552 lines
14 KiB
Go
Raw Permalink Normal View History

Feature/key compression (#1990) ## What has changed? I've introduced to the public binding functionality that will compress and decompress public keys of a variety of encoding and key types. This functionality supports all major byte encoding formats and the following EC public key types: - `secp256k1` pks - `bls12-381 g1` pks - `bls12-381 g2` pks ## Why make the change? We want shorter public (chat) keys and we want to be future proof and encoding agnostic. See the issue here https://github.com/status-im/status-go/issues/1937 --- * Added basic signature for compresspk and uncompresspk * Added basic encoding information * make vendor * formatted imports for the linter * Reformatted imports hoping linter likes it * This linter is capricious * Added check that the secp256k1 key is valid * Added test for valid key * Added multiformat/go-varint dep * Added public key type handling * Added key decompression with key type handling * Added handling for '0x' type indentifying * Added more robust testing * Less lint for the linting gods * make vendor for bls12_381 * Added bls12-381 compression tests * Added decompress key expected results * Refactor of typed and untyped keys in tests * Lint god appeasment * Refactor of sample public keys * Implemented bls12-381 decompression * gofmt * Renamed decode/encode funcs to be more descriptive * Added binary bindings for key de/compression * Refactor of func parameters gomobile is a bit tempermental using raw bytes as a parameter, so I've decided to use string only inputs and outputs * gofmt * Added function documentation * Moved multiformat de/compression into api/multiformat ns * Moved multiformat de/compression into api/multiformat ns * Changed compress to serialize on API
2020-06-23 11:47:17 +01:00
package bls12381
import (
"errors"
"math"
"math/big"
)
// PointG1 is type for point in G1.
// PointG1 is both used for Affine and Jacobian point representation.
// If z is equal to one the point is accounted as in affine form.
type PointG1 [3]fe
func (p *PointG1) Set(p2 *PointG1) *PointG1 {
p[0].set(&p2[0])
p[1].set(&p2[1])
p[2].set(&p2[2])
return p
}
func (p *PointG1) Zero() *PointG1 {
p[0].zero()
p[1].one()
p[2].zero()
return p
}
type tempG1 struct {
t [9]*fe
}
// G1 is struct for G1 group.
type G1 struct {
tempG1
}
// NewG1 constructs a new G1 instance.
func NewG1() *G1 {
t := newTempG1()
return &G1{t}
}
func newTempG1() tempG1 {
t := [9]*fe{}
for i := 0; i < 9; i++ {
t[i] = &fe{}
}
return tempG1{t}
}
// Q returns group order in big.Int.
func (g *G1) Q() *big.Int {
return new(big.Int).Set(q)
}
// FromUncompressed expects byte slice larger than 96 bytes and given bytes returns a new point in G1.
// Serialization rules are in line with zcash library. See below for details.
// https://github.com/zcash/librustzcash/blob/master/pairing/src/bls12_381/README.md#serialization
// https://docs.rs/bls12_381/0.1.1/bls12_381/notes/serialization/index.html
func (g *G1) FromUncompressed(uncompressed []byte) (*PointG1, error) {
if len(uncompressed) < 96 {
return nil, errors.New("input string should be equal or larger than 96")
}
var in [96]byte
copy(in[:], uncompressed[:96])
if in[0]&(1<<7) != 0 {
return nil, errors.New("input string should be equal or larger than 96")
}
if in[0]&(1<<5) != 0 {
return nil, errors.New("input string should be equal or larger than 96")
}
if in[0]&(1<<6) != 0 {
for i, v := range in {
if (i == 0 && v != 0x40) || (i != 0 && v != 0x00) {
return nil, errors.New("input string should be equal or larger than 96")
}
}
return g.Zero(), nil
}
in[0] &= 0x1f
x, err := fromBytes(in[:48])
if err != nil {
return nil, err
}
y, err := fromBytes(in[48:])
if err != nil {
return nil, err
}
z := new(fe).one()
p := &PointG1{*x, *y, *z}
if !g.IsOnCurve(p) {
return nil, errors.New("input string should be equal or larger than 96")
}
if !g.InCorrectSubgroup(p) {
return nil, errors.New("input string should be equal or larger than 96")
}
return p, nil
}
// ToUncompressed given a G1 point returns bytes in uncompressed (x, y) form of the point.
// Serialization rules are in line with zcash library. See below for details.
// https://github.com/zcash/librustzcash/blob/master/pairing/src/bls12_381/README.md#serialization
// https://docs.rs/bls12_381/0.1.1/bls12_381/notes/serialization/index.html
func (g *G1) ToUncompressed(p *PointG1) []byte {
out := make([]byte, 96)
if g.IsZero(p) {
out[0] |= 1 << 6
return out
}
g.Affine(p)
copy(out[:48], toBytes(&p[0]))
copy(out[48:], toBytes(&p[1]))
return out
}
// FromCompressed expects byte slice larger than 96 bytes and given bytes returns a new point in G1.
// Serialization rules are in line with zcash library. See below for details.
// https://github.com/zcash/librustzcash/blob/master/pairing/src/bls12_381/README.md#serialization
// https://docs.rs/bls12_381/0.1.1/bls12_381/notes/serialization/index.html
func (g *G1) FromCompressed(compressed []byte) (*PointG1, error) {
if len(compressed) < 48 {
return nil, errors.New("input string should be equal or larger than 48")
}
var in [48]byte
copy(in[:], compressed[:])
if in[0]&(1<<7) == 0 {
return nil, errors.New("compression flag should be set")
}
if in[0]&(1<<6) != 0 {
// in[0] == (1 << 6) + (1 << 7)
for i, v := range in {
if (i == 0 && v != 0xc0) || (i != 0 && v != 0x00) {
return nil, errors.New("input string should be zero when infinity flag is set")
}
}
return g.Zero(), nil
}
a := in[0]&(1<<5) != 0
in[0] &= 0x1f
x, err := fromBytes(in[:])
if err != nil {
return nil, err
}
// solve curve equation
y := &fe{}
square(y, x)
mul(y, y, x)
add(y, y, b)
if ok := sqrt(y, y); !ok {
return nil, errors.New("point is not on curve")
}
if y.signBE() == a {
neg(y, y)
}
z := new(fe).one()
p := &PointG1{*x, *y, *z}
if !g.InCorrectSubgroup(p) {
return nil, errors.New("point is not on correct subgroup")
}
return p, nil
}
// ToCompressed given a G1 point returns bytes in compressed form of the point.
// Serialization rules are in line with zcash library. See below for details.
// https://github.com/zcash/librustzcash/blob/master/pairing/src/bls12_381/README.md#serialization
// https://docs.rs/bls12_381/0.1.1/bls12_381/notes/serialization/index.html
func (g *G1) ToCompressed(p *PointG1) []byte {
out := make([]byte, 48)
g.Affine(p)
if g.IsZero(p) {
out[0] |= 1 << 6
} else {
copy(out[:], toBytes(&p[0]))
if !p[1].signBE() {
out[0] |= 1 << 5
}
}
out[0] |= 1 << 7
return out
}
func (g *G1) fromBytesUnchecked(in []byte) (*PointG1, error) {
p0, err := fromBytes(in[:48])
if err != nil {
return nil, err
}
p1, err := fromBytes(in[48:])
if err != nil {
return nil, err
}
p2 := new(fe).one()
return &PointG1{*p0, *p1, *p2}, nil
}
// FromBytes constructs a new point given uncompressed byte input.
// FromBytes does not take zcash flags into account.
// Byte input expected to be larger than 96 bytes.
// First 96 bytes should be concatenation of x and y values.
// Point (0, 0) is considered as infinity.
func (g *G1) FromBytes(in []byte) (*PointG1, error) {
if len(in) < 96 {
return nil, errors.New("input string should be equal or larger than 96")
}
p0, err := fromBytes(in[:48])
if err != nil {
return nil, err
}
p1, err := fromBytes(in[48:])
if err != nil {
return nil, err
}
// check if given input points to infinity
if p0.isZero() && p1.isZero() {
return g.Zero(), nil
}
p2 := new(fe).one()
p := &PointG1{*p0, *p1, *p2}
if !g.IsOnCurve(p) {
return nil, errors.New("point is not on curve")
}
return p, nil
}
// ToBytes serializes a point into bytes in uncompressed form.
// ToBytes does not take zcash flags into account.
// ToBytes returns (0, 0) if point is infinity.
func (g *G1) ToBytes(p *PointG1) []byte {
out := make([]byte, 96)
if g.IsZero(p) {
return out
}
g.Affine(p)
copy(out[:48], toBytes(&p[0]))
copy(out[48:], toBytes(&p[1]))
return out
}
// New creates a new G1 Point which is equal to zero in other words point at infinity.
func (g *G1) New() *PointG1 {
return g.Zero()
}
// Zero returns a new G1 Point which is equal to point at infinity.
func (g *G1) Zero() *PointG1 {
return new(PointG1).Zero()
}
// One returns a new G1 Point which is equal to generator point.
func (g *G1) One() *PointG1 {
p := &PointG1{}
return p.Set(&g1One)
}
// IsZero returns true if given point is equal to zero.
func (g *G1) IsZero(p *PointG1) bool {
return p[2].isZero()
}
// Equal checks if given two G1 point is equal in their affine form.
func (g *G1) Equal(p1, p2 *PointG1) bool {
if g.IsZero(p1) {
return g.IsZero(p2)
}
if g.IsZero(p2) {
return g.IsZero(p1)
}
t := g.t
square(t[0], &p1[2])
square(t[1], &p2[2])
mul(t[2], t[0], &p2[0])
mul(t[3], t[1], &p1[0])
mul(t[0], t[0], &p1[2])
mul(t[1], t[1], &p2[2])
mul(t[1], t[1], &p1[1])
mul(t[0], t[0], &p2[1])
return t[0].equal(t[1]) && t[2].equal(t[3])
}
// InCorrectSubgroup checks whether given point is in correct subgroup.
func (g *G1) InCorrectSubgroup(p *PointG1) bool {
tmp := &PointG1{}
g.MulScalar(tmp, p, q)
return g.IsZero(tmp)
}
// IsOnCurve checks a G1 point is on curve.
func (g *G1) IsOnCurve(p *PointG1) bool {
if g.IsZero(p) {
return true
}
t := g.t
square(t[0], &p[1])
square(t[1], &p[0])
mul(t[1], t[1], &p[0])
square(t[2], &p[2])
square(t[3], t[2])
mul(t[2], t[2], t[3])
mul(t[2], b, t[2])
add(t[1], t[1], t[2])
return t[0].equal(t[1])
}
// IsAffine checks a G1 point whether it is in affine form.
func (g *G1) IsAffine(p *PointG1) bool {
return p[2].isOne()
}
// Add adds two G1 points p1, p2 and assigns the result to point at first argument.
func (g *G1) Affine(p *PointG1) *PointG1 {
if g.IsZero(p) {
return p
}
if !g.IsAffine(p) {
t := g.t
inverse(t[0], &p[2])
square(t[1], t[0])
mul(&p[0], &p[0], t[1])
mul(t[0], t[0], t[1])
mul(&p[1], &p[1], t[0])
p[2].one()
}
return p
}
// Add adds two G1 points p1, p2 and assigns the result to point at first argument.
func (g *G1) Add(r, p1, p2 *PointG1) *PointG1 {
// http://www.hyperelliptic.org/EFD/gp/auto-shortw-jacobian-0.html#addition-add-2007-bl
if g.IsZero(p1) {
return r.Set(p2)
}
if g.IsZero(p2) {
return r.Set(p1)
}
t := g.t
square(t[7], &p1[2])
mul(t[1], &p2[0], t[7])
mul(t[2], &p1[2], t[7])
mul(t[0], &p2[1], t[2])
square(t[8], &p2[2])
mul(t[3], &p1[0], t[8])
mul(t[4], &p2[2], t[8])
mul(t[2], &p1[1], t[4])
if t[1].equal(t[3]) {
if t[0].equal(t[2]) {
return g.Double(r, p1)
} else {
return r.Zero()
}
}
sub(t[1], t[1], t[3])
double(t[4], t[1])
square(t[4], t[4])
mul(t[5], t[1], t[4])
sub(t[0], t[0], t[2])
double(t[0], t[0])
square(t[6], t[0])
sub(t[6], t[6], t[5])
mul(t[3], t[3], t[4])
double(t[4], t[3])
sub(&r[0], t[6], t[4])
sub(t[4], t[3], &r[0])
mul(t[6], t[2], t[5])
double(t[6], t[6])
mul(t[0], t[0], t[4])
sub(&r[1], t[0], t[6])
add(t[0], &p1[2], &p2[2])
square(t[0], t[0])
sub(t[0], t[0], t[7])
sub(t[0], t[0], t[8])
mul(&r[2], t[0], t[1])
return r
}
// Double doubles a G1 point p and assigns the result to the point at first argument.
func (g *G1) Double(r, p *PointG1) *PointG1 {
// http://www.hyperelliptic.org/EFD/gp/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
if g.IsZero(p) {
return r.Set(p)
}
t := g.t
square(t[0], &p[0])
square(t[1], &p[1])
square(t[2], t[1])
add(t[1], &p[0], t[1])
square(t[1], t[1])
sub(t[1], t[1], t[0])
sub(t[1], t[1], t[2])
double(t[1], t[1])
double(t[3], t[0])
add(t[0], t[3], t[0])
square(t[4], t[0])
double(t[3], t[1])
sub(&r[0], t[4], t[3])
sub(t[1], t[1], &r[0])
double(t[2], t[2])
double(t[2], t[2])
double(t[2], t[2])
mul(t[0], t[0], t[1])
sub(t[1], t[0], t[2])
mul(t[0], &p[1], &p[2])
r[1].set(t[1])
double(&r[2], t[0])
return r
}
// Neg negates a G1 point p and assigns the result to the point at first argument.
func (g *G1) Neg(r, p *PointG1) *PointG1 {
r[0].set(&p[0])
r[2].set(&p[2])
neg(&r[1], &p[1])
return r
}
// Sub subtracts two G1 points p1, p2 and assigns the result to point at first argument.
func (g *G1) Sub(c, a, b *PointG1) *PointG1 {
d := &PointG1{}
g.Neg(d, b)
g.Add(c, a, d)
return c
}
// MulScalar multiplies a point by given scalar value in big.Int and assigns the result to point at first argument.
func (g *G1) MulScalar(c, p *PointG1, e *big.Int) *PointG1 {
q, n := &PointG1{}, &PointG1{}
n.Set(p)
l := e.BitLen()
for i := 0; i < l; i++ {
if e.Bit(i) == 1 {
g.Add(q, q, n)
}
g.Double(n, n)
}
return c.Set(q)
}
// ClearCofactor maps given a G1 point to correct subgroup
func (g *G1) ClearCofactor(p *PointG1) {
g.MulScalar(p, p, cofactorEFFG1)
}
// MultiExp calculates multi exponentiation. Given pairs of G1 point and scalar values
// (P_0, e_0), (P_1, e_1), ... (P_n, e_n) calculates r = e_0 * P_0 + e_1 * P_1 + ... + e_n * P_n
// Length of points and scalars are expected to be equal, otherwise an error is returned.
// Result is assigned to point at first argument.
func (g *G1) MultiExp(r *PointG1, points []*PointG1, powers []*big.Int) (*PointG1, error) {
if len(points) != len(powers) {
return nil, errors.New("point and scalar vectors should be in same length")
}
var c uint32 = 3
if len(powers) >= 32 {
c = uint32(math.Ceil(math.Log10(float64(len(powers)))))
}
bucketSize, numBits := (1<<c)-1, uint32(g.Q().BitLen())
windows := make([]*PointG1, numBits/c+1)
bucket := make([]*PointG1, bucketSize)
acc, sum := g.New(), g.New()
for i := 0; i < bucketSize; i++ {
bucket[i] = g.New()
}
mask := (uint64(1) << c) - 1
j := 0
var cur uint32
for cur <= numBits {
acc.Zero()
bucket = make([]*PointG1, (1<<c)-1)
for i := 0; i < len(bucket); i++ {
bucket[i] = g.New()
}
for i := 0; i < len(powers); i++ {
s0 := powers[i].Uint64()
index := uint(s0 & mask)
if index != 0 {
g.Add(bucket[index-1], bucket[index-1], points[i])
}
powers[i] = new(big.Int).Rsh(powers[i], uint(c))
}
sum.Zero()
for i := len(bucket) - 1; i >= 0; i-- {
g.Add(sum, sum, bucket[i])
g.Add(acc, acc, sum)
}
windows[j] = g.New()
windows[j].Set(acc)
j++
cur += c
}
acc.Zero()
for i := len(windows) - 1; i >= 0; i-- {
for j := uint32(0); j < c; j++ {
g.Double(acc, acc)
}
g.Add(acc, acc, windows[i])
}
return r.Set(acc), nil
}
// MapToCurve given a byte slice returns a valid G1 point.
// This mapping function implements the Simplified Shallue-van de Woestijne-Ulas method.
// https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06
// Input byte slice should be a valid field element, otherwise an error is returned.
func (g *G1) MapToCurve(in []byte) (*PointG1, error) {
u, err := fromBytes(in)
if err != nil {
return nil, err
}
x, y := swuMapG1(u)
isogenyMapG1(x, y)
one := new(fe).one()
p := &PointG1{*x, *y, *one}
g.ClearCofactor(p)
return g.Affine(p), nil
}
// EncodeToCurve given a message and domain seperator tag returns the hash result
// which is a valid curve point.
// Implementation follows BLS12381G1_XMD:SHA-256_SSWU_NU_ suite at
// https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06
func (g *G1) EncodeToCurve(msg, domain []byte) (*PointG1, error) {
hashRes, err := hashToFpXMDSHA256(msg, domain, 1)
if err != nil {
return nil, err
}
u := hashRes[0]
x, y := swuMapG1(u)
isogenyMapG1(x, y)
one := new(fe).one()
p := &PointG1{*x, *y, *one}
g.ClearCofactor(p)
return g.Affine(p), nil
}
// HashToCurve given a message and domain seperator tag returns the hash result
// which is a valid curve point.
// Implementation follows BLS12381G1_XMD:SHA-256_SSWU_RO_ suite at
// https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06
func (g *G1) HashToCurve(msg, domain []byte) (*PointG1, error) {
hashRes, err := hashToFpXMDSHA256(msg, domain, 2)
if err != nil {
return nil, err
}
u0, u1 := hashRes[0], hashRes[1]
x0, y0 := swuMapG1(u0)
x1, y1 := swuMapG1(u1)
one := new(fe).one()
p0, p1 := &PointG1{*x0, *y0, *one}, &PointG1{*x1, *y1, *one}
g.Add(p0, p0, p1)
g.Affine(p0)
isogenyMapG1(&p0[0], &p0[1])
g.ClearCofactor(p0)
return g.Affine(p0), nil
}