mirror of
https://github.com/status-im/sqlcipher.git
synced 2025-02-24 09:48:10 +00:00
1126 lines
39 KiB
C
1126 lines
39 KiB
C
/*
|
|
** 2005 July 8
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code associated with the ANALYZE command.
|
|
**
|
|
** The ANALYZE command gather statistics about the content of tables
|
|
** and indices. These statistics are made available to the query planner
|
|
** to help it make better decisions about how to perform queries.
|
|
**
|
|
** The following system tables are or have been supported:
|
|
**
|
|
** CREATE TABLE sqlite_stat1(tbl, idx, stat);
|
|
** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
|
|
** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
|
|
**
|
|
** Additional tables might be added in future releases of SQLite.
|
|
** The sqlite_stat2 table is not created or used unless the SQLite version
|
|
** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
|
|
** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
|
|
** The sqlite_stat2 table is superceded by sqlite_stat3, which is only
|
|
** created and used by SQLite versions 3.7.9 and later and with
|
|
** SQLITE_ENABLE_STAT3 defined. The fucntionality of sqlite_stat3
|
|
** is a superset of sqlite_stat2.
|
|
**
|
|
** Format of sqlite_stat1:
|
|
**
|
|
** There is normally one row per index, with the index identified by the
|
|
** name in the idx column. The tbl column is the name of the table to
|
|
** which the index belongs. In each such row, the stat column will be
|
|
** a string consisting of a list of integers. The first integer in this
|
|
** list is the number of rows in the index and in the table. The second
|
|
** integer is the average number of rows in the index that have the same
|
|
** value in the first column of the index. The third integer is the average
|
|
** number of rows in the index that have the same value for the first two
|
|
** columns. The N-th integer (for N>1) is the average number of rows in
|
|
** the index which have the same value for the first N-1 columns. For
|
|
** a K-column index, there will be K+1 integers in the stat column. If
|
|
** the index is unique, then the last integer will be 1.
|
|
**
|
|
** The list of integers in the stat column can optionally be followed
|
|
** by the keyword "unordered". The "unordered" keyword, if it is present,
|
|
** must be separated from the last integer by a single space. If the
|
|
** "unordered" keyword is present, then the query planner assumes that
|
|
** the index is unordered and will not use the index for a range query.
|
|
**
|
|
** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
|
|
** column contains a single integer which is the (estimated) number of
|
|
** rows in the table identified by sqlite_stat1.tbl.
|
|
**
|
|
** Format of sqlite_stat2:
|
|
**
|
|
** The sqlite_stat2 is only created and is only used if SQLite is compiled
|
|
** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
|
|
** 3.6.18 and 3.7.8. The "stat2" table contains additional information
|
|
** about the distribution of keys within an index. The index is identified by
|
|
** the "idx" column and the "tbl" column is the name of the table to which
|
|
** the index belongs. There are usually 10 rows in the sqlite_stat2
|
|
** table for each index.
|
|
**
|
|
** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
|
|
** inclusive are samples of the left-most key value in the index taken at
|
|
** evenly spaced points along the index. Let the number of samples be S
|
|
** (10 in the standard build) and let C be the number of rows in the index.
|
|
** Then the sampled rows are given by:
|
|
**
|
|
** rownumber = (i*C*2 + C)/(S*2)
|
|
**
|
|
** For i between 0 and S-1. Conceptually, the index space is divided into
|
|
** S uniform buckets and the samples are the middle row from each bucket.
|
|
**
|
|
** The format for sqlite_stat2 is recorded here for legacy reference. This
|
|
** version of SQLite does not support sqlite_stat2. It neither reads nor
|
|
** writes the sqlite_stat2 table. This version of SQLite only supports
|
|
** sqlite_stat3.
|
|
**
|
|
** Format for sqlite_stat3:
|
|
**
|
|
** The sqlite_stat3 is an enhancement to sqlite_stat2. A new name is
|
|
** used to avoid compatibility problems.
|
|
**
|
|
** The format of the sqlite_stat3 table is similar to the format of
|
|
** the sqlite_stat2 table. There are multiple entries for each index.
|
|
** The idx column names the index and the tbl column is the table of the
|
|
** index. If the idx and tbl columns are the same, then the sample is
|
|
** of the INTEGER PRIMARY KEY. The sample column is a value taken from
|
|
** the left-most column of the index. The nEq column is the approximate
|
|
** number of entires in the index whose left-most column exactly matches
|
|
** the sample. nLt is the approximate number of entires whose left-most
|
|
** column is less than the sample. The nDLt column is the approximate
|
|
** number of distinct left-most entries in the index that are less than
|
|
** the sample.
|
|
**
|
|
** Future versions of SQLite might change to store a string containing
|
|
** multiple integers values in the nDLt column of sqlite_stat3. The first
|
|
** integer will be the number of prior index entires that are distinct in
|
|
** the left-most column. The second integer will be the number of prior index
|
|
** entries that are distinct in the first two columns. The third integer
|
|
** will be the number of prior index entries that are distinct in the first
|
|
** three columns. And so forth. With that extension, the nDLt field is
|
|
** similar in function to the sqlite_stat1.stat field.
|
|
**
|
|
** There can be an arbitrary number of sqlite_stat3 entries per index.
|
|
** The ANALYZE command will typically generate sqlite_stat3 tables
|
|
** that contain between 10 and 40 samples which are distributed across
|
|
** the key space, though not uniformly, and which include samples with
|
|
** largest possible nEq values.
|
|
*/
|
|
#ifndef SQLITE_OMIT_ANALYZE
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** This routine generates code that opens the sqlite_stat1 table for
|
|
** writing with cursor iStatCur. If the library was built with the
|
|
** SQLITE_ENABLE_STAT3 macro defined, then the sqlite_stat3 table is
|
|
** opened for writing using cursor (iStatCur+1)
|
|
**
|
|
** If the sqlite_stat1 tables does not previously exist, it is created.
|
|
** Similarly, if the sqlite_stat3 table does not exist and the library
|
|
** is compiled with SQLITE_ENABLE_STAT3 defined, it is created.
|
|
**
|
|
** Argument zWhere may be a pointer to a buffer containing a table name,
|
|
** or it may be a NULL pointer. If it is not NULL, then all entries in
|
|
** the sqlite_stat1 and (if applicable) sqlite_stat3 tables associated
|
|
** with the named table are deleted. If zWhere==0, then code is generated
|
|
** to delete all stat table entries.
|
|
*/
|
|
static void openStatTable(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* The database we are looking in */
|
|
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
|
|
const char *zWhere, /* Delete entries for this table or index */
|
|
const char *zWhereType /* Either "tbl" or "idx" */
|
|
){
|
|
static const struct {
|
|
const char *zName;
|
|
const char *zCols;
|
|
} aTable[] = {
|
|
{ "sqlite_stat1", "tbl,idx,stat" },
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
{ "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
|
|
#endif
|
|
};
|
|
|
|
int aRoot[] = {0, 0};
|
|
u8 aCreateTbl[] = {0, 0};
|
|
|
|
int i;
|
|
sqlite3 *db = pParse->db;
|
|
Db *pDb;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
assert( sqlite3VdbeDb(v)==db );
|
|
pDb = &db->aDb[iDb];
|
|
|
|
/* Create new statistic tables if they do not exist, or clear them
|
|
** if they do already exist.
|
|
*/
|
|
for(i=0; i<ArraySize(aTable); i++){
|
|
const char *zTab = aTable[i].zName;
|
|
Table *pStat;
|
|
if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
|
|
/* The sqlite_stat[12] table does not exist. Create it. Note that a
|
|
** side-effect of the CREATE TABLE statement is to leave the rootpage
|
|
** of the new table in register pParse->regRoot. This is important
|
|
** because the OpenWrite opcode below will be needing it. */
|
|
sqlite3NestedParse(pParse,
|
|
"CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
|
|
);
|
|
aRoot[i] = pParse->regRoot;
|
|
aCreateTbl[i] = 1;
|
|
}else{
|
|
/* The table already exists. If zWhere is not NULL, delete all entries
|
|
** associated with the table zWhere. If zWhere is NULL, delete the
|
|
** entire contents of the table. */
|
|
aRoot[i] = pStat->tnum;
|
|
sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
|
|
if( zWhere ){
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
|
|
);
|
|
}else{
|
|
/* The sqlite_stat[12] table already exists. Delete all rows. */
|
|
sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Open the sqlite_stat[13] tables for writing. */
|
|
for(i=0; i<ArraySize(aTable); i++){
|
|
sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
|
|
sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
|
|
sqlite3VdbeChangeP5(v, aCreateTbl[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Recommended number of samples for sqlite_stat3
|
|
*/
|
|
#ifndef SQLITE_STAT3_SAMPLES
|
|
# define SQLITE_STAT3_SAMPLES 24
|
|
#endif
|
|
|
|
/*
|
|
** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() -
|
|
** share an instance of the following structure to hold their state
|
|
** information.
|
|
*/
|
|
typedef struct Stat3Accum Stat3Accum;
|
|
struct Stat3Accum {
|
|
tRowcnt nRow; /* Number of rows in the entire table */
|
|
tRowcnt nPSample; /* How often to do a periodic sample */
|
|
int iMin; /* Index of entry with minimum nEq and hash */
|
|
int mxSample; /* Maximum number of samples to accumulate */
|
|
int nSample; /* Current number of samples */
|
|
u32 iPrn; /* Pseudo-random number used for sampling */
|
|
struct Stat3Sample {
|
|
i64 iRowid; /* Rowid in main table of the key */
|
|
tRowcnt nEq; /* sqlite_stat3.nEq */
|
|
tRowcnt nLt; /* sqlite_stat3.nLt */
|
|
tRowcnt nDLt; /* sqlite_stat3.nDLt */
|
|
u8 isPSample; /* True if a periodic sample */
|
|
u32 iHash; /* Tiebreaker hash */
|
|
} *a; /* An array of samples */
|
|
};
|
|
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
/*
|
|
** Implementation of the stat3_init(C,S) SQL function. The two parameters
|
|
** are the number of rows in the table or index (C) and the number of samples
|
|
** to accumulate (S).
|
|
**
|
|
** This routine allocates the Stat3Accum object.
|
|
**
|
|
** The return value is the Stat3Accum object (P).
|
|
*/
|
|
static void stat3Init(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
Stat3Accum *p;
|
|
tRowcnt nRow;
|
|
int mxSample;
|
|
int n;
|
|
|
|
UNUSED_PARAMETER(argc);
|
|
nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
|
|
mxSample = sqlite3_value_int(argv[1]);
|
|
n = sizeof(*p) + sizeof(p->a[0])*mxSample;
|
|
p = sqlite3_malloc( n );
|
|
if( p==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
return;
|
|
}
|
|
memset(p, 0, n);
|
|
p->a = (struct Stat3Sample*)&p[1];
|
|
p->nRow = nRow;
|
|
p->mxSample = mxSample;
|
|
p->nPSample = p->nRow/(mxSample/3+1) + 1;
|
|
sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);
|
|
sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
|
|
}
|
|
static const FuncDef stat3InitFuncdef = {
|
|
2, /* nArg */
|
|
SQLITE_UTF8, /* iPrefEnc */
|
|
0, /* flags */
|
|
0, /* pUserData */
|
|
0, /* pNext */
|
|
stat3Init, /* xFunc */
|
|
0, /* xStep */
|
|
0, /* xFinalize */
|
|
"stat3_init", /* zName */
|
|
0, /* pHash */
|
|
0 /* pDestructor */
|
|
};
|
|
|
|
|
|
/*
|
|
** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function. The
|
|
** arguments describe a single key instance. This routine makes the
|
|
** decision about whether or not to retain this key for the sqlite_stat3
|
|
** table.
|
|
**
|
|
** The return value is NULL.
|
|
*/
|
|
static void stat3Push(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]);
|
|
tRowcnt nEq = sqlite3_value_int64(argv[0]);
|
|
tRowcnt nLt = sqlite3_value_int64(argv[1]);
|
|
tRowcnt nDLt = sqlite3_value_int64(argv[2]);
|
|
i64 rowid = sqlite3_value_int64(argv[3]);
|
|
u8 isPSample = 0;
|
|
u8 doInsert = 0;
|
|
int iMin = p->iMin;
|
|
struct Stat3Sample *pSample;
|
|
int i;
|
|
u32 h;
|
|
|
|
UNUSED_PARAMETER(context);
|
|
UNUSED_PARAMETER(argc);
|
|
if( nEq==0 ) return;
|
|
h = p->iPrn = p->iPrn*1103515245 + 12345;
|
|
if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){
|
|
doInsert = isPSample = 1;
|
|
}else if( p->nSample<p->mxSample ){
|
|
doInsert = 1;
|
|
}else{
|
|
if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){
|
|
doInsert = 1;
|
|
}
|
|
}
|
|
if( !doInsert ) return;
|
|
if( p->nSample==p->mxSample ){
|
|
assert( p->nSample - iMin - 1 >= 0 );
|
|
memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1));
|
|
pSample = &p->a[p->nSample-1];
|
|
}else{
|
|
pSample = &p->a[p->nSample++];
|
|
}
|
|
pSample->iRowid = rowid;
|
|
pSample->nEq = nEq;
|
|
pSample->nLt = nLt;
|
|
pSample->nDLt = nDLt;
|
|
pSample->iHash = h;
|
|
pSample->isPSample = isPSample;
|
|
|
|
/* Find the new minimum */
|
|
if( p->nSample==p->mxSample ){
|
|
pSample = p->a;
|
|
i = 0;
|
|
while( pSample->isPSample ){
|
|
i++;
|
|
pSample++;
|
|
assert( i<p->nSample );
|
|
}
|
|
nEq = pSample->nEq;
|
|
h = pSample->iHash;
|
|
iMin = i;
|
|
for(i++, pSample++; i<p->nSample; i++, pSample++){
|
|
if( pSample->isPSample ) continue;
|
|
if( pSample->nEq<nEq
|
|
|| (pSample->nEq==nEq && pSample->iHash<h)
|
|
){
|
|
iMin = i;
|
|
nEq = pSample->nEq;
|
|
h = pSample->iHash;
|
|
}
|
|
}
|
|
p->iMin = iMin;
|
|
}
|
|
}
|
|
static const FuncDef stat3PushFuncdef = {
|
|
5, /* nArg */
|
|
SQLITE_UTF8, /* iPrefEnc */
|
|
0, /* flags */
|
|
0, /* pUserData */
|
|
0, /* pNext */
|
|
stat3Push, /* xFunc */
|
|
0, /* xStep */
|
|
0, /* xFinalize */
|
|
"stat3_push", /* zName */
|
|
0, /* pHash */
|
|
0 /* pDestructor */
|
|
};
|
|
|
|
/*
|
|
** Implementation of the stat3_get(P,N,...) SQL function. This routine is
|
|
** used to query the results. Content is returned for the Nth sqlite_stat3
|
|
** row where N is between 0 and S-1 and S is the number of samples. The
|
|
** value returned depends on the number of arguments.
|
|
**
|
|
** argc==2 result: rowid
|
|
** argc==3 result: nEq
|
|
** argc==4 result: nLt
|
|
** argc==5 result: nDLt
|
|
*/
|
|
static void stat3Get(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int n = sqlite3_value_int(argv[1]);
|
|
Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]);
|
|
|
|
assert( p!=0 );
|
|
if( p->nSample<=n ) return;
|
|
switch( argc ){
|
|
case 2: sqlite3_result_int64(context, p->a[n].iRowid); break;
|
|
case 3: sqlite3_result_int64(context, p->a[n].nEq); break;
|
|
case 4: sqlite3_result_int64(context, p->a[n].nLt); break;
|
|
default: sqlite3_result_int64(context, p->a[n].nDLt); break;
|
|
}
|
|
}
|
|
static const FuncDef stat3GetFuncdef = {
|
|
-1, /* nArg */
|
|
SQLITE_UTF8, /* iPrefEnc */
|
|
0, /* flags */
|
|
0, /* pUserData */
|
|
0, /* pNext */
|
|
stat3Get, /* xFunc */
|
|
0, /* xStep */
|
|
0, /* xFinalize */
|
|
"stat3_get", /* zName */
|
|
0, /* pHash */
|
|
0 /* pDestructor */
|
|
};
|
|
#endif /* SQLITE_ENABLE_STAT3 */
|
|
|
|
|
|
|
|
|
|
/*
|
|
** Generate code to do an analysis of all indices associated with
|
|
** a single table.
|
|
*/
|
|
static void analyzeOneTable(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pTab, /* Table whose indices are to be analyzed */
|
|
Index *pOnlyIdx, /* If not NULL, only analyze this one index */
|
|
int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
|
|
int iMem /* Available memory locations begin here */
|
|
){
|
|
sqlite3 *db = pParse->db; /* Database handle */
|
|
Index *pIdx; /* An index to being analyzed */
|
|
int iIdxCur; /* Cursor open on index being analyzed */
|
|
Vdbe *v; /* The virtual machine being built up */
|
|
int i; /* Loop counter */
|
|
int topOfLoop; /* The top of the loop */
|
|
int endOfLoop; /* The end of the loop */
|
|
int jZeroRows = -1; /* Jump from here if number of rows is zero */
|
|
int iDb; /* Index of database containing pTab */
|
|
int regTabname = iMem++; /* Register containing table name */
|
|
int regIdxname = iMem++; /* Register containing index name */
|
|
int regStat1 = iMem++; /* The stat column of sqlite_stat1 */
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
int regNumEq = regStat1; /* Number of instances. Same as regStat1 */
|
|
int regNumLt = iMem++; /* Number of keys less than regSample */
|
|
int regNumDLt = iMem++; /* Number of distinct keys less than regSample */
|
|
int regSample = iMem++; /* The next sample value */
|
|
int regRowid = regSample; /* Rowid of a sample */
|
|
int regAccum = iMem++; /* Register to hold Stat3Accum object */
|
|
int regLoop = iMem++; /* Loop counter */
|
|
int regCount = iMem++; /* Number of rows in the table or index */
|
|
int regTemp1 = iMem++; /* Intermediate register */
|
|
int regTemp2 = iMem++; /* Intermediate register */
|
|
int once = 1; /* One-time initialization */
|
|
int shortJump = 0; /* Instruction address */
|
|
int iTabCur = pParse->nTab++; /* Table cursor */
|
|
#endif
|
|
int regCol = iMem++; /* Content of a column in analyzed table */
|
|
int regRec = iMem++; /* Register holding completed record */
|
|
int regTemp = iMem++; /* Temporary use register */
|
|
int regNewRowid = iMem++; /* Rowid for the inserted record */
|
|
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 || NEVER(pTab==0) ){
|
|
return;
|
|
}
|
|
if( pTab->tnum==0 ){
|
|
/* Do not gather statistics on views or virtual tables */
|
|
return;
|
|
}
|
|
if( memcmp(pTab->zName, "sqlite_", 7)==0 ){
|
|
/* Do not gather statistics on system tables */
|
|
return;
|
|
}
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb>=0 );
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
|
|
db->aDb[iDb].zName ) ){
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Establish a read-lock on the table at the shared-cache level. */
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
|
|
iIdxCur = pParse->nTab++;
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int nCol;
|
|
KeyInfo *pKey;
|
|
int addrIfNot = 0; /* address of OP_IfNot */
|
|
int *aChngAddr; /* Array of jump instruction addresses */
|
|
|
|
if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
|
|
VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
|
|
nCol = pIdx->nColumn;
|
|
aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
|
|
if( aChngAddr==0 ) continue;
|
|
pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
|
if( iMem+1+(nCol*2)>pParse->nMem ){
|
|
pParse->nMem = iMem+1+(nCol*2);
|
|
}
|
|
|
|
/* Open a cursor to the index to be analyzed. */
|
|
assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
|
|
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
|
|
(char *)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pIdx->zName));
|
|
|
|
/* Populate the register containing the index name. */
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
|
|
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
if( once ){
|
|
once = 0;
|
|
sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt);
|
|
sqlite3VdbeAddOp3(v, OP_Null, 0, regSample, regAccum);
|
|
sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
|
|
(char*)&stat3InitFuncdef, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, 2);
|
|
#endif /* SQLITE_ENABLE_STAT3 */
|
|
|
|
/* The block of memory cells initialized here is used as follows.
|
|
**
|
|
** iMem:
|
|
** The total number of rows in the table.
|
|
**
|
|
** iMem+1 .. iMem+nCol:
|
|
** Number of distinct entries in index considering the
|
|
** left-most N columns only, where N is between 1 and nCol,
|
|
** inclusive.
|
|
**
|
|
** iMem+nCol+1 .. Mem+2*nCol:
|
|
** Previous value of indexed columns, from left to right.
|
|
**
|
|
** Cells iMem through iMem+nCol are initialized to 0. The others are
|
|
** initialized to contain an SQL NULL.
|
|
*/
|
|
for(i=0; i<=nCol; i++){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
|
|
}
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
|
|
}
|
|
|
|
/* Start the analysis loop. This loop runs through all the entries in
|
|
** the index b-tree. */
|
|
endOfLoop = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
|
|
topOfLoop = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); /* Increment row counter */
|
|
|
|
for(i=0; i<nCol; i++){
|
|
CollSeq *pColl;
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
|
|
if( i==0 ){
|
|
/* Always record the very first row */
|
|
addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
|
|
}
|
|
assert( pIdx->azColl!=0 );
|
|
assert( pIdx->azColl[i]!=0 );
|
|
pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
|
|
aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
|
|
(char*)pColl, P4_COLLSEQ);
|
|
sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
|
|
VdbeComment((v, "jump if column %d changed", i));
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
if( i==0 ){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1);
|
|
VdbeComment((v, "incr repeat count"));
|
|
}
|
|
#endif
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeJumpHere(v, aChngAddr[i]); /* Set jump dest for the OP_Ne */
|
|
if( i==0 ){
|
|
sqlite3VdbeJumpHere(v, addrIfNot); /* Jump dest for OP_IfNot */
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
|
|
(char*)&stat3PushFuncdef, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, 5);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq);
|
|
#endif
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
|
|
}
|
|
sqlite3DbFree(db, aChngAddr);
|
|
|
|
/* Always jump here after updating the iMem+1...iMem+1+nCol counters */
|
|
sqlite3VdbeResolveLabel(v, endOfLoop);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
|
|
(char*)&stat3PushFuncdef, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, 5);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
|
|
shortJump =
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
|
|
sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1,
|
|
(char*)&stat3GetFuncdef, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, 2);
|
|
sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1);
|
|
sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample);
|
|
sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample);
|
|
sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq,
|
|
(char*)&stat3GetFuncdef, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, 3);
|
|
sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt,
|
|
(char*)&stat3GetFuncdef, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, 4);
|
|
sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt,
|
|
(char*)&stat3GetFuncdef, P4_FUNCDEF);
|
|
sqlite3VdbeChangeP5(v, 5);
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump);
|
|
sqlite3VdbeJumpHere(v, shortJump+2);
|
|
#endif
|
|
|
|
/* Store the results in sqlite_stat1.
|
|
**
|
|
** The result is a single row of the sqlite_stat1 table. The first
|
|
** two columns are the names of the table and index. The third column
|
|
** is a string composed of a list of integer statistics about the
|
|
** index. The first integer in the list is the total number of entries
|
|
** in the index. There is one additional integer in the list for each
|
|
** column of the table. This additional integer is a guess of how many
|
|
** rows of the table the index will select. If D is the count of distinct
|
|
** values and K is the total number of rows, then the integer is computed
|
|
** as:
|
|
**
|
|
** I = (K+D-1)/D
|
|
**
|
|
** If K==0 then no entry is made into the sqlite_stat1 table.
|
|
** If K>0 then it is always the case the D>0 so division by zero
|
|
** is never possible.
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1);
|
|
if( jZeroRows<0 ){
|
|
jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
|
|
}
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
|
|
sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
|
|
sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
|
|
sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
}
|
|
|
|
/* If the table has no indices, create a single sqlite_stat1 entry
|
|
** containing NULL as the index name and the row count as the content.
|
|
*/
|
|
if( pTab->pIndex==0 ){
|
|
sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
|
|
VdbeComment((v, "%s", pTab->zName));
|
|
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
|
|
jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
|
|
}else{
|
|
sqlite3VdbeJumpHere(v, jZeroRows);
|
|
jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
if( pParse->nMem<regRec ) pParse->nMem = regRec;
|
|
sqlite3VdbeJumpHere(v, jZeroRows);
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate code that will cause the most recent index analysis to
|
|
** be loaded into internal hash tables where is can be used.
|
|
*/
|
|
static void loadAnalysis(Parse *pParse, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that will do an analysis of an entire database
|
|
*/
|
|
static void analyzeDatabase(Parse *pParse, int iDb){
|
|
sqlite3 *db = pParse->db;
|
|
Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
|
|
HashElem *k;
|
|
int iStatCur;
|
|
int iMem;
|
|
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
iStatCur = pParse->nTab;
|
|
pParse->nTab += 3;
|
|
openStatTable(pParse, iDb, iStatCur, 0, 0);
|
|
iMem = pParse->nMem+1;
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
Table *pTab = (Table*)sqliteHashData(k);
|
|
analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
|
|
}
|
|
loadAnalysis(pParse, iDb);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will do an analysis of a single table in
|
|
** a database. If pOnlyIdx is not NULL then it is a single index
|
|
** in pTab that should be analyzed.
|
|
*/
|
|
static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
|
|
int iDb;
|
|
int iStatCur;
|
|
|
|
assert( pTab!=0 );
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
iStatCur = pParse->nTab;
|
|
pParse->nTab += 3;
|
|
if( pOnlyIdx ){
|
|
openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
|
|
}else{
|
|
openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
|
|
}
|
|
analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
|
|
loadAnalysis(pParse, iDb);
|
|
}
|
|
|
|
/*
|
|
** Generate code for the ANALYZE command. The parser calls this routine
|
|
** when it recognizes an ANALYZE command.
|
|
**
|
|
** ANALYZE -- 1
|
|
** ANALYZE <database> -- 2
|
|
** ANALYZE ?<database>.?<tablename> -- 3
|
|
**
|
|
** Form 1 causes all indices in all attached databases to be analyzed.
|
|
** Form 2 analyzes all indices the single database named.
|
|
** Form 3 analyzes all indices associated with the named table.
|
|
*/
|
|
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
int i;
|
|
char *z, *zDb;
|
|
Table *pTab;
|
|
Index *pIdx;
|
|
Token *pTableName;
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
** and code in pParse and return NULL. */
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
return;
|
|
}
|
|
|
|
assert( pName2!=0 || pName1==0 );
|
|
if( pName1==0 ){
|
|
/* Form 1: Analyze everything */
|
|
for(i=0; i<db->nDb; i++){
|
|
if( i==1 ) continue; /* Do not analyze the TEMP database */
|
|
analyzeDatabase(pParse, i);
|
|
}
|
|
}else if( pName2->n==0 ){
|
|
/* Form 2: Analyze the database or table named */
|
|
iDb = sqlite3FindDb(db, pName1);
|
|
if( iDb>=0 ){
|
|
analyzeDatabase(pParse, iDb);
|
|
}else{
|
|
z = sqlite3NameFromToken(db, pName1);
|
|
if( z ){
|
|
if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
|
|
analyzeTable(pParse, pIdx->pTable, pIdx);
|
|
}else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
|
|
analyzeTable(pParse, pTab, 0);
|
|
}
|
|
sqlite3DbFree(db, z);
|
|
}
|
|
}
|
|
}else{
|
|
/* Form 3: Analyze the fully qualified table name */
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
|
|
if( iDb>=0 ){
|
|
zDb = db->aDb[iDb].zName;
|
|
z = sqlite3NameFromToken(db, pTableName);
|
|
if( z ){
|
|
if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
|
|
analyzeTable(pParse, pIdx->pTable, pIdx);
|
|
}else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
|
|
analyzeTable(pParse, pTab, 0);
|
|
}
|
|
sqlite3DbFree(db, z);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Used to pass information from the analyzer reader through to the
|
|
** callback routine.
|
|
*/
|
|
typedef struct analysisInfo analysisInfo;
|
|
struct analysisInfo {
|
|
sqlite3 *db;
|
|
const char *zDatabase;
|
|
};
|
|
|
|
/*
|
|
** This callback is invoked once for each index when reading the
|
|
** sqlite_stat1 table.
|
|
**
|
|
** argv[0] = name of the table
|
|
** argv[1] = name of the index (might be NULL)
|
|
** argv[2] = results of analysis - on integer for each column
|
|
**
|
|
** Entries for which argv[1]==NULL simply record the number of rows in
|
|
** the table.
|
|
*/
|
|
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
|
|
analysisInfo *pInfo = (analysisInfo*)pData;
|
|
Index *pIndex;
|
|
Table *pTable;
|
|
int i, c, n;
|
|
tRowcnt v;
|
|
const char *z;
|
|
|
|
assert( argc==3 );
|
|
UNUSED_PARAMETER2(NotUsed, argc);
|
|
|
|
if( argv==0 || argv[0]==0 || argv[2]==0 ){
|
|
return 0;
|
|
}
|
|
pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
|
|
if( pTable==0 ){
|
|
return 0;
|
|
}
|
|
if( argv[1] ){
|
|
pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
|
|
}else{
|
|
pIndex = 0;
|
|
}
|
|
n = pIndex ? pIndex->nColumn : 0;
|
|
z = argv[2];
|
|
for(i=0; *z && i<=n; i++){
|
|
v = 0;
|
|
while( (c=z[0])>='0' && c<='9' ){
|
|
v = v*10 + c - '0';
|
|
z++;
|
|
}
|
|
if( i==0 ) pTable->nRowEst = v;
|
|
if( pIndex==0 ) break;
|
|
pIndex->aiRowEst[i] = v;
|
|
if( *z==' ' ) z++;
|
|
if( memcmp(z, "unordered", 10)==0 ){
|
|
pIndex->bUnordered = 1;
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** If the Index.aSample variable is not NULL, delete the aSample[] array
|
|
** and its contents.
|
|
*/
|
|
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
if( pIdx->aSample ){
|
|
int j;
|
|
for(j=0; j<pIdx->nSample; j++){
|
|
IndexSample *p = &pIdx->aSample[j];
|
|
if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
|
|
sqlite3DbFree(db, p->u.z);
|
|
}
|
|
}
|
|
sqlite3DbFree(db, pIdx->aSample);
|
|
}
|
|
if( db && db->pnBytesFreed==0 ){
|
|
pIdx->nSample = 0;
|
|
pIdx->aSample = 0;
|
|
}
|
|
#else
|
|
UNUSED_PARAMETER(db);
|
|
UNUSED_PARAMETER(pIdx);
|
|
#endif
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
/*
|
|
** Load content from the sqlite_stat3 table into the Index.aSample[]
|
|
** arrays of all indices.
|
|
*/
|
|
static int loadStat3(sqlite3 *db, const char *zDb){
|
|
int rc; /* Result codes from subroutines */
|
|
sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
|
|
char *zSql; /* Text of the SQL statement */
|
|
Index *pPrevIdx = 0; /* Previous index in the loop */
|
|
int idx = 0; /* slot in pIdx->aSample[] for next sample */
|
|
int eType; /* Datatype of a sample */
|
|
IndexSample *pSample; /* A slot in pIdx->aSample[] */
|
|
|
|
assert( db->lookaside.bEnabled==0 );
|
|
if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT idx,count(*) FROM %Q.sqlite_stat3"
|
|
" GROUP BY idx", zDb);
|
|
if( !zSql ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
|
sqlite3DbFree(db, zSql);
|
|
if( rc ) return rc;
|
|
|
|
while( sqlite3_step(pStmt)==SQLITE_ROW ){
|
|
char *zIndex; /* Index name */
|
|
Index *pIdx; /* Pointer to the index object */
|
|
int nSample; /* Number of samples */
|
|
|
|
zIndex = (char *)sqlite3_column_text(pStmt, 0);
|
|
if( zIndex==0 ) continue;
|
|
nSample = sqlite3_column_int(pStmt, 1);
|
|
pIdx = sqlite3FindIndex(db, zIndex, zDb);
|
|
if( pIdx==0 ) continue;
|
|
assert( pIdx->nSample==0 );
|
|
pIdx->nSample = nSample;
|
|
pIdx->aSample = sqlite3DbMallocZero(db, nSample*sizeof(IndexSample));
|
|
pIdx->avgEq = pIdx->aiRowEst[1];
|
|
if( pIdx->aSample==0 ){
|
|
db->mallocFailed = 1;
|
|
sqlite3_finalize(pStmt);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}
|
|
rc = sqlite3_finalize(pStmt);
|
|
if( rc ) return rc;
|
|
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
|
|
if( !zSql ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
|
sqlite3DbFree(db, zSql);
|
|
if( rc ) return rc;
|
|
|
|
while( sqlite3_step(pStmt)==SQLITE_ROW ){
|
|
char *zIndex; /* Index name */
|
|
Index *pIdx; /* Pointer to the index object */
|
|
int i; /* Loop counter */
|
|
tRowcnt sumEq; /* Sum of the nEq values */
|
|
|
|
zIndex = (char *)sqlite3_column_text(pStmt, 0);
|
|
if( zIndex==0 ) continue;
|
|
pIdx = sqlite3FindIndex(db, zIndex, zDb);
|
|
if( pIdx==0 ) continue;
|
|
if( pIdx==pPrevIdx ){
|
|
idx++;
|
|
}else{
|
|
pPrevIdx = pIdx;
|
|
idx = 0;
|
|
}
|
|
assert( idx<pIdx->nSample );
|
|
pSample = &pIdx->aSample[idx];
|
|
pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1);
|
|
pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2);
|
|
pSample->nDLt = (tRowcnt)sqlite3_column_int64(pStmt, 3);
|
|
if( idx==pIdx->nSample-1 ){
|
|
if( pSample->nDLt>0 ){
|
|
for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq;
|
|
pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt;
|
|
}
|
|
if( pIdx->avgEq<=0 ) pIdx->avgEq = 1;
|
|
}
|
|
eType = sqlite3_column_type(pStmt, 4);
|
|
pSample->eType = (u8)eType;
|
|
switch( eType ){
|
|
case SQLITE_INTEGER: {
|
|
pSample->u.i = sqlite3_column_int64(pStmt, 4);
|
|
break;
|
|
}
|
|
case SQLITE_FLOAT: {
|
|
pSample->u.r = sqlite3_column_double(pStmt, 4);
|
|
break;
|
|
}
|
|
case SQLITE_NULL: {
|
|
break;
|
|
}
|
|
default: assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); {
|
|
const char *z = (const char *)(
|
|
(eType==SQLITE_BLOB) ?
|
|
sqlite3_column_blob(pStmt, 4):
|
|
sqlite3_column_text(pStmt, 4)
|
|
);
|
|
int n = z ? sqlite3_column_bytes(pStmt, 4) : 0;
|
|
pSample->nByte = n;
|
|
if( n < 1){
|
|
pSample->u.z = 0;
|
|
}else{
|
|
pSample->u.z = sqlite3DbMallocRaw(db, n);
|
|
if( pSample->u.z==0 ){
|
|
db->mallocFailed = 1;
|
|
sqlite3_finalize(pStmt);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memcpy(pSample->u.z, z, n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return sqlite3_finalize(pStmt);
|
|
}
|
|
#endif /* SQLITE_ENABLE_STAT3 */
|
|
|
|
/*
|
|
** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The
|
|
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
|
|
** arrays. The contents of sqlite_stat3 are used to populate the
|
|
** Index.aSample[] arrays.
|
|
**
|
|
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
|
|
** is returned. In this case, even if SQLITE_ENABLE_STAT3 was defined
|
|
** during compilation and the sqlite_stat3 table is present, no data is
|
|
** read from it.
|
|
**
|
|
** If SQLITE_ENABLE_STAT3 was defined during compilation and the
|
|
** sqlite_stat3 table is not present in the database, SQLITE_ERROR is
|
|
** returned. However, in this case, data is read from the sqlite_stat1
|
|
** table (if it is present) before returning.
|
|
**
|
|
** If an OOM error occurs, this function always sets db->mallocFailed.
|
|
** This means if the caller does not care about other errors, the return
|
|
** code may be ignored.
|
|
*/
|
|
int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
|
|
analysisInfo sInfo;
|
|
HashElem *i;
|
|
char *zSql;
|
|
int rc;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 );
|
|
|
|
/* Clear any prior statistics */
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
|
|
Index *pIdx = sqliteHashData(i);
|
|
sqlite3DefaultRowEst(pIdx);
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
sqlite3DeleteIndexSamples(db, pIdx);
|
|
pIdx->aSample = 0;
|
|
#endif
|
|
}
|
|
|
|
/* Check to make sure the sqlite_stat1 table exists */
|
|
sInfo.db = db;
|
|
sInfo.zDatabase = db->aDb[iDb].zName;
|
|
if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Load new statistics out of the sqlite_stat1 table */
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
|
|
sqlite3DbFree(db, zSql);
|
|
}
|
|
|
|
|
|
/* Load the statistics from the sqlite_stat3 table. */
|
|
#ifdef SQLITE_ENABLE_STAT3
|
|
if( rc==SQLITE_OK ){
|
|
int lookasideEnabled = db->lookaside.bEnabled;
|
|
db->lookaside.bEnabled = 0;
|
|
rc = loadStat3(db, sInfo.zDatabase);
|
|
db->lookaside.bEnabled = lookasideEnabled;
|
|
}
|
|
#endif
|
|
|
|
if( rc==SQLITE_NOMEM ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
#endif /* SQLITE_OMIT_ANALYZE */
|