sqlcipher/tool/dbhash.c

492 lines
16 KiB
C

/*
** 2016-06-07
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a utility program that computes an SHA1 hash on the content
** of an SQLite database.
**
** The hash is computed over just the content of the database. Free
** space inside of the database file, and alternative on-disk representations
** of the same content (ex: UTF8 vs UTF16) do not affect the hash. So,
** for example, the database file page size, encoding, and auto_vacuum setting
** can all be changed without changing the hash.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>
#include "sqlite3.h"
/* Context for the SHA1 hash */
typedef struct SHA1Context SHA1Context;
struct SHA1Context {
unsigned int state[5];
unsigned int count[2];
unsigned char buffer[64];
};
/*
** All global variables are gathered into the "g" singleton.
*/
struct GlobalVars {
const char *zArgv0; /* Name of program */
unsigned fDebug; /* Debug flags */
sqlite3 *db; /* The database connection */
SHA1Context cx; /* SHA1 hash context */
} g;
/*
** Debugging flags
*/
#define DEBUG_FULLTRACE 0x00000001 /* Trace hash to stderr */
/******************************************************************************
** The Hash Engine
**
** Modify these routines (and appropriate state fields in global variable 'g')
** in order to compute a different (better?) hash of the database.
*/
/*
* blk0() and blk() perform the initial expand.
* I got the idea of expanding during the round function from SSLeay
*
* blk0le() for little-endian and blk0be() for big-endian.
*/
#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
#define rol(x,k) SHA_ROT(x,k,32-(k))
#define ror(x,k) SHA_ROT(x,32-(k),k)
#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
|(rol(block[i],8)&0x00FF00FF))
#define blk0be(i) block[i]
#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
^block[(i+2)&15]^block[i&15],1))
/*
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
*
* Rl0() for little-endian and Rb0() for big-endian. Endianness is
* determined at run-time.
*/
#define Rl0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define Rb0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R1(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R2(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
#define R3(v,w,x,y,z,i) \
z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
#define R4(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);
/*
* Hash a single 512-bit block. This is the core of the algorithm.
*/
#define a qq[0]
#define b qq[1]
#define c qq[2]
#define d qq[3]
#define e qq[4]
void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){
unsigned int qq[5]; /* a, b, c, d, e; */
static int one = 1;
unsigned int block[16];
memcpy(block, buffer, 64);
memcpy(qq,state,5*sizeof(unsigned int));
/* Copy g.cx.state[] to working vars */
/*
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
*/
/* 4 rounds of 20 operations each. Loop unrolled. */
if( 1 == *(unsigned char*)&one ){
Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3);
Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7);
Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11);
Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15);
}else{
Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3);
Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7);
Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11);
Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15);
}
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
/* Initialize the SHA1 hash */
static void hash_init(void){
/* SHA1 initialization constants */
g.cx.state[0] = 0x67452301;
g.cx.state[1] = 0xEFCDAB89;
g.cx.state[2] = 0x98BADCFE;
g.cx.state[3] = 0x10325476;
g.cx.state[4] = 0xC3D2E1F0;
g.cx.count[0] = g.cx.count[1] = 0;
}
/* Add new content to the SHA1 hash */
static void hash_step(const unsigned char *data, unsigned int len){
unsigned int i, j;
j = g.cx.count[0];
if( (g.cx.count[0] += len << 3) < j ){
g.cx.count[1] += (len>>29)+1;
}
j = (j >> 3) & 63;
if( (j + len) > 63 ){
(void)memcpy(&g.cx.buffer[j], data, (i = 64-j));
SHA1Transform(g.cx.state, g.cx.buffer);
for(; i + 63 < len; i += 64){
SHA1Transform(g.cx.state, &data[i]);
}
j = 0;
}else{
i = 0;
}
(void)memcpy(&g.cx.buffer[j], &data[i], len - i);
}
/* Add padding and compute and output the message digest. */
static void hash_finish(const char *zName){
unsigned int i;
unsigned char finalcount[8];
unsigned char digest[20];
static const char zEncode[] = "0123456789abcdef";
char zOut[41];
for (i = 0; i < 8; i++){
finalcount[i] = (unsigned char)((g.cx.count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
hash_step((const unsigned char *)"\200", 1);
while ((g.cx.count[0] & 504) != 448){
hash_step((const unsigned char *)"\0", 1);
}
hash_step(finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < 20; i++){
digest[i] = (unsigned char)((g.cx.state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
for(i=0; i<20; i++){
zOut[i*2] = zEncode[(digest[i]>>4)&0xf];
zOut[i*2+1] = zEncode[digest[i] & 0xf];
}
zOut[i*2]= 0;
printf("%s %s\n", zOut, zName);
}
/* End of the hashing logic
*******************************************************************************/
/*
** Print an error resulting from faulting command-line arguments and
** abort the program.
*/
static void cmdlineError(const char *zFormat, ...){
va_list ap;
fprintf(stderr, "%s: ", g.zArgv0);
va_start(ap, zFormat);
vfprintf(stderr, zFormat, ap);
va_end(ap);
fprintf(stderr, "\n\"%s --help\" for more help\n", g.zArgv0);
exit(1);
}
/*
** Print an error message for an error that occurs at runtime, then
** abort the program.
*/
static void runtimeError(const char *zFormat, ...){
va_list ap;
fprintf(stderr, "%s: ", g.zArgv0);
va_start(ap, zFormat);
vfprintf(stderr, zFormat, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
/*
** Prepare a new SQL statement. Print an error and abort if anything
** goes wrong.
*/
static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){
char *zSql;
int rc;
sqlite3_stmt *pStmt;
zSql = sqlite3_vmprintf(zFormat, ap);
if( zSql==0 ) runtimeError("out of memory");
rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0);
if( rc ){
runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db),
zSql);
}
sqlite3_free(zSql);
return pStmt;
}
static sqlite3_stmt *db_prepare(const char *zFormat, ...){
va_list ap;
sqlite3_stmt *pStmt;
va_start(ap, zFormat);
pStmt = db_vprepare(zFormat, ap);
va_end(ap);
return pStmt;
}
/*
** Compute the hash for all rows of the query formed from the printf-style
** zFormat and its argument.
*/
static void hash_one_query(const char *zFormat, ...){
va_list ap;
sqlite3_stmt *pStmt; /* The query defined by zFormat and "..." */
int nCol; /* Number of columns in the result set */
int i; /* Loop counter */
/* Prepare the query defined by zFormat and "..." */
va_start(ap, zFormat);
pStmt = db_vprepare(zFormat, ap);
va_end(ap);
nCol = sqlite3_column_count(pStmt);
/* Compute a hash over the result of the query */
while( SQLITE_ROW==sqlite3_step(pStmt) ){
for(i=0; i<nCol; i++){
switch( sqlite3_column_type(pStmt,i) ){
case SQLITE_NULL: {
hash_step((const unsigned char*)"0",1);
if( g.fDebug & DEBUG_FULLTRACE ) fprintf(stderr, "NULL\n");
break;
}
case SQLITE_INTEGER: {
sqlite3_uint64 u;
int j;
unsigned char x[8];
sqlite3_int64 v = sqlite3_column_int64(pStmt,i);
memcpy(&u, &v, 8);
for(j=7; j>=0; j--){
x[j] = u & 0xff;
u >>= 8;
}
hash_step((const unsigned char*)"1",1);
hash_step(x,8);
if( g.fDebug & DEBUG_FULLTRACE ){
fprintf(stderr, "INT %s\n", sqlite3_column_text(pStmt,i));
}
break;
}
case SQLITE_FLOAT: {
sqlite3_uint64 u;
int j;
unsigned char x[8];
double r = sqlite3_column_double(pStmt,i);
memcpy(&u, &r, 8);
for(j=7; j>=0; j--){
x[j] = u & 0xff;
u >>= 8;
}
hash_step((const unsigned char*)"2",1);
hash_step(x,8);
if( g.fDebug & DEBUG_FULLTRACE ){
fprintf(stderr, "FLOAT %s\n", sqlite3_column_text(pStmt,i));
}
break;
}
case SQLITE_TEXT: {
int n = sqlite3_column_bytes(pStmt, i);
const unsigned char *z = sqlite3_column_text(pStmt, i);
hash_step((const unsigned char*)"3", 1);
hash_step(z, n);
if( g.fDebug & DEBUG_FULLTRACE ){
fprintf(stderr, "TEXT '%s'\n", sqlite3_column_text(pStmt,i));
}
break;
}
case SQLITE_BLOB: {
int n = sqlite3_column_bytes(pStmt, i);
const unsigned char *z = sqlite3_column_blob(pStmt, i);
hash_step((const unsigned char*)"4", 1);
hash_step(z, n);
if( g.fDebug & DEBUG_FULLTRACE ){
fprintf(stderr, "BLOB (%d bytes)\n", n);
}
break;
}
}
}
}
sqlite3_finalize(pStmt);
}
/*
** Print sketchy documentation for this utility program
*/
static void showHelp(void){
printf("Usage: %s [options] FILE ...\n", g.zArgv0);
printf(
"Compute a SHA1 hash on the content of database FILE. System tables such as\n"
"sqlite_stat1, sqlite_stat4, and sqlite_sequence are omitted from the hash.\n"
"Options:\n"
" --debug N Set debugging flags to N (experts only)\n"
" --like PATTERN Only hash tables whose name is LIKE the pattern\n"
" --schema-only Only hash the schema - omit table content\n"
" --without-schema Only hash table content - omit the schema\n"
);
}
int main(int argc, char **argv){
const char *zDb = 0; /* Name of the database currently being hashed */
int i; /* Loop counter */
int rc; /* Subroutine return code */
char *zErrMsg; /* Error message when opening database */
sqlite3_stmt *pStmt; /* An SQLite query */
const char *zLike = 0; /* LIKE pattern of tables to hash */
int omitSchema = 0; /* True to compute hash on content only */
int omitContent = 0; /* True to compute hash on schema only */
int nFile = 0; /* Number of input filenames seen */
g.zArgv0 = argv[0];
sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
for(i=1; i<argc; i++){
const char *z = argv[i];
if( z[0]=='-' ){
z++;
if( z[0]=='-' ) z++;
if( strcmp(z,"debug")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
g.fDebug = strtol(argv[++i], 0, 0);
}else
if( strcmp(z,"help")==0 ){
showHelp();
return 0;
}else
if( strcmp(z,"like")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
if( zLike!=0 ) cmdlineError("only one --like allowed");
zLike = argv[++i];
}else
if( strcmp(z,"schema-only")==0 ){
omitContent = 1;
}else
if( strcmp(z,"without-schema")==0 ){
omitSchema = 1;
}else
{
cmdlineError("unknown option: %s", argv[i]);
}
}else{
nFile++;
if( nFile<i ) argv[nFile] = argv[i];
}
}
if( nFile==0 ){
cmdlineError("no input files specified - nothing to do");
}
if( omitSchema && omitContent ){
cmdlineError("only one of --without-schema and --omit-schema allowed");
}
if( zLike==0 ) zLike = "%";
for(i=1; i<=nFile; i++){
static const int openFlags =
SQLITE_OPEN_READWRITE | /* Read/write so hot journals can recover */
SQLITE_OPEN_URI
;
zDb = argv[i];
rc = sqlite3_open_v2(zDb, &g.db, openFlags, 0);
if( rc ){
fprintf(stderr, "cannot open database file '%s'\n", zDb);
continue;
}
rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_schema", 0, 0, &zErrMsg);
if( rc || zErrMsg ){
sqlite3_close(g.db);
g.db = 0;
fprintf(stderr, "'%s' is not a valid SQLite database\n", zDb);
continue;
}
/* Start the hash */
hash_init();
/* Hash table content */
if( !omitContent ){
pStmt = db_prepare(
"SELECT name FROM sqlite_schema\n"
" WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
" AND name NOT LIKE 'sqlite_%%'\n"
" AND name LIKE '%q'\n"
" ORDER BY name COLLATE nocase;\n",
zLike
);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
/* We want rows of the table to be hashed in PRIMARY KEY order.
** Technically, an ORDER BY clause is required to guarantee that
** order. However, though not guaranteed by the documentation, every
** historical version of SQLite has always output rows in PRIMARY KEY
** order when there is no WHERE or GROUP BY clause, so the ORDER BY
** can be safely omitted. */
hash_one_query("SELECT * FROM \"%w\"", sqlite3_column_text(pStmt,0));
}
sqlite3_finalize(pStmt);
}
/* Hash the database schema */
if( !omitSchema ){
hash_one_query(
"SELECT type, name, tbl_name, sql FROM sqlite_schema\n"
" WHERE tbl_name LIKE '%q'\n"
" ORDER BY name COLLATE nocase;\n",
zLike
);
}
/* Finish and output the hash and close the database connection. */
hash_finish(zDb);
sqlite3_close(g.db);
}
return 0;
}