unmarshal. If there are
// multiple fields at the same level, and that level is the least
// nested (and would therefore be the nesting level selected by the
// usual Go rules), the following extra rules apply:
//
// 1) Of those fields, if any are EDN-tagged, only tagged fields are considered,
// even if there are multiple untagged fields that would otherwise conflict.
// 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
// 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
//
// To force ignoring of an anonymous struct field in both current and earlier
// versions, give the field a EDN tag of "-".
//
// Map values usually encode as EDN maps. There are no limitations on the keys
// or values -- as long as they can be encoded to EDN, anything goes. Map values
// will be encoded as sets if their value type is either a bool or a struct with
// no fields.
//
// If you want to ensure that a value is encoded as a map, you can specify that
// as follows:
//
// // Encode Foo as a map, instead of the default set
// Foo map[int]bool `edn:",map"`
//
// Arrays and slices are encoded as vectors by default. As with maps and sets,
// you can specify that a field should be encoded as a list instead, by using
// the option "list":
//
// // Encode Foo as a list, instead of the default vector
// Foo []int `edn:",list"`
//
// Pointer values encode as the value pointed to.
// A nil pointer encodes as the nil EDN object.
//
// Interface values encode as the value contained in the interface.
// A nil interface value encodes as the nil EDN value.
//
// Channel, complex, and function values cannot be encoded in EDN.
// Attempting to encode such a value causes Marshal to return
// an UnsupportedTypeError.
//
// EDN cannot represent cyclic data structures and Marshal does not
// handle them. Passing cyclic structures to Marshal will result in
// an infinite recursion.
//
func Marshal(v interface{}) ([]byte, error) {
e := &encodeState{}
err := e.marshal(v)
if err != nil {
return nil, err
}
return e.Bytes(), nil
}
// MarshalIndent is like Marshal but applies Indent to format the output.
func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
b, err := Marshal(v)
if err != nil {
return nil, err
}
var buf bytes.Buffer
err = Indent(&buf, b, prefix, indent)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// MarshalPPrint is like Marshal but applies PPrint to format the output.
func MarshalPPrint(v interface{}, opts *PPrintOpts) ([]byte, error) {
b, err := Marshal(v)
if err != nil {
return nil, err
}
var buf bytes.Buffer
err = PPrint(&buf, b, opts)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// An Encoder writes EDN values to an output stream.
type Encoder struct {
writer io.Writer
ec encodeState
}
// NewEncoder returns a new encoder that writes to w.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{
writer: w,
ec: encodeState{},
}
}
// Encode writes the EDN encoding of v to the stream, followed by a newline
// character.
//
// See the documentation for Marshal for details about the conversion of Go
// values to EDN.
func (e *Encoder) Encode(v interface{}) error {
e.ec.needsDelim = false
err := e.ec.marshal(v)
if err != nil {
e.ec.Reset()
return err
}
b := e.ec.Bytes()
e.ec.Reset()
_, err = e.writer.Write(b)
if err != nil {
return err
}
_, err = e.writer.Write([]byte{'\n'})
return err
}
// EncodeIndent writes the indented EDN encoding of v to the stream, followed by
// a newline character.
//
// See the documentation for MarshalIndent for details about the conversion of
// Go values to EDN.
func (e *Encoder) EncodeIndent(v interface{}, prefix, indent string) error {
e.ec.needsDelim = false
err := e.ec.marshal(v)
if err != nil {
e.ec.Reset()
return err
}
b := e.ec.Bytes()
var buf bytes.Buffer
err = Indent(&buf, b, prefix, indent)
e.ec.Reset()
if err != nil {
return err
}
_, err = e.writer.Write(buf.Bytes())
if err != nil {
return err
}
_, err = e.writer.Write([]byte{'\n'})
return err
}
// EncodePPrint writes the pretty-printed EDN encoding of v to the stream,
// followed by a newline character.
//
// See the documentation for MarshalPPrint for details about the conversion of
// Go values to EDN.
func (e *Encoder) EncodePPrint(v interface{}, opts *PPrintOpts) error {
e.ec.needsDelim = false
err := e.ec.marshal(v)
if err != nil {
e.ec.Reset()
return err
}
b := e.ec.Bytes()
var buf bytes.Buffer
err = PPrint(&buf, b, opts)
e.ec.Reset()
if err != nil {
return err
}
_, err = e.writer.Write(buf.Bytes())
if err != nil {
return err
}
_, err = e.writer.Write([]byte{'\n'})
return err
}
// Marshaler is the interface implemented by objects that
// can marshal themselves into valid EDN.
type Marshaler interface {
MarshalEDN() ([]byte, error)
}
// An UnsupportedTypeError is returned by Marshal when attempting
// to encode an unsupported value type.
type UnsupportedTypeError struct {
Type reflect.Type
}
func (e *UnsupportedTypeError) Error() string {
return "edn: unsupported type: " + e.Type.String()
}
// An UnsupportedValueError is returned by Marshal when attempting to encode an
// unsupported value. Examples include the float values NaN and Infinity.
type UnsupportedValueError struct {
Value reflect.Value
Str string
}
func (e *UnsupportedValueError) Error() string {
return "edn: unsupported value: " + e.Str
}
// A MarshalerError is returned by Marshal when encoding a type with a
// MarshalEDN function fails.
type MarshalerError struct {
Type reflect.Type
Err error
}
func (e *MarshalerError) Error() string {
return "edn: error calling MarshalEDN for type " + e.Type.String() + ": " + e.Err.Error()
}
var hex = "0123456789abcdef"
// An encodeState encodes EDN into a bytes.Buffer.
type encodeState struct {
bytes.Buffer // accumulated output
scratch [64]byte
needsDelim bool
mc *MathContext
}
// mathContext returns the math context to use. If not set in the encodeState,
// the global math context is used.
func (e *encodeState) mathContext() *MathContext {
if e.mc != nil {
return e.mc
}
return &GlobalMathContext
}
var encodeStatePool sync.Pool
func newEncodeState() *encodeState {
if v := encodeStatePool.Get(); v != nil {
e := v.(*encodeState)
e.Reset()
return e
}
return new(encodeState)
}
func (e *encodeState) marshal(v interface{}) (err error) {
defer func() {
if r := recover(); r != nil {
if _, ok := r.(runtime.Error); ok {
panic(r)
}
if s, ok := r.(string); ok {
panic(s)
}
err = r.(error)
}
}()
e.reflectValue(reflect.ValueOf(v))
return nil
}
func (e *encodeState) error(err error) {
panic(err)
}
func isEmptyValue(v reflect.Value) bool {
switch v.Kind() {
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
return v.Len() == 0
case reflect.Bool:
return !v.Bool()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return v.Float() == 0
case reflect.Interface, reflect.Ptr:
return v.IsNil()
}
return false
}
func (e *encodeState) reflectValue(v reflect.Value) {
valueEncoder(v)(e, v)
}
type encoderFunc func(e *encodeState, v reflect.Value)
type typeAndTag struct {
t reflect.Type
ctype tagType
}
var encoderCache struct {
sync.RWMutex
m map[typeAndTag]encoderFunc
}
func valueEncoder(v reflect.Value) encoderFunc {
if !v.IsValid() {
return invalidValueEncoder
}
return typeEncoder(v.Type(), tagUndefined)
}
func typeEncoder(t reflect.Type, tagType tagType) encoderFunc {
tac := typeAndTag{t, tagType}
encoderCache.RLock()
f := encoderCache.m[tac]
encoderCache.RUnlock()
if f != nil {
return f
}
couldUseJSON := readCanUseJSONTag()
// To deal with recursive types, populate the map with an
// indirect func before we build it. This type waits on the
// real func (f) to be ready and then calls it. This indirect
// func is only used for recursive types.
encoderCache.Lock()
if encoderCache.m == nil {
encoderCache.m = make(map[typeAndTag]encoderFunc)
}
var wg sync.WaitGroup
wg.Add(1)
encoderCache.m[tac] = func(e *encodeState, v reflect.Value) {
wg.Wait()
f(e, v)
}
encoderCache.Unlock()
// Compute fields without lock.
// Might duplicate effort but won't hold other computations back.
f = newTypeEncoder(t, tagType, true)
wg.Done()
encoderCache.Lock()
if couldUseJSON != readCanUseJSONTag() {
// cache has been invalidated, unlock and retry recursively.
encoderCache.Unlock()
return typeEncoder(t, tagType)
}
encoderCache.m[tac] = f
encoderCache.Unlock()
return f
}
var (
marshalerType = reflect.TypeOf(new(Marshaler)).Elem()
instType = reflect.TypeOf((*time.Time)(nil)).Elem()
)
// newTypeEncoder constructs an encoderFunc for a type.
// The returned encoder only checks CanAddr when allowAddr is true.
func newTypeEncoder(t reflect.Type, tagType tagType, allowAddr bool) encoderFunc {
if t.Implements(marshalerType) {
return marshalerEncoder
}
if t.Kind() != reflect.Ptr && allowAddr {
if reflect.PtrTo(t).Implements(marshalerType) {
return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, tagType, false))
}
}
// Handle specific types first
switch t {
case bigIntType:
return bigIntEncoder
case bigFloatType:
return bigFloatEncoder
case instType:
return instEncoder
}
switch t.Kind() {
case reflect.Bool:
return boolEncoder
case reflect.Int32:
if tagType == tagRune {
return runeEncoder
}
return intEncoder
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int64:
return intEncoder
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return uintEncoder
case reflect.Float32:
return float32Encoder
case reflect.Float64:
return float64Encoder
case reflect.String:
return stringEncoder
case reflect.Interface:
return interfaceEncoder
case reflect.Struct:
return newStructEncoder(t, tagType)
case reflect.Map:
return newMapEncoder(t, tagType)
case reflect.Slice:
return newSliceEncoder(t, tagType)
case reflect.Array:
return newArrayEncoder(t, tagType)
case reflect.Ptr:
return newPtrEncoder(t, tagType)
default:
return unsupportedTypeEncoder
}
}
func invalidValueEncoder(e *encodeState, v reflect.Value) {
e.writeNil()
}
func marshalerEncoder(e *encodeState, v reflect.Value) {
if v.Kind() == reflect.Ptr && v.IsNil() {
e.writeNil()
return
}
m := v.Interface().(Marshaler)
b, err := m.MarshalEDN()
if err == nil {
// copy EDN into buffer, checking (token) validity.
e.ensureDelim()
err = Compact(&e.Buffer, b)
e.needsDelim = true
}
if err != nil {
e.error(&MarshalerError{v.Type(), err})
}
}
func addrMarshalerEncoder(e *encodeState, v reflect.Value) {
va := v.Addr()
if va.IsNil() {
e.writeNil()
return
}
m := va.Interface().(Marshaler)
b, err := m.MarshalEDN()
if err == nil {
// copy EDN into buffer, checking (token) validity.
e.ensureDelim()
err = Compact(&e.Buffer, b)
e.needsDelim = true
}
if err != nil {
e.error(&MarshalerError{v.Type(), err})
}
}
func boolEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
if v.Bool() {
e.WriteString("true")
} else {
e.WriteString("false")
}
e.needsDelim = true
}
func runeEncoder(e *encodeState, v reflect.Value) {
encodeRune(&e.Buffer, rune(v.Int()))
e.needsDelim = true
}
func intEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
e.Write(b)
e.needsDelim = true
}
func uintEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
e.Write(b)
e.needsDelim = true
}
func bigIntEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
bi := v.Interface().(big.Int)
b := []byte(bi.String())
e.Write(b)
e.WriteByte('N')
e.needsDelim = true
}
func bigFloatEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
bf := new(big.Float)
mc := e.mathContext()
val := v.Interface().(big.Float)
bf.Set(&val).SetMode(mc.Mode)
b := []byte(bf.Text('g', int(mc.Precision)))
e.Write(b)
e.WriteByte('M')
e.needsDelim = true
}
func instEncoder(e *encodeState, v reflect.Value) {
e.ensureDelim()
t := v.Interface().(time.Time)
e.Write([]byte(t.Format(`#inst"` + time.RFC3339Nano + `"`)))
}
type floatEncoder int // number of bits
func (bits floatEncoder) encode(e *encodeState, v reflect.Value) {
f := v.Float()
if math.IsInf(f, 0) || math.IsNaN(f) {
e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
}
e.ensureDelim()
b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
if ix := bytes.IndexAny(b, ".eE"); ix < 0 {
b = append(b, '.', '0')
}
e.Write(b)
e.needsDelim = true
}
var (
float32Encoder = (floatEncoder(32)).encode
float64Encoder = (floatEncoder(64)).encode
)
func stringEncoder(e *encodeState, v reflect.Value) {
e.string(v.String())
}
func interfaceEncoder(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
e.reflectValue(v.Elem())
}
func unsupportedTypeEncoder(e *encodeState, v reflect.Value) {
e.error(&UnsupportedTypeError{v.Type()})
}
type structEncoder struct {
fields []field
fieldEncs []encoderFunc
}
func (se *structEncoder) encode(e *encodeState, v reflect.Value) {
e.WriteByte('{')
e.needsDelim = false
for i, f := range se.fields {
fv := fieldByIndex(v, f.index)
if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
continue
}
switch f.fnameType {
case emitKey:
e.ensureDelim()
e.WriteByte(':')
e.WriteString(f.name)
e.needsDelim = true
case emitString:
e.string(f.name)
e.needsDelim = false
case emitSym:
e.ensureDelim()
e.WriteString(f.name)
e.needsDelim = true
}
se.fieldEncs[i](e, fv)
}
e.WriteByte('}')
e.needsDelim = false
}
func newStructEncoder(t reflect.Type, tagType tagType) encoderFunc {
fields := cachedTypeFields(t)
se := &structEncoder{
fields: fields,
fieldEncs: make([]encoderFunc, len(fields)),
}
for i, f := range fields {
se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index), f.tagType)
}
return se.encode
}
type mapEncoder struct {
keyEnc encoderFunc
elemEnc encoderFunc
}
func (me *mapEncoder) encode(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
e.WriteByte('{')
e.needsDelim = false
mk := v.MapKeys()
// NB: We don't get deterministic results here, because we don't iterate in a
// determinstic way.
for _, k := range mk {
if e.needsDelim { // bypass conventional whitespace to use commas instead
e.WriteByte(',')
e.needsDelim = false
}
me.keyEnc(e, k)
me.elemEnc(e, v.MapIndex(k))
}
e.WriteByte('}')
e.needsDelim = false
}
type mapSetEncoder struct {
keyEnc encoderFunc
}
func (me *mapSetEncoder) encode(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
e.ensureDelim()
e.WriteByte('#')
e.WriteByte('{')
e.needsDelim = false
mk := v.MapKeys()
// not deterministic this one either.
for _, k := range mk {
mval := v.MapIndex(k)
if mval.Kind() != reflect.Bool || mval.Bool() {
me.keyEnc(e, k)
}
}
e.WriteByte('}')
e.needsDelim = false
}
func newMapEncoder(t reflect.Type, tagType tagType) encoderFunc {
canBeSet := false
switch t.Elem().Kind() {
case reflect.Struct:
if t.Elem().NumField() == 0 {
canBeSet = true
}
case reflect.Bool:
canBeSet = true
}
if (tagType == tagUndefined || tagType == tagSet) && canBeSet {
me := &mapSetEncoder{typeEncoder(t.Key(), tagUndefined)}
return me.encode
}
if tagType != tagUndefined && tagType != tagMap {
return unsupportedTypeEncoder
}
me := &mapEncoder{
typeEncoder(t.Key(), tagUndefined),
typeEncoder(t.Elem(), tagUndefined),
}
return me.encode
}
func encodeByteSlice(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
s := v.Bytes()
e.ensureDelim()
e.WriteString(`#base64"`)
if len(s) < 1024 {
// for small buffers, using Encode directly is much faster.
dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
base64.StdEncoding.Encode(dst, s)
e.Write(dst)
} else {
// for large buffers, avoid unnecessary extra temporary
// buffer space.
enc := base64.NewEncoder(base64.StdEncoding, e)
enc.Write(s)
enc.Close()
}
e.WriteByte('"')
}
// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
type sliceEncoder struct {
arrayEnc encoderFunc
}
func (e *encodeState) ensureDelim() {
if e.needsDelim {
e.WriteByte(' ')
}
}
func (e *encodeState) writeNil() {
e.ensureDelim()
e.WriteString("nil")
e.needsDelim = true
}
func (se *sliceEncoder) encode(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
se.arrayEnc(e, v)
}
func newSliceEncoder(t reflect.Type, tagType tagType) encoderFunc {
// Byte slices get special treatment; arrays don't.
if t.Elem().Kind() == reflect.Uint8 {
return encodeByteSlice
}
enc := &sliceEncoder{newArrayEncoder(t, tagType)}
return enc.encode
}
type arrayEncoder struct {
elemEnc encoderFunc
}
func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value) {
e.WriteByte('[')
e.needsDelim = false
n := v.Len()
for i := 0; i < n; i++ {
ae.elemEnc(e, v.Index(i))
}
e.WriteByte(']')
e.needsDelim = false
}
type listArrayEncoder struct {
elemEnc encoderFunc
}
func (ae *listArrayEncoder) encode(e *encodeState, v reflect.Value) {
e.WriteByte('(')
e.needsDelim = false
n := v.Len()
for i := 0; i < n; i++ {
ae.elemEnc(e, v.Index(i))
}
e.WriteByte(')')
e.needsDelim = false
}
type setArrayEncoder struct {
elemEnc encoderFunc
}
func (ae *setArrayEncoder) encode(e *encodeState, v reflect.Value) {
e.ensureDelim()
e.WriteByte('#')
e.WriteByte('{')
e.needsDelim = false
n := v.Len()
for i := 0; i < n; i++ {
ae.elemEnc(e, v.Index(i))
}
e.WriteByte('}')
e.needsDelim = false
}
func newArrayEncoder(t reflect.Type, tagType tagType) encoderFunc {
switch tagType {
case tagList:
enc := &listArrayEncoder{typeEncoder(t.Elem(), tagUndefined)}
return enc.encode
case tagSet:
enc := &setArrayEncoder{typeEncoder(t.Elem(), tagUndefined)}
return enc.encode
default:
enc := &arrayEncoder{typeEncoder(t.Elem(), tagUndefined)}
return enc.encode
}
}
type ptrEncoder struct {
elemEnc encoderFunc
}
func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value) {
if v.IsNil() {
e.writeNil()
return
}
pe.elemEnc(e, v.Elem())
}
func newPtrEncoder(t reflect.Type, tagType tagType) encoderFunc {
enc := &ptrEncoder{typeEncoder(t.Elem(), tagType)}
return enc.encode
}
type condAddrEncoder struct {
canAddrEnc, elseEnc encoderFunc
}
func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value) {
if v.CanAddr() {
ce.canAddrEnc(e, v)
} else {
ce.elseEnc(e, v)
}
}
// newCondAddrEncoder returns an encoder that checks whether its value
// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
return enc.encode
}
// NOTE: keep in sync with stringBytes below.
func (e *encodeState) string(s string) (int, error) {
len0 := e.Len()
e.WriteByte('"')
start := 0
for i := 0; i < len(s); {
if b := s[i]; b < utf8.RuneSelf {
if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
i++
continue
}
if start < i {
e.WriteString(s[start:i])
}
switch b {
case '\\', '"':
e.WriteByte('\\')
e.WriteByte(b)
case '\n':
e.WriteByte('\\')
e.WriteByte('n')
case '\r':
e.WriteByte('\\')
e.WriteByte('r')
case '\t':
e.WriteByte('\\')
e.WriteByte('t')
default:
// This encodes bytes < 0x20 except for \n and \r,
// as well as <, > and &. The latter are escaped because they
// can lead to security holes when user-controlled strings
// are rendered into EDN and served to some browsers.
e.WriteString(`\u00`)
e.WriteByte(hex[b>>4])
e.WriteByte(hex[b&0xF])
}
i++
start = i
continue
}
c, size := utf8.DecodeRuneInString(s[i:])
if c == utf8.RuneError && size == 1 {
if start < i {
e.WriteString(s[start:i])
}
e.WriteString(`\ufffd`)
i += size
start = i
continue
}
i += size
}
if start < len(s) {
e.WriteString(s[start:])
}
e.WriteByte('"')
e.needsDelim = false
return e.Len() - len0, nil
}
// NOTE: keep in sync with string above.
func (e *encodeState) stringBytes(s []byte) (int, error) {
len0 := e.Len()
e.WriteByte('"')
start := 0
for i := 0; i < len(s); {
if b := s[i]; b < utf8.RuneSelf {
if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
i++
continue
}
if start < i {
e.Write(s[start:i])
}
switch b {
case '\\', '"':
e.WriteByte('\\')
e.WriteByte(b)
case '\n':
e.WriteByte('\\')
e.WriteByte('n')
case '\r':
e.WriteByte('\\')
e.WriteByte('r')
case '\t':
e.WriteByte('\\')
e.WriteByte('t')
default:
// This encodes bytes < 0x20 except for \n and \r,
// as well as <, >, and &. The latter are escaped because they
// can lead to security holes when user-controlled strings
// are rendered into EDN and served to some browsers.
e.WriteString(`\u00`)
e.WriteByte(hex[b>>4])
e.WriteByte(hex[b&0xF])
}
i++
start = i
continue
}
c, size := utf8.DecodeRune(s[i:])
if c == utf8.RuneError && size == 1 {
if start < i {
e.Write(s[start:i])
}
e.WriteString(`\ufffd`)
i += size
start = i
continue
}
i += size
}
if start < len(s) {
e.Write(s[start:])
}
e.WriteByte('"')
e.needsDelim = false
return e.Len() - len0, nil
}
func isValidTag(s string) bool {
if s == "" {
return false
}
for _, c := range s {
switch {
case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
// Backslash and quote chars are reserved, but
// otherwise any punctuation chars are allowed
// in a tag name.
default:
if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
return false
}
}
}
return true
}
func fieldByIndex(v reflect.Value, index []int) reflect.Value {
for _, i := range index {
if v.Kind() == reflect.Ptr {
if v.IsNil() {
return reflect.Value{}
}
v = v.Elem()
}
v = v.Field(i)
}
return v
}
func typeByIndex(t reflect.Type, index []int) reflect.Type {
for _, i := range index {
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
t = t.Field(i).Type
}
return t
}
// A field represents a single field found in a struct.
type field struct {
name string
nameBytes []byte // []byte(name)
equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
tag bool
index []int
typ reflect.Type
omitEmpty bool
fnameType emitType
tagType tagType
}
type emitType int
const (
emitSym emitType = iota
emitKey
emitString
)
type tagType int
const (
tagUndefined tagType = iota
tagSet
tagMap
tagVec
tagList
tagRune
)
func fillField(f field) field {
f.nameBytes = []byte(f.name)
f.equalFold = foldFunc(f.nameBytes)
return f
}
// byName sorts field by name, breaking ties with depth,
// then breaking ties with "name came from edn tag", then
// breaking ties with index sequence.
type byName []field
func (x byName) Len() int { return len(x) }
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byName) Less(i, j int) bool {
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
}
// byIndex sorts field by index sequence.
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
// typeFields returns a list of fields that edn should recognize for the given type.
// The algorithm is breadth-first search over the set of structs to include - the top struct
// and then any reachable anonymous structs.
func typeFields(t reflect.Type) []field {
// Anonymous fields to explore at the current level and the next.
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
count := map[reflect.Type]int{}
nextCount := map[reflect.Type]int{}
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.PkgPath != "" && !sf.Anonymous { // unexported
continue
}
tag := sf.Tag.Get("edn")
if tag == "" && readCanUseJSONTag() {
tag = sf.Tag.Get("json")
}
if tag == "-" {
continue
}
name, opts := parseTag(tag)
if !isValidTag(name) {
name = ""
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
// Follow pointer.
ft = ft.Elem()
}
// Add tagging rules:
var emit emitType
switch {
case opts.Contains("sym"):
emit = emitSym
case opts.Contains("str"):
emit = emitString
case opts.Contains("key"):
fallthrough
default:
emit = emitKey
}
// key, sym, str
var tagType tagType // add tag rules
switch {
case opts.Contains("set"):
tagType = tagSet
case opts.Contains("map"):
tagType = tagMap
case opts.Contains("vector"):
tagType = tagVec
case opts.Contains("list"):
tagType = tagList
case opts.Contains("rune"):
tagType = tagRune
default:
tagType = tagUndefined
}
// Record found field and index sequence.
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := name != ""
if name == "" {
r := []rune(sf.Name)
r[0] = unicode.ToLower(r[0])
name = string(r)
}
fields = append(fields, fillField(field{
name: name,
tag: tagged,
index: index,
typ: ft,
omitEmpty: opts.Contains("omitempty"),
fnameType: emit,
tagType: tagType,
}))
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
}
}
}
}
sort.Sort(byName(fields))
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with EDN tags are promoted.
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with the name of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
return fields
}
// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// EDN tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order. The winner
// must therefore be one with the shortest index length. Drop all
// longer entries, which is easy: just truncate the slice.
length := len(fields[0].index)
tagged := -1 // Index of first tagged field.
for i, f := range fields {
if len(f.index) > length {
fields = fields[:i]
break
}
if f.tag {
if tagged >= 0 {
// Multiple tagged fields at the same level: conflict.
// Return no field.
return field{}, false
}
tagged = i
}
}
if tagged >= 0 {
return fields[tagged], true
}
// All remaining fields have the same length. If there's more than one,
// we have a conflict (two fields named "X" at the same level) and we
// return no field.
if len(fields) > 1 {
return field{}, false
}
return fields[0], true
}
var canUseJSONTag int32
func readCanUseJSONTag() bool {
return atomic.LoadInt32(&canUseJSONTag) == 1
}
// UseJSONAsFallback can be set to true to let go-edn parse structs with
// information from the `json` tag for encoding and decoding type fields if not
// the `edn` tag field is set. This is not threadsafe: Encoding and decoding
// happening while this is called may return results that mix json and non-json
// tag reading. Preferably you call this in an init() function to ensure it is
// either set or unset.
func UseJSONAsFallback(val bool) {
set := int32(0)
if val {
set = 1
}
// Here comes the funny stuff: Cache invalidation. Right now we lock and
// unlock these independently of eachother, so it's fine to lock them in this
// order. However, if we decide to change this later on, the only reasonable
// change would be that you may grab the encoderCache lock before the
// fieldCache lock. Therefore we do it in this order, although it should not
// matter strictly speaking.
encoderCache.Lock()
fieldCache.Lock()
atomic.StoreInt32(&canUseJSONTag, set)
fieldCache.m = nil
encoderCache.m = nil
fieldCache.Unlock()
encoderCache.Unlock()
}
var fieldCache struct {
sync.RWMutex
m map[reflect.Type][]field
}
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) []field {
fieldCache.RLock()
f := fieldCache.m[t]
fieldCache.RUnlock()
if f != nil {
return f
}
couldUseJSON := readCanUseJSONTag()
// Compute fields without lock.
// Might duplicate effort but won't hold other computations back.
f = typeFields(t)
if f == nil {
f = []field{}
}
fieldCache.Lock()
if couldUseJSON != readCanUseJSONTag() {
// cache has been invalidated, unlock and retry recursively.
fieldCache.Unlock()
return cachedTypeFields(t)
}
if fieldCache.m == nil {
fieldCache.m = map[reflect.Type][]field{}
}
fieldCache.m[t] = f
fieldCache.Unlock()
return f
}