2020-05-14 14:58:08 +00:00
# Copyright (c) 2019-2020 Status Research & Development GmbH. Licensed under
# either of:
# - Apache License, version 2.0
# - MIT license
# at your option. This file may not be copied, modified, or distributed except
# according to those terms.
2020-05-06 21:26:32 +00:00
2020-05-14 14:58:08 +00:00
SHELL := bash # the shell used internally by Make
2020-05-06 21:43:20 +00:00
2020-05-14 14:58:08 +00:00
# used inside the included makefiles
BUILD_SYSTEM_DIR := vendor/nimbus-build-system
# we don't want an error here, so we can handle things later, in the ".DEFAULT" target
- i n c l u d e $( BUILD_SYSTEM_DIR ) / m a k e f i l e s / v a r i a b l e s . m k
.PHONY : \
all \
2020-06-04 20:56:44 +00:00
bottles \
bottles-dummy \
bottles-macos \
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
check-pkg-target-linux \
check-pkg-target-macos \
check-pkg-target-windows \
2020-05-14 14:58:08 +00:00
clean \
deps \
2020-05-25 02:18:37 +00:00
nim_status_client \
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
nim_windows_launcher \
2020-06-04 20:56:44 +00:00
pkg \
pkg-linux \
pkg-macos \
2020-07-08 16:48:13 +00:00
pkg-windows \
2020-05-25 02:18:37 +00:00
run \
2020-08-06 21:14:06 +00:00
run-linux \
run-macos \
2020-07-08 16:48:13 +00:00
run-windows \
2020-06-18 16:44:22 +00:00
status-go \
2020-05-14 14:58:08 +00:00
update
i f e q ( $( NIM_PARAMS ) , )
# "variables.mk" was not included, so we update the submodules.
GIT_SUBMODULE_UPDATE := git submodule update --init --recursive
.DEFAULT :
+@ echo -e " Git submodules not found. Running ' $( GIT_SUBMODULE_UPDATE) '.\n " ; \
$( GIT_SUBMODULE_UPDATE) ; \
echo
# Now that the included *.mk files appeared, and are newer than this file, Make will restart itself:
# https://www.gnu.org/software/make/manual/make.html#Remaking-Makefiles
#
# After restarting, it will execute its original goal, so we don't have to start a child Make here
# with "$(MAKE) $(MAKECMDGOALS)". Isn't hidden control flow great?
e l s e # "variables.mk" was included. Business as usual until the end of this file.
2020-05-25 02:18:37 +00:00
all : nim_status_client
# must be included after the default target
- i n c l u d e $( BUILD_SYSTEM_DIR ) / m a k e f i l e s / t a r g e t s . m k
2020-05-14 14:58:08 +00:00
i f e q ( $( OS ) , W i n d o w s _ N T ) # is Windows_NT on XP, 2000, 7, Vista, 10...
2020-05-25 02:18:37 +00:00
detected_OS := Windows
2020-05-14 14:58:08 +00:00
e l s e
2020-05-25 02:18:37 +00:00
detected_OS := $( strip $( shell uname) )
2020-05-14 14:58:08 +00:00
e n d i f
2020-07-08 16:48:13 +00:00
i f e q ( $( detected_OS ) , D a r w i n )
2020-06-04 20:56:44 +00:00
BOTTLES_TARGET := bottles-macos
CFLAGS := -mmacosx-version-min= 10.13
export CFLAGS
2020-07-08 16:48:13 +00:00
CGO_CFLAGS := -mmacosx-version-min= 10.13
export CGO_CFLAGS
2020-08-06 21:14:06 +00:00
LIBSTATUS_EXT := dylib
2020-07-08 16:48:13 +00:00
MACOSX_DEPLOYMENT_TARGET := 10.13
export MACOSX_DEPLOYMENT_TARGET
PKG_TARGET := pkg-macos
2020-08-06 21:14:06 +00:00
RUN_TARGET := run-macos
2020-07-08 16:48:13 +00:00
e l s e i f e q ( $( detected_OS ) , W i n d o w s )
BOTTLES_TARGET := bottles-dummy
2020-08-06 21:14:06 +00:00
LIBSTATUS_EXT := dll
2020-07-08 16:48:13 +00:00
PKG_TARGET := pkg-windows
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
QRCODEGEN_MAKE_PARAMS := CC = gcc
2020-07-08 16:48:13 +00:00
RUN_TARGET := run-windows
2020-07-21 16:28:42 +00:00
SIGNTOOL ?= C:\\ Program Files ( x86) \\ Windows Kits\\ 10\\ bin\\ 10.0.17763.0\\ x64\\ signtool.exe
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
VCINSTALLDIR ?= C:\\ Program Files ( x86) \\ Microsoft Visual Studio\\ 2017\\ BuildTools\\ VC\\
export VCINSTALLDIR
2020-06-04 20:56:44 +00:00
e l s e
BOTTLES_TARGET := bottles-dummy
2020-08-06 21:14:06 +00:00
LIBSTATUS_EXT := so
2020-06-04 20:56:44 +00:00
PKG_TARGET := pkg-linux
2020-08-06 21:14:06 +00:00
RUN_TARGET := run-linux
2020-06-04 20:56:44 +00:00
e n d i f
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
check-pkg-target-linux :
i f n e q ( $( detected_OS ) , L i n u x )
$( error The pkg-linux target must be run on Linux)
e n d i f
check-pkg-target-macos :
i f n e q ( $( detected_OS ) , D a r w i n )
$( error The pkg-macos target must be run on macOS)
e n d i f
check-pkg-target-windows :
i f n e q ( $( detected_OS ) , W i n d o w s )
$( error The pkg-windows target must be run on Windows)
e n d i f
2020-06-04 20:56:44 +00:00
bottles : $( BOTTLES_TARGET )
bottles-dummy : ;
BOTTLE_OPENSSL := bottles/openssl/INSTALL_RECEIPT.json
$(BOTTLE_OPENSSL) :
2020-07-08 16:48:13 +00:00
echo -e "\e[92mFetching:\e[39m bottles for macOS"
2020-06-04 20:56:44 +00:00
rm -rf bottles/Downloads/openssl* bottles/openssl*
mkdir -p bottles/Downloads
cd bottles/Downloads && \
wget -O openssl.tar.gz "https://bintray.com/homebrew/bottles/download_file?file_path=openssl%401.1-1.1.1g.high_sierra.bottle.tar.gz" && \
tar xzf openssl* && \
mv openssl@1.1/1.1.1g ../openssl
BOTTLE_PCRE := bottles/pcre/INSTALL_RECEIPT.json
$(BOTTLE_PCRE) :
rm -rf bottles/Downloads/pcre* bottles/pcre*
mkdir -p bottles/Downloads
cd bottles/Downloads && \
wget -O pcre.tar.gz "https://bintray.com/homebrew/bottles/download_file?file_path=pcre-8.44.high_sierra.bottle.tar.gz" && \
tar xzf pcre* && \
mv pcre/8.44 ../pcre
bottles-macos : | $( BOTTLE_OPENSSL ) $( BOTTLE_PCRE )
rm -rf bottles/Downloads
2020-07-08 16:48:13 +00:00
deps : | deps -common bottles
2020-05-14 14:58:08 +00:00
2020-07-08 16:48:13 +00:00
update : | update -common
2020-05-25 02:18:37 +00:00
# Qt5 dirs (we can't indent with tabs here)
2020-07-08 16:48:13 +00:00
i f n e q ( $( detected_OS ) , W i n d o w s )
QT5_PCFILEDIR := $( shell pkg-config --variable= pcfiledir Qt5Core 2>/dev/null)
QT5_LIBDIR := $( shell pkg-config --variable= libdir Qt5Core 2>/dev/null)
ifeq ( $( QT5_PCFILEDIR) ,)
ifeq ( $( QTDIR) ,)
$( error Cannot find your Qt5 installation. Please run " $( MAKE) QTDIR=/path/to/your/Qt5/installation/prefix ... " )
2020-05-25 02:18:37 +00:00
else
2020-06-25 21:04:47 +00:00
QT5_PCFILEDIR := $( QTDIR) /lib/pkgconfig
QT5_LIBDIR := $( QTDIR) /lib
2020-07-08 16:48:13 +00:00
# some manually installed Qt5 instances have wrong paths in their *.pc files, so we pass the right one to the linker here
ifeq ( $( detected_OS) ,Darwin)
NIM_PARAMS += -L:"-framework Foundation -framework Security -framework IOKit -framework CoreServices"
# Fix for failures due to 'can't allocate code signature data for'
NIM_PARAMS += --passL:"-headerpad_max_install_names"
NIM_PARAMS += --passL:" -F $( QT5_LIBDIR) "
export QT5_LIBDIR
else
NIM_PARAMS += --passL:" -L $( QT5_LIBDIR) "
endif
2020-05-25 02:18:37 +00:00
endif
endif
2020-07-08 16:48:13 +00:00
DOTHERSIDE := vendor/DOtherSide/build/lib/libDOtherSideStatic.a
DOTHERSIDE_CMAKE_PARAMS := -DENABLE_DYNAMIC_LIBS= OFF -DENABLE_STATIC_LIBS= ON
DOTHERSIDE_BUILD_CMD := $( MAKE) VERBOSE = $( V) $( HANDLE_OUTPUT)
# order matters here, due to "-Wl,-as-needed"
NIM_PARAMS += --passL:" $( DOTHERSIDE) " --passL:" $( shell PKG_CONFIG_PATH = " $( QT5_PCFILEDIR) " pkg-config --libs Qt5Core Qt5Qml Qt5Gui Qt5Quick Qt5QuickControls2 Qt5Widgets Qt5Svg) "
e l s e
DOTHERSIDE := vendor/DOtherSide/build/lib/Release/DOtherSide.dll
DOTHERSIDE_CMAKE_PARAMS := -T"v141" -A x64 -DENABLE_DYNAMIC_LIBS= ON -DENABLE_STATIC_LIBS= OFF
DOTHERSIDE_BUILD_CMD := cmake --build . --config Release $( HANDLE_OUTPUT)
NIM_PARAMS += -L:$( DOTHERSIDE)
NIM_EXTRA_PARAMS := --passL:"-lsetupapi -lhid"
2020-05-25 02:18:37 +00:00
e n d i f
2020-05-14 14:58:08 +00:00
2020-05-25 02:18:37 +00:00
# TODO: control debug/release builds with a Make var
# We need `-d:debug` to get Nim's default stack traces.
NIM_PARAMS += --outdir:./bin -d:debug
# Enable debugging symbols in DOtherSide, in case we need GDB backtraces from it.
CFLAGS += -g
CXXFLAGS += -g
2020-05-14 14:58:08 +00:00
$(DOTHERSIDE) : | deps
echo -e $( BUILD_MSG) "DOtherSide"
+ cd vendor/DOtherSide && \
2020-06-04 20:56:44 +00:00
mkdir -p build && \
cd build && \
2020-05-25 02:18:37 +00:00
rm -f CMakeCache.txt && \
2020-07-08 16:48:13 +00:00
cmake $( DOTHERSIDE_CMAKE_PARAMS) \
2020-06-18 16:44:22 +00:00
-DCMAKE_BUILD_TYPE= Release \
-DENABLE_DOCS= OFF \
-DENABLE_TESTS= OFF \
.. $( HANDLE_OUTPUT) && \
2020-07-08 16:48:13 +00:00
$( DOTHERSIDE_BUILD_CMD)
2020-05-14 14:58:08 +00:00
2020-08-06 21:14:06 +00:00
STATUSGO := vendor/status-go/build/bin/libstatus.$( LIBSTATUS_EXT)
STATUSGO_LIBDIR := $( shell pwd ) /$( shell dirname " $( STATUSGO) " )
export STATUSGO_LIBDIR
2020-05-14 20:19:01 +00:00
2020-06-18 16:44:22 +00:00
status-go : $( STATUSGO )
2020-05-14 20:19:01 +00:00
$(STATUSGO) : | deps
echo -e $( BUILD_MSG) "status-go"
+ cd vendor/status-go && \
2020-08-06 21:14:06 +00:00
$( MAKE) statusgo-shared-library $( HANDLE_OUTPUT)
2020-05-14 14:58:08 +00:00
2020-06-23 17:17:58 +00:00
QRCODEGEN := vendor/QR-Code-generator/c/libqrcodegen.a
$(QRCODEGEN) : | deps
echo -e $( BUILD_MSG) "QR-Code-generator"
+ cd vendor/QR-Code-generator/c && \
2020-07-08 16:48:13 +00:00
$( MAKE) $( QRCODEGEN_MAKE_PARAMS)
2020-06-23 17:17:58 +00:00
2020-11-03 19:42:55 +00:00
update-fleets :
curl -s https://fleets.status.im/ \
| jq --indent 4 --sort-keys . \
> fleets.json
2020-06-30 21:35:24 +00:00
rcc :
2020-07-08 16:48:13 +00:00
echo -e $( BUILD_MSG) "resources.rcc"
2020-07-07 18:13:41 +00:00
rm -f ./resources.rcc
rm -f ./ui/resources.qrc
2020-06-30 21:35:24 +00:00
./ui/generate-rcc.sh
rcc --binary ui/resources.qrc -o ./resources.rcc
2020-11-03 19:42:55 +00:00
nim_status_client : | $( DOTHERSIDE ) $( STATUSGO ) $( QRCODEGEN ) update -fleets rcc deps
2020-05-14 14:58:08 +00:00
echo -e $( BUILD_MSG) " $@ " && \
2020-08-06 21:14:06 +00:00
$( ENV_SCRIPT) nim c $( NIM_PARAMS) --passL:" -L $( STATUSGO_LIBDIR) " --passL:"-lstatus" $( NIM_EXTRA_PARAMS) --passL:" $( QRCODEGEN) " --passL:"-lm" src/nim_status_client.nim && \
2020-09-03 16:06:36 +00:00
[ [ $$ ? = 0 ] ] && \
( ( [ [ $( detected_OS) = Darwin ] ] && \
2020-08-06 21:14:06 +00:00
install_name_tool -change \
libstatus.dylib \
@rpath/libstatus.dylib \
2020-09-03 16:06:36 +00:00
bin/nim_status_client) || true )
2020-05-14 20:19:01 +00:00
2020-06-04 20:56:44 +00:00
_APPIMAGE_TOOL := appimagetool-x86_64.AppImage
APPIMAGE_TOOL := tmp/linux/tools/$( _APPIMAGE_TOOL)
$(APPIMAGE_TOOL) :
2020-07-08 16:48:13 +00:00
echo -e "\e[92mFetching:\e[39m appimagetool"
2020-06-04 20:56:44 +00:00
rm -rf tmp/linux
mkdir -p tmp/linux/tools
wget https://github.com/AppImage/AppImageKit/releases/download/continuous/$( _APPIMAGE_TOOL)
mv $( _APPIMAGE_TOOL) tmp/linux/tools/
chmod +x $( APPIMAGE_TOOL)
2020-05-19 15:32:48 +00:00
2020-06-18 16:44:22 +00:00
STATUS_CLIENT_APPIMAGE ?= pkg/NimStatusClient-x86_64.AppImage
2020-05-14 20:19:01 +00:00
2020-06-18 16:44:22 +00:00
$(STATUS_CLIENT_APPIMAGE) : nim_status_client $( APPIMAGE_TOOL ) nim -status .desktop
2020-06-04 20:56:44 +00:00
rm -rf pkg/*.AppImage
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
rm -rf tmp/linux/dist
2020-06-04 20:56:44 +00:00
mkdir -p tmp/linux/dist/usr/bin
mkdir -p tmp/linux/dist/usr/lib
mkdir -p tmp/linux/dist/usr/qml
2020-05-18 16:51:29 +00:00
2020-05-15 13:00:49 +00:00
# General Files
2020-06-04 20:56:44 +00:00
cp bin/nim_status_client tmp/linux/dist/usr/bin
cp nim-status.desktop tmp/linux/dist/.
cp status.svg tmp/linux/dist/status.svg
2020-06-30 21:35:24 +00:00
cp status.svg tmp/linux/dist/usr/.
cp -R resources.rcc tmp/linux/dist/usr/.
2020-11-03 19:42:55 +00:00
cp -R fleets.json tmp/linux/dist/usr/.
2020-08-10 20:19:15 +00:00
mkdir -p tmp/linux/dist/usr/i18n
cp ui/i18n/* tmp/linux/dist/usr/i18n
2020-05-15 13:00:49 +00:00
2020-08-06 21:14:06 +00:00
# Libraries
2020-10-07 15:24:24 +00:00
cp -r /usr/lib/x86_64-linux-gnu/nss tmp/linux/dist/usr/lib/
2020-08-06 21:14:06 +00:00
cp vendor/status-go/build/bin/libstatus.so tmp/linux/dist/usr/lib/
2020-05-14 20:19:01 +00:00
echo -e $( BUILD_MSG) "AppImage"
2020-08-12 15:01:03 +00:00
linuxdeployqt tmp/linux/dist/nim-status.desktop -no-copy-copyright-files -qmldir= ui -qmlimport= $( QTDIR) /qml -bundle-non-qt-libs
2020-06-04 20:56:44 +00:00
rm tmp/linux/dist/AppRun
cp AppRun tmp/linux/dist/.
mkdir -p pkg
2020-06-18 16:44:22 +00:00
$( APPIMAGE_TOOL) tmp/linux/dist $( STATUS_CLIENT_APPIMAGE)
2020-06-04 20:56:44 +00:00
DMG_TOOL := node_modules/.bin/create-dmg
2020-05-15 13:00:49 +00:00
2020-06-04 20:56:44 +00:00
$(DMG_TOOL) :
2020-07-08 16:48:13 +00:00
echo -e "\e[92mInstalling:\e[39m create-dmg"
2020-06-04 20:56:44 +00:00
npm i
2020-05-15 13:00:49 +00:00
2020-09-22 15:12:48 +00:00
MACOS_OUTER_BUNDLE := tmp/macos/dist/Status.app
MACOS_INNER_BUNDLE := $( MACOS_OUTER_BUNDLE) /Contents/Frameworks/QtWebEngineCore.framework/Versions/Current/Helpers/QtWebEngineProcess.app
2020-05-14 20:19:01 +00:00
2020-06-18 16:44:22 +00:00
STATUS_CLIENT_DMG ?= pkg/Status.dmg
2020-06-04 20:56:44 +00:00
2020-06-18 16:44:22 +00:00
$(STATUS_CLIENT_DMG) : nim_status_client $( DMG_TOOL )
2020-06-04 20:56:44 +00:00
rm -rf tmp/macos pkg/*.dmg
2020-09-22 15:12:48 +00:00
mkdir -p $( MACOS_OUTER_BUNDLE) /Contents/MacOS
mkdir -p $( MACOS_OUTER_BUNDLE) /Contents/Resources
cp Info.plist $( MACOS_OUTER_BUNDLE) /Contents/
cp bin/nim_status_client $( MACOS_OUTER_BUNDLE) /Contents/MacOS/
cp nim_status_client.sh $( MACOS_OUTER_BUNDLE) /Contents/MacOS/
chmod +x $( MACOS_OUTER_BUNDLE) /Contents/MacOS/nim_status_client.sh
cp status-icon.icns $( MACOS_OUTER_BUNDLE) /Contents/Resources/
cp status.svg $( MACOS_OUTER_BUNDLE) /Contents/
cp -R resources.rcc $( MACOS_OUTER_BUNDLE) /Contents/
2020-11-03 19:42:55 +00:00
cp -R fleets.json $( MACOS_OUTER_BUNDLE) /Contents/
2020-09-22 15:12:48 +00:00
mkdir -p $( MACOS_OUTER_BUNDLE) /Contents/i18n
cp ui/i18n/* $( MACOS_OUTER_BUNDLE) /Contents/i18n
2020-06-04 20:56:44 +00:00
2020-07-08 16:48:13 +00:00
echo -e $( BUILD_MSG) "app"
2020-06-04 20:56:44 +00:00
macdeployqt \
2020-09-22 15:12:48 +00:00
$( MACOS_OUTER_BUNDLE) \
-executable= $( MACOS_OUTER_BUNDLE) /Contents/MacOS/nim_status_client \
2020-06-04 20:56:44 +00:00
-qmldir= ui
2020-09-22 15:12:48 +00:00
cp Info.runner.plist $( MACOS_OUTER_BUNDLE) /Contents/Info.plist
macdeployqt \
$( MACOS_INNER_BUNDLE) \
-executable= $( MACOS_INNER_BUNDLE) /Contents/MacOS/QtWebEngineProcess
2020-06-04 20:56:44 +00:00
2020-09-22 15:12:48 +00:00
# if MACOS_CODESIGN_IDENT is not set then the outer and inner .app
# bundles are not signed
2020-06-18 16:44:22 +00:00
i f d e f M A C O S _ C O D E S I G N _ I D E N T
2020-09-22 15:12:48 +00:00
scripts/sign-macos-pkg.sh $( MACOS_OUTER_BUNDLE) $( MACOS_CODESIGN_IDENT)
scripts/sign-macos-pkg.sh $( MACOS_INNER_BUNDLE) $( MACOS_CODESIGN_IDENT) \
--entitlements QtWebEngineProcess.plist
2020-06-18 16:44:22 +00:00
e n d i f
2020-07-08 16:48:13 +00:00
echo -e $( BUILD_MSG) "dmg"
2020-06-04 20:56:44 +00:00
mkdir -p pkg
# See: https://github.com/sindresorhus/create-dmg#dmg-icon
# GraphicsMagick must be installed for create-dmg to make the custom
# DMG icon based on app icon, but should otherwise work without it
npx create-dmg \
--identity= "NOBODY" \
2020-09-22 15:12:48 +00:00
$( MACOS_OUTER_BUNDLE) \
2020-06-04 20:56:44 +00:00
pkg || true
2020-06-18 16:44:22 +00:00
# We ignore failure above create-dmg can't skip signing.
# To work around that a dummy identity - 'NOBODY' - is specified.
# This causes non-zero exit code despite DMG being created.
# It is just not signed, hence the next command should succeed.
mv "`ls pkg/*.dmg`" $( STATUS_CLIENT_DMG)
i f d e f M A C O S _ C O D E S I G N _ I D E N T
scripts/sign-macos-pkg.sh $( STATUS_CLIENT_DMG) $( MACOS_CODESIGN_IDENT)
e n d i f
2020-06-04 20:56:44 +00:00
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
NIM_WINDOWS_PREBUILT_DLLS ?= tmp/windows/tools/pcre.dll
$(NIM_WINDOWS_PREBUILT_DLLS) :
echo -e "\e[92mFetching:\e[39m prebuilt DLLs from nim-lang.org"
rm -rf tmp/windows
mkdir -p tmp/windows/tools
cd tmp/windows/tools && \
wget https://nim-lang.org/download/dlls.zip && \
unzip dlls.zip
nim_windows_launcher : | deps
$( ENV_SCRIPT) nim c -d:debug --outdir:./bin --passL:"-static-libgcc -Wl,-Bstatic,--whole-archive -lwinpthread -Wl,--no-whole-archive" src/nim_windows_launcher.nim
2020-07-21 16:28:42 +00:00
i f n e q ( $( WINDOWS_CODESIGN_TIMESTAMP_URL ) , )
WINDOWS_CODESIGN_TIMESTAMP_PARAM := -t $( WINDOWS_CODESIGN_TIMESTAMP_URL)
e n d i f
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
STATUS_CLIENT_ZIP ?= pkg/Status.zip
$(STATUS_CLIENT_ZIP) : nim_status_client nim_windows_launcher $( NIM_WINDOWS_PREBUILT_DLLS )
rm -rf pkg/*.zip
rm -rf tmp/windows/dist
mkdir -p tmp/windows/dist/Status/bin
mkdir -p tmp/windows/dist/Status/resources
mkdir -p tmp/windows/dist/Status/vendor
cp windows-install.txt tmp/windows/dist/Status/INSTALL.txt
unix2dos -k tmp/windows/dist/Status/INSTALL.txt
# cp LICENSE tmp/windows/dist/Status/LICENSE.txt
# unix2dos -k tmp/windows/dist/Status/LICENSE.txt
cp status.ico tmp/windows/dist/Status/resources/
cp status.svg tmp/windows/dist/Status/resources/
cp resources.rcc tmp/windows/dist/Status/resources/
2020-11-03 19:42:55 +00:00
cp fleets.json tmp/windows/dist/Status/resources/
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
cp bin/nim_status_client.exe tmp/windows/dist/Status/bin/Status.exe
2020-07-21 16:28:42 +00:00
cp bin/nim_windows_launcher.exe tmp/windows/dist/Status/Status.exe
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
rcedit \
tmp/windows/dist/Status/bin/Status.exe \
--set-icon tmp/windows/dist/Status/resources/status.ico
rcedit \
tmp/windows/dist/Status/Status.exe \
--set-icon tmp/windows/dist/Status/resources/status.ico
cp $( DOTHERSIDE) tmp/windows/dist/Status/bin/
2020-08-06 21:14:06 +00:00
cp $( STATUSGO) tmp/windows/dist/Status/bin/
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
cp tmp/windows/tools/*.dll tmp/windows/dist/Status/bin/
2020-08-10 20:19:15 +00:00
mkdir -p tmp/windows/dist/Status/resources/i18n
cp ui/i18n/* tmp/windows/dist/Status/resources/i18n
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
cp " $( shell which libgcc_s_seh-1.dll) " tmp/windows/dist/Status/bin/
cp " $( shell which libwinpthread-1.dll) " tmp/windows/dist/Status/bin/
echo -e $( BUILD_MSG) "deployable folder"
windeployqt \
--compiler-runtime \
--qmldir ui \
--release \
tmp/windows/dist/Status/bin/DOtherSide.dll
mv tmp/windows/dist/Status/bin/vc_redist.x64.exe tmp/windows/dist/Status/vendor/
2020-07-21 16:28:42 +00:00
# if WINDOWS_CODESIGN_PFX_PATH is not set then DLLs, EXEs are not signed
i f d e f W I N D O W S _ C O D E S I G N _ P F X _ P A T H
find ./tmp/windows/dist/Status -type f \
| /usr/bin/egrep -i " \.(dll|exe) $$ " \
| /usr/bin/xargs -I{ } /usr/bin/bash -c \
" if ! ' $( SIGNTOOL) ' verify -pa {} &>/dev/null; then echo {}; fi " \
| /usr/bin/xargs -I{ } " $( SIGNTOOL) " \
sign \
-v \
-f $( WINDOWS_CODESIGN_PFX_PATH) \
$( WINDOWS_CODESIGN_TIMESTAMP_PARAM) \
{ }
e n d i f
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
echo -e $( BUILD_MSG) "zip"
mkdir -p pkg
cd tmp/windows/dist/Status && \
2020-09-28 15:36:13 +00:00
7z a ../../../../$( STATUS_CLIENT_ZIP) *
2020-07-08 16:48:13 +00:00
2020-06-04 20:56:44 +00:00
pkg : $( PKG_TARGET )
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
pkg-linux : check -pkg -target -linux $( STATUS_CLIENT_APPIMAGE )
2020-06-04 20:56:44 +00:00
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
pkg-macos : check -pkg -target -macos $( STATUS_CLIENT_DMG )
2020-05-14 14:58:08 +00:00
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
pkg-windows : check -pkg -target -windows $( STATUS_CLIENT_ZIP )
2020-07-08 16:48:13 +00:00
2020-05-14 14:58:08 +00:00
clean : | clean -common
2020-06-04 20:56:44 +00:00
rm -rf bin/* node_modules pkg/* tmp/* $( STATUSGO)
+ $( MAKE) -C vendor/DOtherSide/build --no-print-directory clean
2020-07-08 16:48:13 +00:00
run : rcc $( RUN_TARGET )
2020-07-03 19:22:15 +00:00
NIM_STATUS_CLIENT_DEV ?= t
2020-08-06 21:14:06 +00:00
run-linux :
echo -e "\e[92mRunning:\e[39m bin/nim_status_client"
NIM_STATUS_CLIENT_DEV = " $( NIM_STATUS_CLIENT_DEV) " \
LD_LIBRARY_PATH = " $( QT5_LIBDIR) " :" $( STATUSGO_LIBDIR) " \
./bin/nim_status_client
run-macos :
2020-07-08 16:48:13 +00:00
echo -e "\e[92mRunning:\e[39m bin/nim_status_client"
2020-07-03 19:22:15 +00:00
NIM_STATUS_CLIENT_DEV = " $( NIM_STATUS_CLIENT_DEV) " \
./bin/nim_status_client
2020-05-14 14:58:08 +00:00
build: implement packaging steps for the Windows build
Implement a `pkg-windows` target that ultimately results in `Status.zip` being
written to `pkg/`.
Note: this commit does not introduce code signing for the Windows build since
that piece is still a work in progress.
`pkg-windows` creates a portable folder in `tmp/windows/dist` with the help of
[`windeployqt`][windeployqt], which copies the needed portions of Qt into the
folder.
Since DLL resolution is relatively inflexible, a launcher `Status.exe` is
created at the top-level of the folder; the launcher opens `bin/Status.exe`
while adding the portable folder's `bin/` to the `PATH`, allowing
`bin/Status.exe` to resolve the DLLs in that folder.
A few additional tools need to be installed (e.g. with [scoop][scoop]) and
availble in `PATH`:
* 7-zip
* dos2unix (provides unix2dos)
* findutils
* go
* rcedit
* wget
The above list builds on the tools list in PR #521, and the other requirements
and instructions in that PR's description still apply.
**Why not build an installer?**
When starting work on packaging for the Windows build, my initial plan was to
build an installer, and for that purpose I researched the [WiX Toolset][wix],
the [Qt Installer Framework][qtif], and some other options.
I found that building an installer is a bit complex. I then recalled, from
personal experience, that [Cmder][cmder]'s [Mini download][mini] is
installer-less. You simply unzip the download and place the `cmder_mini` folder
wherever you prefer. Such an approach was also recommended to me in one of the
Nim language's community chats.
In addition to being simpler, the installer-less approach also gives
installation of Status Desktop a lower profile than an installer-application
would since nothing is written to the Windows registry, added to the *Add or
remove programs* list, etc. I think that's a benefit given the privacy-security
focus of Status, but others may feel differently so please provide feedback on
this point!
[windeployqt]: https://doc.qt.io/qt-5/windows-deployment.html
[scoop]: https://scoop.sh/
[wix]: https://wixtoolset.org/
[qtif]: https://doc.qt.io/qtinstallerframework/index.html
[cmder]: https://cmder.net/
[mini]: https://github.com/cmderdev/cmder/releases/download/v1.3.15/cmder_mini.zip
2020-07-15 22:45:56 +00:00
run-windows : $( NIM_WINDOWS_PREBUILT_DLLS )
2020-07-08 16:48:13 +00:00
echo -e "\e[92mRunning:\e[39m bin/nim_status_client.exe"
2020-07-03 19:22:15 +00:00
NIM_STATUS_CLIENT_DEV = " $( NIM_STATUS_CLIENT_DEV) " \
2020-08-06 21:14:06 +00:00
PATH = " $( shell pwd ) " /" $( shell dirname " $( DOTHERSIDE) " ) " :" $( STATUSGO_LIBDIR) " :" $( shell pwd ) " /" $( shell dirname " $( NIM_WINDOWS_PREBUILT_DLLS) " ) " :" $( PATH) " \
2020-07-03 19:22:15 +00:00
./bin/nim_status_client.exe
2020-07-08 16:48:13 +00:00
2020-05-14 14:58:08 +00:00
e n d i f # "variables.mk" was not included