status-go/vendor/go.uber.org/dig/param.go

669 lines
19 KiB
Go
Raw Permalink Normal View History

// Copyright (c) 2019-2021 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package dig
import (
"fmt"
"reflect"
"strconv"
"strings"
"go.uber.org/dig/internal/digerror"
"go.uber.org/dig/internal/dot"
)
// The param interface represents a dependency for a constructor.
//
// The following implementations exist:
2023-05-19 20:23:55 +00:00
//
// paramList All arguments of the constructor.
// paramSingle An explicitly requested type.
// paramObject dig.In struct where each field in the struct can be another
// param.
// paramGroupedSlice
// A slice consuming a value group. This will receive all
// values produced with a `group:".."` tag with the same name
// as a slice.
type param interface {
fmt.Stringer
// Build this dependency and any of its dependencies from the provided
// Container.
//
// This MAY panic if the param does not produce a single value.
Build(store containerStore) (reflect.Value, error)
// DotParam returns a slice of dot.Param(s).
DotParam() []*dot.Param
}
var (
_ param = paramSingle{}
_ param = paramObject{}
_ param = paramList{}
_ param = paramGroupedSlice{}
)
// newParam builds a param from the given type. If the provided type is a
// dig.In struct, an paramObject will be returned.
func newParam(t reflect.Type, c containerStore) (param, error) {
switch {
case IsOut(t) || (t.Kind() == reflect.Ptr && IsOut(t.Elem())) || embedsType(t, _outPtrType):
2023-05-19 20:23:55 +00:00
return nil, newErrInvalidInput(fmt.Sprintf(
"cannot depend on result objects: %v embeds a dig.Out", t), nil)
case IsIn(t):
return newParamObject(t, c)
case embedsType(t, _inPtrType):
2023-05-19 20:23:55 +00:00
return nil, newErrInvalidInput(fmt.Sprintf(
"cannot build a parameter object by embedding *dig.In, embed dig.In instead: %v embeds *dig.In", t), nil)
case t.Kind() == reflect.Ptr && IsIn(t.Elem()):
2023-05-19 20:23:55 +00:00
return nil, newErrInvalidInput(fmt.Sprintf(
"cannot depend on a pointer to a parameter object, use a value instead: %v is a pointer to a struct that embeds dig.In", t), nil)
default:
return paramSingle{Type: t}, nil
}
}
// paramList holds all arguments of the constructor as params.
//
// NOTE: Build() MUST NOT be called on paramList. Instead, BuildList
// must be called.
type paramList struct {
ctype reflect.Type // type of the constructor
Params []param
}
func (pl paramList) DotParam() []*dot.Param {
var types []*dot.Param
for _, param := range pl.Params {
types = append(types, param.DotParam()...)
}
return types
}
func (pl paramList) String() string {
args := make([]string, len(pl.Params))
for i, p := range pl.Params {
args[i] = p.String()
}
return fmt.Sprint(args)
}
// newParamList builds a paramList from the provided constructor type.
//
// Variadic arguments of a constructor are ignored and not included as
// dependencies.
func newParamList(ctype reflect.Type, c containerStore) (paramList, error) {
numArgs := ctype.NumIn()
if ctype.IsVariadic() {
// NOTE: If the function is variadic, we skip the last argument
// because we're not filling variadic arguments yet. See #120.
numArgs--
}
pl := paramList{
ctype: ctype,
Params: make([]param, 0, numArgs),
}
for i := 0; i < numArgs; i++ {
p, err := newParam(ctype.In(i), c)
if err != nil {
2023-05-19 20:23:55 +00:00
return pl, newErrInvalidInput(fmt.Sprintf("bad argument %d", i+1), err)
}
pl.Params = append(pl.Params, p)
}
return pl, nil
}
func (pl paramList) Build(containerStore) (reflect.Value, error) {
digerror.BugPanicf("paramList.Build() must never be called")
panic("") // Unreachable, as BugPanicf above will panic.
}
// BuildList returns an ordered list of values which may be passed directly
// to the underlying constructor.
func (pl paramList) BuildList(c containerStore) ([]reflect.Value, error) {
args := make([]reflect.Value, len(pl.Params))
for i, p := range pl.Params {
var err error
args[i], err = p.Build(c)
if err != nil {
return nil, err
}
}
return args, nil
}
// paramSingle is an explicitly requested type, optionally with a name.
//
// This object must be present in the graph as-is unless it's specified as
// optional.
type paramSingle struct {
Name string
Optional bool
Type reflect.Type
}
func (ps paramSingle) DotParam() []*dot.Param {
return []*dot.Param{
{
Node: &dot.Node{
Type: ps.Type,
Name: ps.Name,
},
Optional: ps.Optional,
},
}
}
func (ps paramSingle) String() string {
// tally.Scope[optional] means optional
// tally.Scope[optional, name="foo"] means named optional
var opts []string
if ps.Optional {
opts = append(opts, "optional")
}
if ps.Name != "" {
opts = append(opts, fmt.Sprintf("name=%q", ps.Name))
}
if len(opts) == 0 {
return fmt.Sprint(ps.Type)
}
return fmt.Sprintf("%v[%v]", ps.Type, strings.Join(opts, ", "))
}
// search the given container and its ancestors for a decorated value.
func (ps paramSingle) getDecoratedValue(c containerStore) (reflect.Value, bool) {
for _, c := range c.storesToRoot() {
if v, ok := c.getDecoratedValue(ps.Name, ps.Type); ok {
return v, ok
}
}
return _noValue, false
}
// builds the parameter using decorators in all scopes that affect the
// current scope, if there are any. If there are multiple Scopes that decorates
// this parameter, the closest one to the Scope that invoked this will be used.
// If there are no decorators associated with this parameter, _noValue is returned.
func (ps paramSingle) buildWithDecorators(c containerStore) (v reflect.Value, found bool, err error) {
var (
d decorator
decoratingScope containerStore
)
stores := c.storesToRoot()
for _, s := range stores {
if d, found = s.getValueDecorator(ps.Name, ps.Type); !found {
continue
}
if d.State() == decoratorOnStack {
// This decorator is already being run.
// Avoid a cycle and look further.
d = nil
continue
}
decoratingScope = s
break
}
if !found || d == nil {
return _noValue, false, nil
}
if err = d.Call(decoratingScope); err != nil {
v, err = _noValue, errParamSingleFailed{
CtorID: 1,
Key: key{t: ps.Type, name: ps.Name},
Reason: err,
}
return v, found, err
}
v, _ = decoratingScope.getDecoratedValue(ps.Name, ps.Type)
return
}
func (ps paramSingle) Build(c containerStore) (reflect.Value, error) {
v, found, err := ps.buildWithDecorators(c)
if found {
return v, err
}
// Check whether the value is a decorated value first.
if v, ok := ps.getDecoratedValue(c); ok {
return v, nil
}
// Starting at the given container and working our way up its parents,
// find one that provides this dependency.
//
// Once found, we'll use that container for the rest of the invocation.
// Dependencies of this type will begin searching at that container,
// rather than starting at base.
var providers []provider
var providingContainer containerStore
for _, container := range c.storesToRoot() {
// first check if the scope already has cached a value for the type.
if v, ok := container.getValue(ps.Name, ps.Type); ok {
return v, nil
}
providers = container.getValueProviders(ps.Name, ps.Type)
if len(providers) > 0 {
providingContainer = container
break
}
}
if len(providers) == 0 {
if ps.Optional {
return reflect.Zero(ps.Type), nil
}
return _noValue, newErrMissingTypes(c, key{name: ps.Name, t: ps.Type})
}
for _, n := range providers {
err := n.Call(n.OrigScope())
if err == nil {
continue
}
// If we're missing dependencies but the parameter itself is optional,
// we can just move on.
if _, ok := err.(errMissingDependencies); ok && ps.Optional {
return reflect.Zero(ps.Type), nil
}
return _noValue, errParamSingleFailed{
CtorID: n.ID(),
Key: key{t: ps.Type, name: ps.Name},
Reason: err,
}
}
// If we get here, it's impossible for the value to be absent from the
// container.
v, _ = providingContainer.getValue(ps.Name, ps.Type)
return v, nil
}
// paramObject is a dig.In struct where each field is another param.
//
// This object is not expected in the graph as-is.
type paramObject struct {
Type reflect.Type
Fields []paramObjectField
FieldOrders []int
}
func (po paramObject) DotParam() []*dot.Param {
var types []*dot.Param
for _, field := range po.Fields {
types = append(types, field.DotParam()...)
}
return types
}
func (po paramObject) String() string {
fields := make([]string, len(po.Fields))
for i, f := range po.Fields {
fields[i] = f.Param.String()
}
return strings.Join(fields, " ")
}
// getParamOrder returns the order(s) of a parameter type.
func getParamOrder(gh *graphHolder, param param) []int {
var orders []int
switch p := param.(type) {
case paramSingle:
providers := gh.s.getAllValueProviders(p.Name, p.Type)
for _, provider := range providers {
orders = append(orders, provider.Order(gh.s))
}
case paramGroupedSlice:
// value group parameters have nodes of their own.
// We can directly return that here.
orders = append(orders, p.orders[gh.s])
case paramObject:
for _, pf := range p.Fields {
orders = append(orders, getParamOrder(gh, pf.Param)...)
}
}
return orders
}
// newParamObject builds an paramObject from the provided type. The type MUST
// be a dig.In struct.
func newParamObject(t reflect.Type, c containerStore) (paramObject, error) {
po := paramObject{Type: t}
// Check if the In type supports ignoring unexported fields.
var ignoreUnexported bool
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
if f.Type == _inType {
var err error
ignoreUnexported, err = isIgnoreUnexportedSet(f)
if err != nil {
return po, err
}
break
}
}
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
if f.Type == _inType {
// Skip over the dig.In embed.
continue
}
if f.PkgPath != "" && ignoreUnexported {
// Skip over an unexported field if it is allowed.
continue
}
pof, err := newParamObjectField(i, f, c)
if err != nil {
2023-05-19 20:23:55 +00:00
return po, newErrInvalidInput(
fmt.Sprintf("bad field %q of %v", f.Name, t), err)
}
po.Fields = append(po.Fields, pof)
}
return po, nil
}
func (po paramObject) Build(c containerStore) (reflect.Value, error) {
dest := reflect.New(po.Type).Elem()
// We have to build soft groups after all other fields, to avoid cases
// when a field calls a provider for a soft value group, but the value is
// not provided to it because the value group is declared before the field
var softGroupsQueue []paramObjectField
var fields []paramObjectField
for _, f := range po.Fields {
if p, ok := f.Param.(paramGroupedSlice); ok && p.Soft {
softGroupsQueue = append(softGroupsQueue, f)
continue
}
fields = append(fields, f)
}
fields = append(fields, softGroupsQueue...)
for _, f := range fields {
v, err := f.Build(c)
if err != nil {
return dest, err
}
dest.Field(f.FieldIndex).Set(v)
}
return dest, nil
}
// paramObjectField is a single field of a dig.In struct.
type paramObjectField struct {
// Name of the field in the struct.
FieldName string
// Index of this field in the target struct.
//
// We need to track this separately because not all fields of the
// struct map to params.
FieldIndex int
// The dependency requested by this field.
Param param
}
func (pof paramObjectField) DotParam() []*dot.Param {
return pof.Param.DotParam()
}
func newParamObjectField(idx int, f reflect.StructField, c containerStore) (paramObjectField, error) {
pof := paramObjectField{
FieldName: f.Name,
FieldIndex: idx,
}
var p param
switch {
case f.PkgPath != "":
2023-05-19 20:23:55 +00:00
return pof, newErrInvalidInput(
fmt.Sprintf("unexported fields not allowed in dig.In, did you mean to export %q (%v)?", f.Name, f.Type), nil)
case f.Tag.Get(_groupTag) != "":
var err error
p, err = newParamGroupedSlice(f, c)
if err != nil {
return pof, err
}
default:
var err error
p, err = newParam(f.Type, c)
if err != nil {
return pof, err
}
}
if ps, ok := p.(paramSingle); ok {
ps.Name = f.Tag.Get(_nameTag)
var err error
ps.Optional, err = isFieldOptional(f)
if err != nil {
return pof, err
}
p = ps
}
pof.Param = p
return pof, nil
}
func (pof paramObjectField) Build(c containerStore) (reflect.Value, error) {
v, err := pof.Param.Build(c)
if err != nil {
return v, err
}
return v, nil
}
// paramGroupedSlice is a param which produces a slice of values with the same
// group name.
type paramGroupedSlice struct {
// Name of the group as specified in the `group:".."` tag.
Group string
// Type of the slice.
Type reflect.Type
// Soft is used to denote a soft dependency between this param and its
// constructors, if it's true its constructors are only called if they
// provide another value requested in the graph
Soft bool
orders map[*Scope]int
}
func (pt paramGroupedSlice) String() string {
// io.Reader[group="foo"] refers to a group of io.Readers called 'foo'
return fmt.Sprintf("%v[group=%q]", pt.Type.Elem(), pt.Group)
}
func (pt paramGroupedSlice) DotParam() []*dot.Param {
return []*dot.Param{
{
Node: &dot.Node{
Type: pt.Type,
Group: pt.Group,
},
},
}
}
// newParamGroupedSlice builds a paramGroupedSlice from the provided type with
// the given name.
//
// The type MUST be a slice type.
func newParamGroupedSlice(f reflect.StructField, c containerStore) (paramGroupedSlice, error) {
g, err := parseGroupString(f.Tag.Get(_groupTag))
if err != nil {
return paramGroupedSlice{}, err
}
pg := paramGroupedSlice{
Group: g.Name,
Type: f.Type,
orders: make(map[*Scope]int),
Soft: g.Soft,
}
name := f.Tag.Get(_nameTag)
optional, _ := isFieldOptional(f)
switch {
case f.Type.Kind() != reflect.Slice:
2023-05-19 20:23:55 +00:00
return pg, newErrInvalidInput(
fmt.Sprintf("value groups may be consumed as slices only: field %q (%v) is not a slice", f.Name, f.Type), nil)
case g.Flatten:
2023-05-19 20:23:55 +00:00
return pg, newErrInvalidInput(
fmt.Sprintf("cannot use flatten in parameter value groups: field %q (%v) specifies flatten", f.Name, f.Type), nil)
case name != "":
2023-05-19 20:23:55 +00:00
return pg, newErrInvalidInput(
fmt.Sprintf("cannot use named values with value groups: name:%q requested with group:%q", name, pg.Group), nil)
case optional:
2023-05-19 20:23:55 +00:00
return pg, newErrInvalidInput("value groups cannot be optional", nil)
}
c.newGraphNode(&pg, pg.orders)
return pg, nil
}
// retrieves any decorated values that may be committed in this scope, or
// any of the parent Scopes. In the case where there are multiple scopes that
// are decorating the same type, the closest scope in effect will be replacing
// any decorated value groups provided in further scopes.
func (pt paramGroupedSlice) getDecoratedValues(c containerStore) (reflect.Value, bool) {
for _, c := range c.storesToRoot() {
if items, ok := c.getDecoratedValueGroup(pt.Group, pt.Type); ok {
return items, true
}
}
return _noValue, false
}
// search the given container and its parents for matching group decorators
// and call them to commit values. If any decorators return an error,
// that error is returned immediately. If all decorators succeeds, nil is returned.
// The order in which the decorators are invoked is from the top level scope to
// the current scope, to account for decorators that decorate values that were
// already decorated.
func (pt paramGroupedSlice) callGroupDecorators(c containerStore) error {
stores := c.storesToRoot()
for i := len(stores) - 1; i >= 0; i-- {
c := stores[i]
if d, found := c.getGroupDecorator(pt.Group, pt.Type.Elem()); found {
if d.State() == decoratorOnStack {
// This decorator is already being run. Avoid cycle
// and look further.
continue
}
if err := d.Call(c); err != nil {
return errParamGroupFailed{
CtorID: d.ID(),
Key: key{group: pt.Group, t: pt.Type.Elem()},
Reason: err,
}
}
}
}
return nil
}
// search the given container and its parent for matching group providers and
// call them to commit values. If an error is encountered, return the number
// of providers called and a non-nil error from the first provided.
func (pt paramGroupedSlice) callGroupProviders(c containerStore) (int, error) {
itemCount := 0
for _, c := range c.storesToRoot() {
providers := c.getGroupProviders(pt.Group, pt.Type.Elem())
itemCount += len(providers)
for _, n := range providers {
2024-05-15 23:15:00 +00:00
if err := n.Call(n.OrigScope()); err != nil {
return 0, errParamGroupFailed{
CtorID: n.ID(),
Key: key{group: pt.Group, t: pt.Type.Elem()},
Reason: err,
}
}
}
}
return itemCount, nil
}
func (pt paramGroupedSlice) Build(c containerStore) (reflect.Value, error) {
// do not call this if we are already inside a decorator since
// it will result in an infinite recursion. (i.e. decorate -> params.BuildList() -> Decorate -> params.BuildList...)
// this is safe since a value can be decorated at most once in a given scope.
if err := pt.callGroupDecorators(c); err != nil {
return _noValue, err
}
// Check if we have decorated values
if decoratedItems, ok := pt.getDecoratedValues(c); ok {
return decoratedItems, nil
}
// If we do not have any decorated values and the group isn't soft,
// find the providers and call them.
itemCount := 0
if !pt.Soft {
var err error
itemCount, err = pt.callGroupProviders(c)
if err != nil {
return _noValue, err
}
}
stores := c.storesToRoot()
result := reflect.MakeSlice(pt.Type, 0, itemCount)
for _, c := range stores {
result = reflect.Append(result, c.getValueGroup(pt.Group, pt.Type.Elem())...)
}
return result, nil
}
// Checks if ignoring unexported files in an In struct is allowed.
// The struct field MUST be an _inType.
func isIgnoreUnexportedSet(f reflect.StructField) (bool, error) {
tag := f.Tag.Get(_ignoreUnexportedTag)
if tag == "" {
return false, nil
}
allowed, err := strconv.ParseBool(tag)
if err != nil {
2023-05-19 20:23:55 +00:00
err = newErrInvalidInput(
fmt.Sprintf("invalid value %q for %q tag on field %v", tag, _ignoreUnexportedTag, f.Name), err)
}
return allowed, err
}