6243 lines
198 KiB
C
6243 lines
198 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** The code in this file implements execution method of the
|
|
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
|
|
** handles housekeeping details such as creating and deleting
|
|
** VDBE instances. This file is solely interested in executing
|
|
** the VDBE program.
|
|
**
|
|
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
|
|
** to a VDBE.
|
|
**
|
|
** The SQL parser generates a program which is then executed by
|
|
** the VDBE to do the work of the SQL statement. VDBE programs are
|
|
** similar in form to assembly language. The program consists of
|
|
** a linear sequence of operations. Each operation has an opcode
|
|
** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
|
|
** is a null-terminated string. Operand P5 is an unsigned character.
|
|
** Few opcodes use all 5 operands.
|
|
**
|
|
** Computation results are stored on a set of registers numbered beginning
|
|
** with 1 and going up to Vdbe.nMem. Each register can store
|
|
** either an integer, a null-terminated string, a floating point
|
|
** number, or the SQL "NULL" value. An implicit conversion from one
|
|
** type to the other occurs as necessary.
|
|
**
|
|
** Most of the code in this file is taken up by the sqlite3VdbeExec()
|
|
** function which does the work of interpreting a VDBE program.
|
|
** But other routines are also provided to help in building up
|
|
** a program instruction by instruction.
|
|
**
|
|
** Various scripts scan this source file in order to generate HTML
|
|
** documentation, headers files, or other derived files. The formatting
|
|
** of the code in this file is, therefore, important. See other comments
|
|
** in this file for details. If in doubt, do not deviate from existing
|
|
** commenting and indentation practices when changing or adding code.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include "vdbeInt.h"
|
|
|
|
/*
|
|
** Invoke this macro on memory cells just prior to changing the
|
|
** value of the cell. This macro verifies that shallow copies are
|
|
** not misused.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
|
|
#else
|
|
# define memAboutToChange(P,M)
|
|
#endif
|
|
|
|
/*
|
|
** The following global variable is incremented every time a cursor
|
|
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
|
|
** procedures use this information to make sure that indices are
|
|
** working correctly. This variable has no function other than to
|
|
** help verify the correct operation of the library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_search_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** When this global variable is positive, it gets decremented once before
|
|
** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
|
|
** field of the sqlite3 structure is set in order to simulate an interrupt.
|
|
**
|
|
** This facility is used for testing purposes only. It does not function
|
|
** in an ordinary build.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_interrupt_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** The next global variable is incremented each type the OP_Sort opcode
|
|
** is executed. The test procedures use this information to make sure that
|
|
** sorting is occurring or not occurring at appropriate times. This variable
|
|
** has no function other than to help verify the correct operation of the
|
|
** library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_sort_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** The next global variable records the size of the largest MEM_Blob
|
|
** or MEM_Str that has been used by a VDBE opcode. The test procedures
|
|
** use this information to make sure that the zero-blob functionality
|
|
** is working correctly. This variable has no function other than to
|
|
** help verify the correct operation of the library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_max_blobsize = 0;
|
|
static void updateMaxBlobsize(Mem *p){
|
|
if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
|
|
sqlite3_max_blobsize = p->n;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** The next global variable is incremented each type the OP_Found opcode
|
|
** is executed. This is used to test whether or not the foreign key
|
|
** operation implemented using OP_FkIsZero is working. This variable
|
|
** has no function other than to help verify the correct operation of the
|
|
** library.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_found_count = 0;
|
|
#endif
|
|
|
|
/*
|
|
** Test a register to see if it exceeds the current maximum blob size.
|
|
** If it does, record the new maximum blob size.
|
|
*/
|
|
#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
|
|
# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
|
|
#else
|
|
# define UPDATE_MAX_BLOBSIZE(P)
|
|
#endif
|
|
|
|
/*
|
|
** Convert the given register into a string if it isn't one
|
|
** already. Return non-zero if a malloc() fails.
|
|
*/
|
|
#define Stringify(P, enc) \
|
|
if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
|
|
{ goto no_mem; }
|
|
|
|
/*
|
|
** An ephemeral string value (signified by the MEM_Ephem flag) contains
|
|
** a pointer to a dynamically allocated string where some other entity
|
|
** is responsible for deallocating that string. Because the register
|
|
** does not control the string, it might be deleted without the register
|
|
** knowing it.
|
|
**
|
|
** This routine converts an ephemeral string into a dynamically allocated
|
|
** string that the register itself controls. In other words, it
|
|
** converts an MEM_Ephem string into an MEM_Dyn string.
|
|
*/
|
|
#define Deephemeralize(P) \
|
|
if( ((P)->flags&MEM_Ephem)!=0 \
|
|
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
|
|
|
|
/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
|
|
# define isSorter(x) ((x)->pSorter!=0)
|
|
|
|
/*
|
|
** Argument pMem points at a register that will be passed to a
|
|
** user-defined function or returned to the user as the result of a query.
|
|
** This routine sets the pMem->type variable used by the sqlite3_value_*()
|
|
** routines.
|
|
*/
|
|
void sqlite3VdbeMemStoreType(Mem *pMem){
|
|
int flags = pMem->flags;
|
|
if( flags & MEM_Null ){
|
|
pMem->type = SQLITE_NULL;
|
|
}
|
|
else if( flags & MEM_Int ){
|
|
pMem->type = SQLITE_INTEGER;
|
|
}
|
|
else if( flags & MEM_Real ){
|
|
pMem->type = SQLITE_FLOAT;
|
|
}
|
|
else if( flags & MEM_Str ){
|
|
pMem->type = SQLITE_TEXT;
|
|
}else{
|
|
pMem->type = SQLITE_BLOB;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
|
|
** if we run out of memory.
|
|
*/
|
|
static VdbeCursor *allocateCursor(
|
|
Vdbe *p, /* The virtual machine */
|
|
int iCur, /* Index of the new VdbeCursor */
|
|
int nField, /* Number of fields in the table or index */
|
|
int iDb, /* Database the cursor belongs to, or -1 */
|
|
int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
|
|
){
|
|
/* Find the memory cell that will be used to store the blob of memory
|
|
** required for this VdbeCursor structure. It is convenient to use a
|
|
** vdbe memory cell to manage the memory allocation required for a
|
|
** VdbeCursor structure for the following reasons:
|
|
**
|
|
** * Sometimes cursor numbers are used for a couple of different
|
|
** purposes in a vdbe program. The different uses might require
|
|
** different sized allocations. Memory cells provide growable
|
|
** allocations.
|
|
**
|
|
** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
|
|
** be freed lazily via the sqlite3_release_memory() API. This
|
|
** minimizes the number of malloc calls made by the system.
|
|
**
|
|
** Memory cells for cursors are allocated at the top of the address
|
|
** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
|
|
** cursor 1 is managed by memory cell (p->nMem-1), etc.
|
|
*/
|
|
Mem *pMem = &p->aMem[p->nMem-iCur];
|
|
|
|
int nByte;
|
|
VdbeCursor *pCx = 0;
|
|
nByte =
|
|
ROUND8(sizeof(VdbeCursor)) +
|
|
(isBtreeCursor?sqlite3BtreeCursorSize():0) +
|
|
2*nField*sizeof(u32);
|
|
|
|
assert( iCur<p->nCursor );
|
|
if( p->apCsr[iCur] ){
|
|
sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
|
|
p->apCsr[iCur] = 0;
|
|
}
|
|
if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
|
|
p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
|
|
memset(pCx, 0, sizeof(VdbeCursor));
|
|
pCx->iDb = iDb;
|
|
pCx->nField = nField;
|
|
if( nField ){
|
|
pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
|
|
}
|
|
if( isBtreeCursor ){
|
|
pCx->pCursor = (BtCursor*)
|
|
&pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
|
|
sqlite3BtreeCursorZero(pCx->pCursor);
|
|
}
|
|
}
|
|
return pCx;
|
|
}
|
|
|
|
/*
|
|
** Try to convert a value into a numeric representation if we can
|
|
** do so without loss of information. In other words, if the string
|
|
** looks like a number, convert it into a number. If it does not
|
|
** look like a number, leave it alone.
|
|
*/
|
|
static void applyNumericAffinity(Mem *pRec){
|
|
if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
|
|
double rValue;
|
|
i64 iValue;
|
|
u8 enc = pRec->enc;
|
|
if( (pRec->flags&MEM_Str)==0 ) return;
|
|
if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
|
|
if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
|
|
pRec->u.i = iValue;
|
|
pRec->flags |= MEM_Int;
|
|
}else{
|
|
pRec->r = rValue;
|
|
pRec->flags |= MEM_Real;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Processing is determine by the affinity parameter:
|
|
**
|
|
** SQLITE_AFF_INTEGER:
|
|
** SQLITE_AFF_REAL:
|
|
** SQLITE_AFF_NUMERIC:
|
|
** Try to convert pRec to an integer representation or a
|
|
** floating-point representation if an integer representation
|
|
** is not possible. Note that the integer representation is
|
|
** always preferred, even if the affinity is REAL, because
|
|
** an integer representation is more space efficient on disk.
|
|
**
|
|
** SQLITE_AFF_TEXT:
|
|
** Convert pRec to a text representation.
|
|
**
|
|
** SQLITE_AFF_NONE:
|
|
** No-op. pRec is unchanged.
|
|
*/
|
|
static void applyAffinity(
|
|
Mem *pRec, /* The value to apply affinity to */
|
|
char affinity, /* The affinity to be applied */
|
|
u8 enc /* Use this text encoding */
|
|
){
|
|
if( affinity==SQLITE_AFF_TEXT ){
|
|
/* Only attempt the conversion to TEXT if there is an integer or real
|
|
** representation (blob and NULL do not get converted) but no string
|
|
** representation.
|
|
*/
|
|
if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
|
|
sqlite3VdbeMemStringify(pRec, enc);
|
|
}
|
|
pRec->flags &= ~(MEM_Real|MEM_Int);
|
|
}else if( affinity!=SQLITE_AFF_NONE ){
|
|
assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
|
|
|| affinity==SQLITE_AFF_NUMERIC );
|
|
applyNumericAffinity(pRec);
|
|
if( pRec->flags & MEM_Real ){
|
|
sqlite3VdbeIntegerAffinity(pRec);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Try to convert the type of a function argument or a result column
|
|
** into a numeric representation. Use either INTEGER or REAL whichever
|
|
** is appropriate. But only do the conversion if it is possible without
|
|
** loss of information and return the revised type of the argument.
|
|
*/
|
|
int sqlite3_value_numeric_type(sqlite3_value *pVal){
|
|
Mem *pMem = (Mem*)pVal;
|
|
if( pMem->type==SQLITE_TEXT ){
|
|
applyNumericAffinity(pMem);
|
|
sqlite3VdbeMemStoreType(pMem);
|
|
}
|
|
return pMem->type;
|
|
}
|
|
|
|
/*
|
|
** Exported version of applyAffinity(). This one works on sqlite3_value*,
|
|
** not the internal Mem* type.
|
|
*/
|
|
void sqlite3ValueApplyAffinity(
|
|
sqlite3_value *pVal,
|
|
u8 affinity,
|
|
u8 enc
|
|
){
|
|
applyAffinity((Mem *)pVal, affinity, enc);
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Write a nice string representation of the contents of cell pMem
|
|
** into buffer zBuf, length nBuf.
|
|
*/
|
|
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
|
|
char *zCsr = zBuf;
|
|
int f = pMem->flags;
|
|
|
|
static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
|
|
|
|
if( f&MEM_Blob ){
|
|
int i;
|
|
char c;
|
|
if( f & MEM_Dyn ){
|
|
c = 'z';
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Static ){
|
|
c = 't';
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Ephem ){
|
|
c = 'e';
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
}else{
|
|
c = 's';
|
|
}
|
|
|
|
sqlite3_snprintf(100, zCsr, "%c", c);
|
|
zCsr += sqlite3Strlen30(zCsr);
|
|
sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
|
|
zCsr += sqlite3Strlen30(zCsr);
|
|
for(i=0; i<16 && i<pMem->n; i++){
|
|
sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
|
|
zCsr += sqlite3Strlen30(zCsr);
|
|
}
|
|
for(i=0; i<16 && i<pMem->n; i++){
|
|
char z = pMem->z[i];
|
|
if( z<32 || z>126 ) *zCsr++ = '.';
|
|
else *zCsr++ = z;
|
|
}
|
|
|
|
sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
|
|
zCsr += sqlite3Strlen30(zCsr);
|
|
if( f & MEM_Zero ){
|
|
sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
|
|
zCsr += sqlite3Strlen30(zCsr);
|
|
}
|
|
*zCsr = '\0';
|
|
}else if( f & MEM_Str ){
|
|
int j, k;
|
|
zBuf[0] = ' ';
|
|
if( f & MEM_Dyn ){
|
|
zBuf[1] = 'z';
|
|
assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Static ){
|
|
zBuf[1] = 't';
|
|
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
|
}else if( f & MEM_Ephem ){
|
|
zBuf[1] = 'e';
|
|
assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
|
}else{
|
|
zBuf[1] = 's';
|
|
}
|
|
k = 2;
|
|
sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
|
|
k += sqlite3Strlen30(&zBuf[k]);
|
|
zBuf[k++] = '[';
|
|
for(j=0; j<15 && j<pMem->n; j++){
|
|
u8 c = pMem->z[j];
|
|
if( c>=0x20 && c<0x7f ){
|
|
zBuf[k++] = c;
|
|
}else{
|
|
zBuf[k++] = '.';
|
|
}
|
|
}
|
|
zBuf[k++] = ']';
|
|
sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
|
|
k += sqlite3Strlen30(&zBuf[k]);
|
|
zBuf[k++] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Print the value of a register for tracing purposes:
|
|
*/
|
|
static void memTracePrint(FILE *out, Mem *p){
|
|
if( p->flags & MEM_Invalid ){
|
|
fprintf(out, " undefined");
|
|
}else if( p->flags & MEM_Null ){
|
|
fprintf(out, " NULL");
|
|
}else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
|
|
fprintf(out, " si:%lld", p->u.i);
|
|
}else if( p->flags & MEM_Int ){
|
|
fprintf(out, " i:%lld", p->u.i);
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
}else if( p->flags & MEM_Real ){
|
|
fprintf(out, " r:%g", p->r);
|
|
#endif
|
|
}else if( p->flags & MEM_RowSet ){
|
|
fprintf(out, " (rowset)");
|
|
}else{
|
|
char zBuf[200];
|
|
sqlite3VdbeMemPrettyPrint(p, zBuf);
|
|
fprintf(out, " ");
|
|
fprintf(out, "%s", zBuf);
|
|
}
|
|
}
|
|
static void registerTrace(FILE *out, int iReg, Mem *p){
|
|
fprintf(out, "REG[%d] = ", iReg);
|
|
memTracePrint(out, p);
|
|
fprintf(out, "\n");
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
|
|
#else
|
|
# define REGISTER_TRACE(R,M)
|
|
#endif
|
|
|
|
|
|
#ifdef VDBE_PROFILE
|
|
|
|
/*
|
|
** hwtime.h contains inline assembler code for implementing
|
|
** high-performance timing routines.
|
|
*/
|
|
#include "hwtime.h"
|
|
|
|
#endif
|
|
|
|
/*
|
|
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
|
|
** sqlite3_interrupt() routine has been called. If it has been, then
|
|
** processing of the VDBE program is interrupted.
|
|
**
|
|
** This macro added to every instruction that does a jump in order to
|
|
** implement a loop. This test used to be on every single instruction,
|
|
** but that meant we more testing than we needed. By only testing the
|
|
** flag on jump instructions, we get a (small) speed improvement.
|
|
*/
|
|
#define CHECK_FOR_INTERRUPT \
|
|
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
|
|
|
|
|
|
#ifndef NDEBUG
|
|
/*
|
|
** This function is only called from within an assert() expression. It
|
|
** checks that the sqlite3.nTransaction variable is correctly set to
|
|
** the number of non-transaction savepoints currently in the
|
|
** linked list starting at sqlite3.pSavepoint.
|
|
**
|
|
** Usage:
|
|
**
|
|
** assert( checkSavepointCount(db) );
|
|
*/
|
|
static int checkSavepointCount(sqlite3 *db){
|
|
int n = 0;
|
|
Savepoint *p;
|
|
for(p=db->pSavepoint; p; p=p->pNext) n++;
|
|
assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
|
|
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
|
|
** in memory obtained from sqlite3DbMalloc).
|
|
*/
|
|
static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
|
|
sqlite3 *db = p->db;
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
|
|
sqlite3_free(pVtab->zErrMsg);
|
|
pVtab->zErrMsg = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Execute as much of a VDBE program as we can then return.
|
|
**
|
|
** sqlite3VdbeMakeReady() must be called before this routine in order to
|
|
** close the program with a final OP_Halt and to set up the callbacks
|
|
** and the error message pointer.
|
|
**
|
|
** Whenever a row or result data is available, this routine will either
|
|
** invoke the result callback (if there is one) or return with
|
|
** SQLITE_ROW.
|
|
**
|
|
** If an attempt is made to open a locked database, then this routine
|
|
** will either invoke the busy callback (if there is one) or it will
|
|
** return SQLITE_BUSY.
|
|
**
|
|
** If an error occurs, an error message is written to memory obtained
|
|
** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
|
|
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
|
|
**
|
|
** If the callback ever returns non-zero, then the program exits
|
|
** immediately. There will be no error message but the p->rc field is
|
|
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
|
|
**
|
|
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
|
|
** routine to return SQLITE_ERROR.
|
|
**
|
|
** Other fatal errors return SQLITE_ERROR.
|
|
**
|
|
** After this routine has finished, sqlite3VdbeFinalize() should be
|
|
** used to clean up the mess that was left behind.
|
|
*/
|
|
int sqlite3VdbeExec(
|
|
Vdbe *p /* The VDBE */
|
|
){
|
|
int pc=0; /* The program counter */
|
|
Op *aOp = p->aOp; /* Copy of p->aOp */
|
|
Op *pOp; /* Current operation */
|
|
int rc = SQLITE_OK; /* Value to return */
|
|
sqlite3 *db = p->db; /* The database */
|
|
u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
|
|
u8 encoding = ENC(db); /* The database encoding */
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
int checkProgress; /* True if progress callbacks are enabled */
|
|
int nProgressOps = 0; /* Opcodes executed since progress callback. */
|
|
#endif
|
|
Mem *aMem = p->aMem; /* Copy of p->aMem */
|
|
Mem *pIn1 = 0; /* 1st input operand */
|
|
Mem *pIn2 = 0; /* 2nd input operand */
|
|
Mem *pIn3 = 0; /* 3rd input operand */
|
|
Mem *pOut = 0; /* Output operand */
|
|
int iCompare = 0; /* Result of last OP_Compare operation */
|
|
int *aPermute = 0; /* Permutation of columns for OP_Compare */
|
|
i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
|
|
#ifdef VDBE_PROFILE
|
|
u64 start; /* CPU clock count at start of opcode */
|
|
int origPc; /* Program counter at start of opcode */
|
|
#endif
|
|
/*** INSERT STACK UNION HERE ***/
|
|
|
|
assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
|
|
sqlite3VdbeEnter(p);
|
|
if( p->rc==SQLITE_NOMEM ){
|
|
/* This happens if a malloc() inside a call to sqlite3_column_text() or
|
|
** sqlite3_column_text16() failed. */
|
|
goto no_mem;
|
|
}
|
|
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
|
|
p->rc = SQLITE_OK;
|
|
assert( p->explain==0 );
|
|
p->pResultSet = 0;
|
|
db->busyHandler.nBusy = 0;
|
|
CHECK_FOR_INTERRUPT;
|
|
sqlite3VdbeIOTraceSql(p);
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
checkProgress = db->xProgress!=0;
|
|
#endif
|
|
#ifdef SQLITE_DEBUG
|
|
sqlite3BeginBenignMalloc();
|
|
if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
|
|
int i;
|
|
printf("VDBE Program Listing:\n");
|
|
sqlite3VdbePrintSql(p);
|
|
for(i=0; i<p->nOp; i++){
|
|
sqlite3VdbePrintOp(stdout, i, &aOp[i]);
|
|
}
|
|
}
|
|
sqlite3EndBenignMalloc();
|
|
#endif
|
|
for(pc=p->pc; rc==SQLITE_OK; pc++){
|
|
assert( pc>=0 && pc<p->nOp );
|
|
if( db->mallocFailed ) goto no_mem;
|
|
#ifdef VDBE_PROFILE
|
|
origPc = pc;
|
|
start = sqlite3Hwtime();
|
|
#endif
|
|
pOp = &aOp[pc];
|
|
|
|
/* Only allow tracing if SQLITE_DEBUG is defined.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
if( p->trace ){
|
|
if( pc==0 ){
|
|
printf("VDBE Execution Trace:\n");
|
|
sqlite3VdbePrintSql(p);
|
|
}
|
|
sqlite3VdbePrintOp(p->trace, pc, pOp);
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Check to see if we need to simulate an interrupt. This only happens
|
|
** if we have a special test build.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
if( sqlite3_interrupt_count>0 ){
|
|
sqlite3_interrupt_count--;
|
|
if( sqlite3_interrupt_count==0 ){
|
|
sqlite3_interrupt(db);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
/* Call the progress callback if it is configured and the required number
|
|
** of VDBE ops have been executed (either since this invocation of
|
|
** sqlite3VdbeExec() or since last time the progress callback was called).
|
|
** If the progress callback returns non-zero, exit the virtual machine with
|
|
** a return code SQLITE_ABORT.
|
|
*/
|
|
if( checkProgress ){
|
|
if( db->nProgressOps==nProgressOps ){
|
|
int prc;
|
|
prc = db->xProgress(db->pProgressArg);
|
|
if( prc!=0 ){
|
|
rc = SQLITE_INTERRUPT;
|
|
goto vdbe_error_halt;
|
|
}
|
|
nProgressOps = 0;
|
|
}
|
|
nProgressOps++;
|
|
}
|
|
#endif
|
|
|
|
/* On any opcode with the "out2-prerelease" tag, free any
|
|
** external allocations out of mem[p2] and set mem[p2] to be
|
|
** an undefined integer. Opcodes will either fill in the integer
|
|
** value or convert mem[p2] to a different type.
|
|
*/
|
|
assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
|
|
if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
pOut = &aMem[pOp->p2];
|
|
memAboutToChange(p, pOut);
|
|
VdbeMemRelease(pOut);
|
|
pOut->flags = MEM_Int;
|
|
}
|
|
|
|
/* Sanity checking on other operands */
|
|
#ifdef SQLITE_DEBUG
|
|
if( (pOp->opflags & OPFLG_IN1)!=0 ){
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1<=p->nMem );
|
|
assert( memIsValid(&aMem[pOp->p1]) );
|
|
REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
|
|
}
|
|
if( (pOp->opflags & OPFLG_IN2)!=0 ){
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
assert( memIsValid(&aMem[pOp->p2]) );
|
|
REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
|
|
}
|
|
if( (pOp->opflags & OPFLG_IN3)!=0 ){
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p3<=p->nMem );
|
|
assert( memIsValid(&aMem[pOp->p3]) );
|
|
REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
|
|
}
|
|
if( (pOp->opflags & OPFLG_OUT2)!=0 ){
|
|
assert( pOp->p2>0 );
|
|
assert( pOp->p2<=p->nMem );
|
|
memAboutToChange(p, &aMem[pOp->p2]);
|
|
}
|
|
if( (pOp->opflags & OPFLG_OUT3)!=0 ){
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p3<=p->nMem );
|
|
memAboutToChange(p, &aMem[pOp->p3]);
|
|
}
|
|
#endif
|
|
|
|
switch( pOp->opcode ){
|
|
|
|
/*****************************************************************************
|
|
** What follows is a massive switch statement where each case implements a
|
|
** separate instruction in the virtual machine. If we follow the usual
|
|
** indentation conventions, each case should be indented by 6 spaces. But
|
|
** that is a lot of wasted space on the left margin. So the code within
|
|
** the switch statement will break with convention and be flush-left. Another
|
|
** big comment (similar to this one) will mark the point in the code where
|
|
** we transition back to normal indentation.
|
|
**
|
|
** The formatting of each case is important. The makefile for SQLite
|
|
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
|
|
** file looking for lines that begin with "case OP_". The opcodes.h files
|
|
** will be filled with #defines that give unique integer values to each
|
|
** opcode and the opcodes.c file is filled with an array of strings where
|
|
** each string is the symbolic name for the corresponding opcode. If the
|
|
** case statement is followed by a comment of the form "/# same as ... #/"
|
|
** that comment is used to determine the particular value of the opcode.
|
|
**
|
|
** Other keywords in the comment that follows each case are used to
|
|
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
|
|
** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
|
|
** the mkopcodeh.awk script for additional information.
|
|
**
|
|
** Documentation about VDBE opcodes is generated by scanning this file
|
|
** for lines of that contain "Opcode:". That line and all subsequent
|
|
** comment lines are used in the generation of the opcode.html documentation
|
|
** file.
|
|
**
|
|
** SUMMARY:
|
|
**
|
|
** Formatting is important to scripts that scan this file.
|
|
** Do not deviate from the formatting style currently in use.
|
|
**
|
|
*****************************************************************************/
|
|
|
|
/* Opcode: Goto * P2 * * *
|
|
**
|
|
** An unconditional jump to address P2.
|
|
** The next instruction executed will be
|
|
** the one at index P2 from the beginning of
|
|
** the program.
|
|
*/
|
|
case OP_Goto: { /* jump */
|
|
CHECK_FOR_INTERRUPT;
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Gosub P1 P2 * * *
|
|
**
|
|
** Write the current address onto register P1
|
|
** and then jump to address P2.
|
|
*/
|
|
case OP_Gosub: { /* jump */
|
|
assert( pOp->p1>0 && pOp->p1<=p->nMem );
|
|
pIn1 = &aMem[pOp->p1];
|
|
assert( (pIn1->flags & MEM_Dyn)==0 );
|
|
memAboutToChange(p, pIn1);
|
|
pIn1->flags = MEM_Int;
|
|
pIn1->u.i = pc;
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Return P1 * * * *
|
|
**
|
|
** Jump to the next instruction after the address in register P1.
|
|
*/
|
|
case OP_Return: { /* in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
assert( pIn1->flags & MEM_Int );
|
|
pc = (int)pIn1->u.i;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Yield P1 * * * *
|
|
**
|
|
** Swap the program counter with the value in register P1.
|
|
*/
|
|
case OP_Yield: { /* in1 */
|
|
int pcDest;
|
|
pIn1 = &aMem[pOp->p1];
|
|
assert( (pIn1->flags & MEM_Dyn)==0 );
|
|
pIn1->flags = MEM_Int;
|
|
pcDest = (int)pIn1->u.i;
|
|
pIn1->u.i = pc;
|
|
REGISTER_TRACE(pOp->p1, pIn1);
|
|
pc = pcDest;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: HaltIfNull P1 P2 P3 P4 *
|
|
**
|
|
** Check the value in register P3. If it is NULL then Halt using
|
|
** parameter P1, P2, and P4 as if this were a Halt instruction. If the
|
|
** value in register P3 is not NULL, then this routine is a no-op.
|
|
*/
|
|
case OP_HaltIfNull: { /* in3 */
|
|
pIn3 = &aMem[pOp->p3];
|
|
if( (pIn3->flags & MEM_Null)==0 ) break;
|
|
/* Fall through into OP_Halt */
|
|
}
|
|
|
|
/* Opcode: Halt P1 P2 * P4 *
|
|
**
|
|
** Exit immediately. All open cursors, etc are closed
|
|
** automatically.
|
|
**
|
|
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
|
|
** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
|
|
** For errors, it can be some other value. If P1!=0 then P2 will determine
|
|
** whether or not to rollback the current transaction. Do not rollback
|
|
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
|
|
** then back out all changes that have occurred during this execution of the
|
|
** VDBE, but do not rollback the transaction.
|
|
**
|
|
** If P4 is not null then it is an error message string.
|
|
**
|
|
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
|
|
** every program. So a jump past the last instruction of the program
|
|
** is the same as executing Halt.
|
|
*/
|
|
case OP_Halt: {
|
|
if( pOp->p1==SQLITE_OK && p->pFrame ){
|
|
/* Halt the sub-program. Return control to the parent frame. */
|
|
VdbeFrame *pFrame = p->pFrame;
|
|
p->pFrame = pFrame->pParent;
|
|
p->nFrame--;
|
|
sqlite3VdbeSetChanges(db, p->nChange);
|
|
pc = sqlite3VdbeFrameRestore(pFrame);
|
|
lastRowid = db->lastRowid;
|
|
if( pOp->p2==OE_Ignore ){
|
|
/* Instruction pc is the OP_Program that invoked the sub-program
|
|
** currently being halted. If the p2 instruction of this OP_Halt
|
|
** instruction is set to OE_Ignore, then the sub-program is throwing
|
|
** an IGNORE exception. In this case jump to the address specified
|
|
** as the p2 of the calling OP_Program. */
|
|
pc = p->aOp[pc].p2-1;
|
|
}
|
|
aOp = p->aOp;
|
|
aMem = p->aMem;
|
|
break;
|
|
}
|
|
|
|
p->rc = pOp->p1;
|
|
p->errorAction = (u8)pOp->p2;
|
|
p->pc = pc;
|
|
if( pOp->p4.z ){
|
|
assert( p->rc!=SQLITE_OK );
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
|
|
testcase( sqlite3GlobalConfig.xLog!=0 );
|
|
sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
|
|
}else if( p->rc ){
|
|
testcase( sqlite3GlobalConfig.xLog!=0 );
|
|
sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
|
|
}
|
|
rc = sqlite3VdbeHalt(p);
|
|
assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
|
|
if( rc==SQLITE_BUSY ){
|
|
p->rc = rc = SQLITE_BUSY;
|
|
}else{
|
|
assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
|
|
assert( rc==SQLITE_OK || db->nDeferredCons>0 );
|
|
rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
|
|
}
|
|
goto vdbe_return;
|
|
}
|
|
|
|
/* Opcode: Integer P1 P2 * * *
|
|
**
|
|
** The 32-bit integer value P1 is written into register P2.
|
|
*/
|
|
case OP_Integer: { /* out2-prerelease */
|
|
pOut->u.i = pOp->p1;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Int64 * P2 * P4 *
|
|
**
|
|
** P4 is a pointer to a 64-bit integer value.
|
|
** Write that value into register P2.
|
|
*/
|
|
case OP_Int64: { /* out2-prerelease */
|
|
assert( pOp->p4.pI64!=0 );
|
|
pOut->u.i = *pOp->p4.pI64;
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
/* Opcode: Real * P2 * P4 *
|
|
**
|
|
** P4 is a pointer to a 64-bit floating point value.
|
|
** Write that value into register P2.
|
|
*/
|
|
case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
|
|
pOut->flags = MEM_Real;
|
|
assert( !sqlite3IsNaN(*pOp->p4.pReal) );
|
|
pOut->r = *pOp->p4.pReal;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* Opcode: String8 * P2 * P4 *
|
|
**
|
|
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
|
|
** into an OP_String before it is executed for the first time.
|
|
*/
|
|
case OP_String8: { /* same as TK_STRING, out2-prerelease */
|
|
assert( pOp->p4.z!=0 );
|
|
pOp->opcode = OP_String;
|
|
pOp->p1 = sqlite3Strlen30(pOp->p4.z);
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
if( encoding!=SQLITE_UTF8 ){
|
|
rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
|
|
if( rc==SQLITE_TOOBIG ) goto too_big;
|
|
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
|
|
assert( pOut->zMalloc==pOut->z );
|
|
assert( pOut->flags & MEM_Dyn );
|
|
pOut->zMalloc = 0;
|
|
pOut->flags |= MEM_Static;
|
|
pOut->flags &= ~MEM_Dyn;
|
|
if( pOp->p4type==P4_DYNAMIC ){
|
|
sqlite3DbFree(db, pOp->p4.z);
|
|
}
|
|
pOp->p4type = P4_DYNAMIC;
|
|
pOp->p4.z = pOut->z;
|
|
pOp->p1 = pOut->n;
|
|
}
|
|
#endif
|
|
if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
/* Fall through to the next case, OP_String */
|
|
}
|
|
|
|
/* Opcode: String P1 P2 * P4 *
|
|
**
|
|
** The string value P4 of length P1 (bytes) is stored in register P2.
|
|
*/
|
|
case OP_String: { /* out2-prerelease */
|
|
assert( pOp->p4.z!=0 );
|
|
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
pOut->z = pOp->p4.z;
|
|
pOut->n = pOp->p1;
|
|
pOut->enc = encoding;
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Null P1 P2 P3 * *
|
|
**
|
|
** Write a NULL into registers P2. If P3 greater than P2, then also write
|
|
** NULL into register P3 and every register in between P2 and P3. If P3
|
|
** is less than P2 (typically P3 is zero) then only register P2 is
|
|
** set to NULL.
|
|
**
|
|
** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
|
|
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
|
|
** OP_Ne or OP_Eq.
|
|
*/
|
|
case OP_Null: { /* out2-prerelease */
|
|
int cnt;
|
|
u16 nullFlag;
|
|
cnt = pOp->p3-pOp->p2;
|
|
assert( pOp->p3<=p->nMem );
|
|
pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
|
|
while( cnt>0 ){
|
|
pOut++;
|
|
memAboutToChange(p, pOut);
|
|
VdbeMemRelease(pOut);
|
|
pOut->flags = nullFlag;
|
|
cnt--;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: Blob P1 P2 * P4
|
|
**
|
|
** P4 points to a blob of data P1 bytes long. Store this
|
|
** blob in register P2.
|
|
*/
|
|
case OP_Blob: { /* out2-prerelease */
|
|
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
|
|
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
|
|
pOut->enc = encoding;
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Variable P1 P2 * P4 *
|
|
**
|
|
** Transfer the values of bound parameter P1 into register P2
|
|
**
|
|
** If the parameter is named, then its name appears in P4 and P3==1.
|
|
** The P4 value is used by sqlite3_bind_parameter_name().
|
|
*/
|
|
case OP_Variable: { /* out2-prerelease */
|
|
Mem *pVar; /* Value being transferred */
|
|
|
|
assert( pOp->p1>0 && pOp->p1<=p->nVar );
|
|
assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
|
|
pVar = &p->aVar[pOp->p1 - 1];
|
|
if( sqlite3VdbeMemTooBig(pVar) ){
|
|
goto too_big;
|
|
}
|
|
sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Move P1 P2 P3 * *
|
|
**
|
|
** Move the values in register P1..P1+P3 over into
|
|
** registers P2..P2+P3. Registers P1..P1+P3 are
|
|
** left holding a NULL. It is an error for register ranges
|
|
** P1..P1+P3 and P2..P2+P3 to overlap.
|
|
*/
|
|
case OP_Move: {
|
|
char *zMalloc; /* Holding variable for allocated memory */
|
|
int n; /* Number of registers left to copy */
|
|
int p1; /* Register to copy from */
|
|
int p2; /* Register to copy to */
|
|
|
|
n = pOp->p3 + 1;
|
|
p1 = pOp->p1;
|
|
p2 = pOp->p2;
|
|
assert( n>0 && p1>0 && p2>0 );
|
|
assert( p1+n<=p2 || p2+n<=p1 );
|
|
|
|
pIn1 = &aMem[p1];
|
|
pOut = &aMem[p2];
|
|
while( n-- ){
|
|
assert( pOut<=&aMem[p->nMem] );
|
|
assert( pIn1<=&aMem[p->nMem] );
|
|
assert( memIsValid(pIn1) );
|
|
memAboutToChange(p, pOut);
|
|
zMalloc = pOut->zMalloc;
|
|
pOut->zMalloc = 0;
|
|
sqlite3VdbeMemMove(pOut, pIn1);
|
|
#ifdef SQLITE_DEBUG
|
|
if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
|
|
pOut->pScopyFrom += p1 - pOp->p2;
|
|
}
|
|
#endif
|
|
pIn1->zMalloc = zMalloc;
|
|
REGISTER_TRACE(p2++, pOut);
|
|
pIn1++;
|
|
pOut++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Copy P1 P2 P3 * *
|
|
**
|
|
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
|
|
**
|
|
** This instruction makes a deep copy of the value. A duplicate
|
|
** is made of any string or blob constant. See also OP_SCopy.
|
|
*/
|
|
case OP_Copy: {
|
|
int n;
|
|
|
|
n = pOp->p3;
|
|
pIn1 = &aMem[pOp->p1];
|
|
pOut = &aMem[pOp->p2];
|
|
assert( pOut!=pIn1 );
|
|
while( 1 ){
|
|
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
|
|
Deephemeralize(pOut);
|
|
#ifdef SQLITE_DEBUG
|
|
pOut->pScopyFrom = 0;
|
|
#endif
|
|
REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
|
|
if( (n--)==0 ) break;
|
|
pOut++;
|
|
pIn1++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SCopy P1 P2 * * *
|
|
**
|
|
** Make a shallow copy of register P1 into register P2.
|
|
**
|
|
** This instruction makes a shallow copy of the value. If the value
|
|
** is a string or blob, then the copy is only a pointer to the
|
|
** original and hence if the original changes so will the copy.
|
|
** Worse, if the original is deallocated, the copy becomes invalid.
|
|
** Thus the program must guarantee that the original will not change
|
|
** during the lifetime of the copy. Use OP_Copy to make a complete
|
|
** copy.
|
|
*/
|
|
case OP_SCopy: { /* in1, out2 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
pOut = &aMem[pOp->p2];
|
|
assert( pOut!=pIn1 );
|
|
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
|
|
#ifdef SQLITE_DEBUG
|
|
if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
|
|
#endif
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ResultRow P1 P2 * * *
|
|
**
|
|
** The registers P1 through P1+P2-1 contain a single row of
|
|
** results. This opcode causes the sqlite3_step() call to terminate
|
|
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
|
|
** structure to provide access to the top P1 values as the result
|
|
** row.
|
|
*/
|
|
case OP_ResultRow: {
|
|
Mem *pMem;
|
|
int i;
|
|
assert( p->nResColumn==pOp->p2 );
|
|
assert( pOp->p1>0 );
|
|
assert( pOp->p1+pOp->p2<=p->nMem+1 );
|
|
|
|
/* If this statement has violated immediate foreign key constraints, do
|
|
** not return the number of rows modified. And do not RELEASE the statement
|
|
** transaction. It needs to be rolled back. */
|
|
if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
|
|
assert( db->flags&SQLITE_CountRows );
|
|
assert( p->usesStmtJournal );
|
|
break;
|
|
}
|
|
|
|
/* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
|
|
** DML statements invoke this opcode to return the number of rows
|
|
** modified to the user. This is the only way that a VM that
|
|
** opens a statement transaction may invoke this opcode.
|
|
**
|
|
** In case this is such a statement, close any statement transaction
|
|
** opened by this VM before returning control to the user. This is to
|
|
** ensure that statement-transactions are always nested, not overlapping.
|
|
** If the open statement-transaction is not closed here, then the user
|
|
** may step another VM that opens its own statement transaction. This
|
|
** may lead to overlapping statement transactions.
|
|
**
|
|
** The statement transaction is never a top-level transaction. Hence
|
|
** the RELEASE call below can never fail.
|
|
*/
|
|
assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
|
|
rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
|
|
if( NEVER(rc!=SQLITE_OK) ){
|
|
break;
|
|
}
|
|
|
|
/* Invalidate all ephemeral cursor row caches */
|
|
p->cacheCtr = (p->cacheCtr + 2)|1;
|
|
|
|
/* Make sure the results of the current row are \000 terminated
|
|
** and have an assigned type. The results are de-ephemeralized as
|
|
** a side effect.
|
|
*/
|
|
pMem = p->pResultSet = &aMem[pOp->p1];
|
|
for(i=0; i<pOp->p2; i++){
|
|
assert( memIsValid(&pMem[i]) );
|
|
Deephemeralize(&pMem[i]);
|
|
assert( (pMem[i].flags & MEM_Ephem)==0
|
|
|| (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
|
|
sqlite3VdbeMemNulTerminate(&pMem[i]);
|
|
sqlite3VdbeMemStoreType(&pMem[i]);
|
|
REGISTER_TRACE(pOp->p1+i, &pMem[i]);
|
|
}
|
|
if( db->mallocFailed ) goto no_mem;
|
|
|
|
/* Return SQLITE_ROW
|
|
*/
|
|
p->pc = pc + 1;
|
|
rc = SQLITE_ROW;
|
|
goto vdbe_return;
|
|
}
|
|
|
|
/* Opcode: Concat P1 P2 P3 * *
|
|
**
|
|
** Add the text in register P1 onto the end of the text in
|
|
** register P2 and store the result in register P3.
|
|
** If either the P1 or P2 text are NULL then store NULL in P3.
|
|
**
|
|
** P3 = P2 || P1
|
|
**
|
|
** It is illegal for P1 and P3 to be the same register. Sometimes,
|
|
** if P3 is the same register as P2, the implementation is able
|
|
** to avoid a memcpy().
|
|
*/
|
|
case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
|
|
i64 nByte;
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
pIn2 = &aMem[pOp->p2];
|
|
pOut = &aMem[pOp->p3];
|
|
assert( pIn1!=pOut );
|
|
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
break;
|
|
}
|
|
if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
|
|
Stringify(pIn1, encoding);
|
|
Stringify(pIn2, encoding);
|
|
nByte = pIn1->n + pIn2->n;
|
|
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
MemSetTypeFlag(pOut, MEM_Str);
|
|
if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
|
|
goto no_mem;
|
|
}
|
|
if( pOut!=pIn2 ){
|
|
memcpy(pOut->z, pIn2->z, pIn2->n);
|
|
}
|
|
memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
|
|
pOut->z[nByte] = 0;
|
|
pOut->z[nByte+1] = 0;
|
|
pOut->flags |= MEM_Term;
|
|
pOut->n = (int)nByte;
|
|
pOut->enc = encoding;
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Add P1 P2 P3 * *
|
|
**
|
|
** Add the value in register P1 to the value in register P2
|
|
** and store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Multiply P1 P2 P3 * *
|
|
**
|
|
**
|
|
** Multiply the value in register P1 by the value in register P2
|
|
** and store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Subtract P1 P2 P3 * *
|
|
**
|
|
** Subtract the value in register P1 from the value in register P2
|
|
** and store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Divide P1 P2 P3 * *
|
|
**
|
|
** Divide the value in register P1 by the value in register P2
|
|
** and store the result in register P3 (P3=P2/P1). If the value in
|
|
** register P1 is zero, then the result is NULL. If either input is
|
|
** NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: Remainder P1 P2 P3 * *
|
|
**
|
|
** Compute the remainder after integer division of the value in
|
|
** register P1 by the value in register P2 and store the result in P3.
|
|
** If the value in register P2 is zero the result is NULL.
|
|
** If either operand is NULL, the result is NULL.
|
|
*/
|
|
case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
|
|
case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
|
|
case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
|
|
case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
|
|
case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
|
|
char bIntint; /* Started out as two integer operands */
|
|
int flags; /* Combined MEM_* flags from both inputs */
|
|
i64 iA; /* Integer value of left operand */
|
|
i64 iB; /* Integer value of right operand */
|
|
double rA; /* Real value of left operand */
|
|
double rB; /* Real value of right operand */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
applyNumericAffinity(pIn1);
|
|
pIn2 = &aMem[pOp->p2];
|
|
applyNumericAffinity(pIn2);
|
|
pOut = &aMem[pOp->p3];
|
|
flags = pIn1->flags | pIn2->flags;
|
|
if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
|
|
if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
|
|
iA = pIn1->u.i;
|
|
iB = pIn2->u.i;
|
|
bIntint = 1;
|
|
switch( pOp->opcode ){
|
|
case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
|
|
case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
|
|
case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
|
|
case OP_Divide: {
|
|
if( iA==0 ) goto arithmetic_result_is_null;
|
|
if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
|
|
iB /= iA;
|
|
break;
|
|
}
|
|
default: {
|
|
if( iA==0 ) goto arithmetic_result_is_null;
|
|
if( iA==-1 ) iA = 1;
|
|
iB %= iA;
|
|
break;
|
|
}
|
|
}
|
|
pOut->u.i = iB;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
}else{
|
|
bIntint = 0;
|
|
fp_math:
|
|
rA = sqlite3VdbeRealValue(pIn1);
|
|
rB = sqlite3VdbeRealValue(pIn2);
|
|
switch( pOp->opcode ){
|
|
case OP_Add: rB += rA; break;
|
|
case OP_Subtract: rB -= rA; break;
|
|
case OP_Multiply: rB *= rA; break;
|
|
case OP_Divide: {
|
|
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
|
|
if( rA==(double)0 ) goto arithmetic_result_is_null;
|
|
rB /= rA;
|
|
break;
|
|
}
|
|
default: {
|
|
iA = (i64)rA;
|
|
iB = (i64)rB;
|
|
if( iA==0 ) goto arithmetic_result_is_null;
|
|
if( iA==-1 ) iA = 1;
|
|
rB = (double)(iB % iA);
|
|
break;
|
|
}
|
|
}
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
pOut->u.i = rB;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
#else
|
|
if( sqlite3IsNaN(rB) ){
|
|
goto arithmetic_result_is_null;
|
|
}
|
|
pOut->r = rB;
|
|
MemSetTypeFlag(pOut, MEM_Real);
|
|
if( (flags & MEM_Real)==0 && !bIntint ){
|
|
sqlite3VdbeIntegerAffinity(pOut);
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
arithmetic_result_is_null:
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: CollSeq P1 * * P4
|
|
**
|
|
** P4 is a pointer to a CollSeq struct. If the next call to a user function
|
|
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
|
|
** be returned. This is used by the built-in min(), max() and nullif()
|
|
** functions.
|
|
**
|
|
** If P1 is not zero, then it is a register that a subsequent min() or
|
|
** max() aggregate will set to 1 if the current row is not the minimum or
|
|
** maximum. The P1 register is initialized to 0 by this instruction.
|
|
**
|
|
** The interface used by the implementation of the aforementioned functions
|
|
** to retrieve the collation sequence set by this opcode is not available
|
|
** publicly, only to user functions defined in func.c.
|
|
*/
|
|
case OP_CollSeq: {
|
|
assert( pOp->p4type==P4_COLLSEQ );
|
|
if( pOp->p1 ){
|
|
sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Function P1 P2 P3 P4 P5
|
|
**
|
|
** Invoke a user function (P4 is a pointer to a Function structure that
|
|
** defines the function) with P5 arguments taken from register P2 and
|
|
** successors. The result of the function is stored in register P3.
|
|
** Register P3 must not be one of the function inputs.
|
|
**
|
|
** P1 is a 32-bit bitmask indicating whether or not each argument to the
|
|
** function was determined to be constant at compile time. If the first
|
|
** argument was constant then bit 0 of P1 is set. This is used to determine
|
|
** whether meta data associated with a user function argument using the
|
|
** sqlite3_set_auxdata() API may be safely retained until the next
|
|
** invocation of this opcode.
|
|
**
|
|
** See also: AggStep and AggFinal
|
|
*/
|
|
case OP_Function: {
|
|
int i;
|
|
Mem *pArg;
|
|
sqlite3_context ctx;
|
|
sqlite3_value **apVal;
|
|
int n;
|
|
|
|
n = pOp->p5;
|
|
apVal = p->apArg;
|
|
assert( apVal || n==0 );
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pOut = &aMem[pOp->p3];
|
|
memAboutToChange(p, pOut);
|
|
|
|
assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
|
|
assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
|
|
pArg = &aMem[pOp->p2];
|
|
for(i=0; i<n; i++, pArg++){
|
|
assert( memIsValid(pArg) );
|
|
apVal[i] = pArg;
|
|
Deephemeralize(pArg);
|
|
sqlite3VdbeMemStoreType(pArg);
|
|
REGISTER_TRACE(pOp->p2+i, pArg);
|
|
}
|
|
|
|
assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
|
|
if( pOp->p4type==P4_FUNCDEF ){
|
|
ctx.pFunc = pOp->p4.pFunc;
|
|
ctx.pVdbeFunc = 0;
|
|
}else{
|
|
ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
|
|
ctx.pFunc = ctx.pVdbeFunc->pFunc;
|
|
}
|
|
|
|
ctx.s.flags = MEM_Null;
|
|
ctx.s.db = db;
|
|
ctx.s.xDel = 0;
|
|
ctx.s.zMalloc = 0;
|
|
|
|
/* The output cell may already have a buffer allocated. Move
|
|
** the pointer to ctx.s so in case the user-function can use
|
|
** the already allocated buffer instead of allocating a new one.
|
|
*/
|
|
sqlite3VdbeMemMove(&ctx.s, pOut);
|
|
MemSetTypeFlag(&ctx.s, MEM_Null);
|
|
|
|
ctx.isError = 0;
|
|
if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
|
|
assert( pOp>aOp );
|
|
assert( pOp[-1].p4type==P4_COLLSEQ );
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
ctx.pColl = pOp[-1].p4.pColl;
|
|
}
|
|
db->lastRowid = lastRowid;
|
|
(*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
|
|
lastRowid = db->lastRowid;
|
|
|
|
/* If any auxiliary data functions have been called by this user function,
|
|
** immediately call the destructor for any non-static values.
|
|
*/
|
|
if( ctx.pVdbeFunc ){
|
|
sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
|
|
pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
|
|
pOp->p4type = P4_VDBEFUNC;
|
|
}
|
|
|
|
if( db->mallocFailed ){
|
|
/* Even though a malloc() has failed, the implementation of the
|
|
** user function may have called an sqlite3_result_XXX() function
|
|
** to return a value. The following call releases any resources
|
|
** associated with such a value.
|
|
*/
|
|
sqlite3VdbeMemRelease(&ctx.s);
|
|
goto no_mem;
|
|
}
|
|
|
|
/* If the function returned an error, throw an exception */
|
|
if( ctx.isError ){
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
|
|
rc = ctx.isError;
|
|
}
|
|
|
|
/* Copy the result of the function into register P3 */
|
|
sqlite3VdbeChangeEncoding(&ctx.s, encoding);
|
|
sqlite3VdbeMemMove(pOut, &ctx.s);
|
|
if( sqlite3VdbeMemTooBig(pOut) ){
|
|
goto too_big;
|
|
}
|
|
|
|
#if 0
|
|
/* The app-defined function has done something that as caused this
|
|
** statement to expire. (Perhaps the function called sqlite3_exec()
|
|
** with a CREATE TABLE statement.)
|
|
*/
|
|
if( p->expired ) rc = SQLITE_ABORT;
|
|
#endif
|
|
|
|
REGISTER_TRACE(pOp->p3, pOut);
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitAnd P1 P2 P3 * *
|
|
**
|
|
** Take the bit-wise AND of the values in register P1 and P2 and
|
|
** store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: BitOr P1 P2 P3 * *
|
|
**
|
|
** Take the bit-wise OR of the values in register P1 and P2 and
|
|
** store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: ShiftLeft P1 P2 P3 * *
|
|
**
|
|
** Shift the integer value in register P2 to the left by the
|
|
** number of bits specified by the integer in register P1.
|
|
** Store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
/* Opcode: ShiftRight P1 P2 P3 * *
|
|
**
|
|
** Shift the integer value in register P2 to the right by the
|
|
** number of bits specified by the integer in register P1.
|
|
** Store the result in register P3.
|
|
** If either input is NULL, the result is NULL.
|
|
*/
|
|
case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
|
|
case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
|
|
case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
|
|
case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
|
|
i64 iA;
|
|
u64 uA;
|
|
i64 iB;
|
|
u8 op;
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
pIn2 = &aMem[pOp->p2];
|
|
pOut = &aMem[pOp->p3];
|
|
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
break;
|
|
}
|
|
iA = sqlite3VdbeIntValue(pIn2);
|
|
iB = sqlite3VdbeIntValue(pIn1);
|
|
op = pOp->opcode;
|
|
if( op==OP_BitAnd ){
|
|
iA &= iB;
|
|
}else if( op==OP_BitOr ){
|
|
iA |= iB;
|
|
}else if( iB!=0 ){
|
|
assert( op==OP_ShiftRight || op==OP_ShiftLeft );
|
|
|
|
/* If shifting by a negative amount, shift in the other direction */
|
|
if( iB<0 ){
|
|
assert( OP_ShiftRight==OP_ShiftLeft+1 );
|
|
op = 2*OP_ShiftLeft + 1 - op;
|
|
iB = iB>(-64) ? -iB : 64;
|
|
}
|
|
|
|
if( iB>=64 ){
|
|
iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
|
|
}else{
|
|
memcpy(&uA, &iA, sizeof(uA));
|
|
if( op==OP_ShiftLeft ){
|
|
uA <<= iB;
|
|
}else{
|
|
uA >>= iB;
|
|
/* Sign-extend on a right shift of a negative number */
|
|
if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
|
|
}
|
|
memcpy(&iA, &uA, sizeof(iA));
|
|
}
|
|
}
|
|
pOut->u.i = iA;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AddImm P1 P2 * * *
|
|
**
|
|
** Add the constant P2 to the value in register P1.
|
|
** The result is always an integer.
|
|
**
|
|
** To force any register to be an integer, just add 0.
|
|
*/
|
|
case OP_AddImm: { /* in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
memAboutToChange(p, pIn1);
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
pIn1->u.i += pOp->p2;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MustBeInt P1 P2 * * *
|
|
**
|
|
** Force the value in register P1 to be an integer. If the value
|
|
** in P1 is not an integer and cannot be converted into an integer
|
|
** without data loss, then jump immediately to P2, or if P2==0
|
|
** raise an SQLITE_MISMATCH exception.
|
|
*/
|
|
case OP_MustBeInt: { /* jump, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
|
|
if( (pIn1->flags & MEM_Int)==0 ){
|
|
if( pOp->p2==0 ){
|
|
rc = SQLITE_MISMATCH;
|
|
goto abort_due_to_error;
|
|
}else{
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}else{
|
|
MemSetTypeFlag(pIn1, MEM_Int);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
/* Opcode: RealAffinity P1 * * * *
|
|
**
|
|
** If register P1 holds an integer convert it to a real value.
|
|
**
|
|
** This opcode is used when extracting information from a column that
|
|
** has REAL affinity. Such column values may still be stored as
|
|
** integers, for space efficiency, but after extraction we want them
|
|
** to have only a real value.
|
|
*/
|
|
case OP_RealAffinity: { /* in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
if( pIn1->flags & MEM_Int ){
|
|
sqlite3VdbeMemRealify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_CAST
|
|
/* Opcode: ToText P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be text.
|
|
** If the value is numeric, convert it to a string using the
|
|
** equivalent of printf(). Blob values are unchanged and
|
|
** are afterwards simply interpreted as text.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToText: { /* same as TK_TO_TEXT, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
memAboutToChange(p, pIn1);
|
|
if( pIn1->flags & MEM_Null ) break;
|
|
assert( MEM_Str==(MEM_Blob>>3) );
|
|
pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
|
|
applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
|
|
rc = ExpandBlob(pIn1);
|
|
assert( pIn1->flags & MEM_Str || db->mallocFailed );
|
|
pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ToBlob P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be a BLOB.
|
|
** If the value is numeric, convert it to a string first.
|
|
** Strings are simply reinterpreted as blobs with no change
|
|
** to the underlying data.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
if( pIn1->flags & MEM_Null ) break;
|
|
if( (pIn1->flags & MEM_Blob)==0 ){
|
|
applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
|
|
assert( pIn1->flags & MEM_Str || db->mallocFailed );
|
|
MemSetTypeFlag(pIn1, MEM_Blob);
|
|
}else{
|
|
pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
|
|
}
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ToNumeric P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be numeric (either an
|
|
** integer or a floating-point number.)
|
|
** If the value is text or blob, try to convert it to an using the
|
|
** equivalent of atoi() or atof() and store 0 if no such conversion
|
|
** is possible.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
sqlite3VdbeMemNumerify(pIn1);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_CAST */
|
|
|
|
/* Opcode: ToInt P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be an integer. If
|
|
** The value is currently a real number, drop its fractional part.
|
|
** If the value is text or blob, try to convert it to an integer using the
|
|
** equivalent of atoi() and store 0 if no such conversion is possible.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToInt: { /* same as TK_TO_INT, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
|
|
/* Opcode: ToReal P1 * * * *
|
|
**
|
|
** Force the value in register P1 to be a floating point number.
|
|
** If The value is currently an integer, convert it.
|
|
** If the value is text or blob, try to convert it to an integer using the
|
|
** equivalent of atoi() and store 0.0 if no such conversion is possible.
|
|
**
|
|
** A NULL value is not changed by this routine. It remains NULL.
|
|
*/
|
|
case OP_ToReal: { /* same as TK_TO_REAL, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
memAboutToChange(p, pIn1);
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
sqlite3VdbeMemRealify(pIn1);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
|
|
|
|
/* Opcode: Lt P1 P2 P3 P4 P5
|
|
**
|
|
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
|
|
** jump to address P2.
|
|
**
|
|
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
|
|
** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
|
|
** bit is clear then fall through if either operand is NULL.
|
|
**
|
|
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
|
|
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
|
|
** to coerce both inputs according to this affinity before the
|
|
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
|
|
** affinity is used. Note that the affinity conversions are stored
|
|
** back into the input registers P1 and P3. So this opcode can cause
|
|
** persistent changes to registers P1 and P3.
|
|
**
|
|
** Once any conversions have taken place, and neither value is NULL,
|
|
** the values are compared. If both values are blobs then memcmp() is
|
|
** used to determine the results of the comparison. If both values
|
|
** are text, then the appropriate collating function specified in
|
|
** P4 is used to do the comparison. If P4 is not specified then
|
|
** memcmp() is used to compare text string. If both values are
|
|
** numeric, then a numeric comparison is used. If the two values
|
|
** are of different types, then numbers are considered less than
|
|
** strings and strings are considered less than blobs.
|
|
**
|
|
** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
|
|
** store a boolean result (either 0, or 1, or NULL) in register P2.
|
|
**
|
|
** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
|
|
** equal to one another, provided that they do not have their MEM_Cleared
|
|
** bit set.
|
|
*/
|
|
/* Opcode: Ne P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the operands in registers P1 and P3 are not equal. See the Lt opcode for
|
|
** additional information.
|
|
**
|
|
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
|
|
** true or false and is never NULL. If both operands are NULL then the result
|
|
** of comparison is false. If either operand is NULL then the result is true.
|
|
** If neither operand is NULL the result is the same as it would be if
|
|
** the SQLITE_NULLEQ flag were omitted from P5.
|
|
*/
|
|
/* Opcode: Eq P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the operands in registers P1 and P3 are equal.
|
|
** See the Lt opcode for additional information.
|
|
**
|
|
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
|
|
** true or false and is never NULL. If both operands are NULL then the result
|
|
** of comparison is true. If either operand is NULL then the result is false.
|
|
** If neither operand is NULL the result is the same as it would be if
|
|
** the SQLITE_NULLEQ flag were omitted from P5.
|
|
*/
|
|
/* Opcode: Le P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the content of register P3 is less than or equal to the content of
|
|
** register P1. See the Lt opcode for additional information.
|
|
*/
|
|
/* Opcode: Gt P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the content of register P3 is greater than the content of
|
|
** register P1. See the Lt opcode for additional information.
|
|
*/
|
|
/* Opcode: Ge P1 P2 P3 P4 P5
|
|
**
|
|
** This works just like the Lt opcode except that the jump is taken if
|
|
** the content of register P3 is greater than or equal to the content of
|
|
** register P1. See the Lt opcode for additional information.
|
|
*/
|
|
case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
|
|
case OP_Ne: /* same as TK_NE, jump, in1, in3 */
|
|
case OP_Lt: /* same as TK_LT, jump, in1, in3 */
|
|
case OP_Le: /* same as TK_LE, jump, in1, in3 */
|
|
case OP_Gt: /* same as TK_GT, jump, in1, in3 */
|
|
case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
|
|
int res; /* Result of the comparison of pIn1 against pIn3 */
|
|
char affinity; /* Affinity to use for comparison */
|
|
u16 flags1; /* Copy of initial value of pIn1->flags */
|
|
u16 flags3; /* Copy of initial value of pIn3->flags */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
pIn3 = &aMem[pOp->p3];
|
|
flags1 = pIn1->flags;
|
|
flags3 = pIn3->flags;
|
|
if( (flags1 | flags3)&MEM_Null ){
|
|
/* One or both operands are NULL */
|
|
if( pOp->p5 & SQLITE_NULLEQ ){
|
|
/* If SQLITE_NULLEQ is set (which will only happen if the operator is
|
|
** OP_Eq or OP_Ne) then take the jump or not depending on whether
|
|
** or not both operands are null.
|
|
*/
|
|
assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
|
|
assert( (flags1 & MEM_Cleared)==0 );
|
|
if( (flags1&MEM_Null)!=0
|
|
&& (flags3&MEM_Null)!=0
|
|
&& (flags3&MEM_Cleared)==0
|
|
){
|
|
res = 0; /* Results are equal */
|
|
}else{
|
|
res = 1; /* Results are not equal */
|
|
}
|
|
}else{
|
|
/* SQLITE_NULLEQ is clear and at least one operand is NULL,
|
|
** then the result is always NULL.
|
|
** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
|
|
*/
|
|
if( pOp->p5 & SQLITE_STOREP2 ){
|
|
pOut = &aMem[pOp->p2];
|
|
MemSetTypeFlag(pOut, MEM_Null);
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
}else if( pOp->p5 & SQLITE_JUMPIFNULL ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
}
|
|
}else{
|
|
/* Neither operand is NULL. Do a comparison. */
|
|
affinity = pOp->p5 & SQLITE_AFF_MASK;
|
|
if( affinity ){
|
|
applyAffinity(pIn1, affinity, encoding);
|
|
applyAffinity(pIn3, affinity, encoding);
|
|
if( db->mallocFailed ) goto no_mem;
|
|
}
|
|
|
|
assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
|
|
ExpandBlob(pIn1);
|
|
ExpandBlob(pIn3);
|
|
res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
|
|
}
|
|
switch( pOp->opcode ){
|
|
case OP_Eq: res = res==0; break;
|
|
case OP_Ne: res = res!=0; break;
|
|
case OP_Lt: res = res<0; break;
|
|
case OP_Le: res = res<=0; break;
|
|
case OP_Gt: res = res>0; break;
|
|
default: res = res>=0; break;
|
|
}
|
|
|
|
if( pOp->p5 & SQLITE_STOREP2 ){
|
|
pOut = &aMem[pOp->p2];
|
|
memAboutToChange(p, pOut);
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
pOut->u.i = res;
|
|
REGISTER_TRACE(pOp->p2, pOut);
|
|
}else if( res ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
|
|
/* Undo any changes made by applyAffinity() to the input registers. */
|
|
pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
|
|
pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Permutation * * * P4 *
|
|
**
|
|
** Set the permutation used by the OP_Compare operator to be the array
|
|
** of integers in P4.
|
|
**
|
|
** The permutation is only valid until the next OP_Compare that has
|
|
** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
|
|
** occur immediately prior to the OP_Compare.
|
|
*/
|
|
case OP_Permutation: {
|
|
assert( pOp->p4type==P4_INTARRAY );
|
|
assert( pOp->p4.ai );
|
|
aPermute = pOp->p4.ai;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Compare P1 P2 P3 P4 P5
|
|
**
|
|
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
|
|
** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
|
|
** the comparison for use by the next OP_Jump instruct.
|
|
**
|
|
** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
|
|
** determined by the most recent OP_Permutation operator. If the
|
|
** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
|
|
** order.
|
|
**
|
|
** P4 is a KeyInfo structure that defines collating sequences and sort
|
|
** orders for the comparison. The permutation applies to registers
|
|
** only. The KeyInfo elements are used sequentially.
|
|
**
|
|
** The comparison is a sort comparison, so NULLs compare equal,
|
|
** NULLs are less than numbers, numbers are less than strings,
|
|
** and strings are less than blobs.
|
|
*/
|
|
case OP_Compare: {
|
|
int n;
|
|
int i;
|
|
int p1;
|
|
int p2;
|
|
const KeyInfo *pKeyInfo;
|
|
int idx;
|
|
CollSeq *pColl; /* Collating sequence to use on this term */
|
|
int bRev; /* True for DESCENDING sort order */
|
|
|
|
if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
|
|
n = pOp->p3;
|
|
pKeyInfo = pOp->p4.pKeyInfo;
|
|
assert( n>0 );
|
|
assert( pKeyInfo!=0 );
|
|
p1 = pOp->p1;
|
|
p2 = pOp->p2;
|
|
#if SQLITE_DEBUG
|
|
if( aPermute ){
|
|
int k, mx = 0;
|
|
for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
|
|
assert( p1>0 && p1+mx<=p->nMem+1 );
|
|
assert( p2>0 && p2+mx<=p->nMem+1 );
|
|
}else{
|
|
assert( p1>0 && p1+n<=p->nMem+1 );
|
|
assert( p2>0 && p2+n<=p->nMem+1 );
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
for(i=0; i<n; i++){
|
|
idx = aPermute ? aPermute[i] : i;
|
|
assert( memIsValid(&aMem[p1+idx]) );
|
|
assert( memIsValid(&aMem[p2+idx]) );
|
|
REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
|
|
REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
|
|
assert( i<pKeyInfo->nField );
|
|
pColl = pKeyInfo->aColl[i];
|
|
bRev = pKeyInfo->aSortOrder[i];
|
|
iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
|
|
if( iCompare ){
|
|
if( bRev ) iCompare = -iCompare;
|
|
break;
|
|
}
|
|
}
|
|
aPermute = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Jump P1 P2 P3 * *
|
|
**
|
|
** Jump to the instruction at address P1, P2, or P3 depending on whether
|
|
** in the most recent OP_Compare instruction the P1 vector was less than
|
|
** equal to, or greater than the P2 vector, respectively.
|
|
*/
|
|
case OP_Jump: { /* jump */
|
|
if( iCompare<0 ){
|
|
pc = pOp->p1 - 1;
|
|
}else if( iCompare==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}else{
|
|
pc = pOp->p3 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: And P1 P2 P3 * *
|
|
**
|
|
** Take the logical AND of the values in registers P1 and P2 and
|
|
** write the result into register P3.
|
|
**
|
|
** If either P1 or P2 is 0 (false) then the result is 0 even if
|
|
** the other input is NULL. A NULL and true or two NULLs give
|
|
** a NULL output.
|
|
*/
|
|
/* Opcode: Or P1 P2 P3 * *
|
|
**
|
|
** Take the logical OR of the values in register P1 and P2 and
|
|
** store the answer in register P3.
|
|
**
|
|
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
|
|
** even if the other input is NULL. A NULL and false or two NULLs
|
|
** give a NULL output.
|
|
*/
|
|
case OP_And: /* same as TK_AND, in1, in2, out3 */
|
|
case OP_Or: { /* same as TK_OR, in1, in2, out3 */
|
|
int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
|
|
int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
if( pIn1->flags & MEM_Null ){
|
|
v1 = 2;
|
|
}else{
|
|
v1 = sqlite3VdbeIntValue(pIn1)!=0;
|
|
}
|
|
pIn2 = &aMem[pOp->p2];
|
|
if( pIn2->flags & MEM_Null ){
|
|
v2 = 2;
|
|
}else{
|
|
v2 = sqlite3VdbeIntValue(pIn2)!=0;
|
|
}
|
|
if( pOp->opcode==OP_And ){
|
|
static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
|
|
v1 = and_logic[v1*3+v2];
|
|
}else{
|
|
static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
|
|
v1 = or_logic[v1*3+v2];
|
|
}
|
|
pOut = &aMem[pOp->p3];
|
|
if( v1==2 ){
|
|
MemSetTypeFlag(pOut, MEM_Null);
|
|
}else{
|
|
pOut->u.i = v1;
|
|
MemSetTypeFlag(pOut, MEM_Int);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Not P1 P2 * * *
|
|
**
|
|
** Interpret the value in register P1 as a boolean value. Store the
|
|
** boolean complement in register P2. If the value in register P1 is
|
|
** NULL, then a NULL is stored in P2.
|
|
*/
|
|
case OP_Not: { /* same as TK_NOT, in1, out2 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
pOut = &aMem[pOp->p2];
|
|
if( pIn1->flags & MEM_Null ){
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
}else{
|
|
sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: BitNot P1 P2 * * *
|
|
**
|
|
** Interpret the content of register P1 as an integer. Store the
|
|
** ones-complement of the P1 value into register P2. If P1 holds
|
|
** a NULL then store a NULL in P2.
|
|
*/
|
|
case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
pOut = &aMem[pOp->p2];
|
|
if( pIn1->flags & MEM_Null ){
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
}else{
|
|
sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Once P1 P2 * * *
|
|
**
|
|
** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
|
|
** set the flag and fall through to the next instruction.
|
|
*/
|
|
case OP_Once: { /* jump */
|
|
assert( pOp->p1<p->nOnceFlag );
|
|
if( p->aOnceFlag[pOp->p1] ){
|
|
pc = pOp->p2-1;
|
|
}else{
|
|
p->aOnceFlag[pOp->p1] = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: If P1 P2 P3 * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is true. The value
|
|
** is considered true if it is numeric and non-zero. If the value
|
|
** in P1 is NULL then take the jump if P3 is non-zero.
|
|
*/
|
|
/* Opcode: IfNot P1 P2 P3 * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is False. The value
|
|
** is considered false if it has a numeric value of zero. If the value
|
|
** in P1 is NULL then take the jump if P3 is zero.
|
|
*/
|
|
case OP_If: /* jump, in1 */
|
|
case OP_IfNot: { /* jump, in1 */
|
|
int c;
|
|
pIn1 = &aMem[pOp->p1];
|
|
if( pIn1->flags & MEM_Null ){
|
|
c = pOp->p3;
|
|
}else{
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
c = sqlite3VdbeIntValue(pIn1)!=0;
|
|
#else
|
|
c = sqlite3VdbeRealValue(pIn1)!=0.0;
|
|
#endif
|
|
if( pOp->opcode==OP_IfNot ) c = !c;
|
|
}
|
|
if( c ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsNull P1 P2 * * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is NULL.
|
|
*/
|
|
case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
if( (pIn1->flags & MEM_Null)!=0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotNull P1 P2 * * *
|
|
**
|
|
** Jump to P2 if the value in register P1 is not NULL.
|
|
*/
|
|
case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
if( (pIn1->flags & MEM_Null)==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Column P1 P2 P3 P4 P5
|
|
**
|
|
** Interpret the data that cursor P1 points to as a structure built using
|
|
** the MakeRecord instruction. (See the MakeRecord opcode for additional
|
|
** information about the format of the data.) Extract the P2-th column
|
|
** from this record. If there are less that (P2+1)
|
|
** values in the record, extract a NULL.
|
|
**
|
|
** The value extracted is stored in register P3.
|
|
**
|
|
** If the column contains fewer than P2 fields, then extract a NULL. Or,
|
|
** if the P4 argument is a P4_MEM use the value of the P4 argument as
|
|
** the result.
|
|
**
|
|
** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
|
|
** then the cache of the cursor is reset prior to extracting the column.
|
|
** The first OP_Column against a pseudo-table after the value of the content
|
|
** register has changed should have this bit set.
|
|
**
|
|
** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
|
|
** the result is guaranteed to only be used as the argument of a length()
|
|
** or typeof() function, respectively. The loading of large blobs can be
|
|
** skipped for length() and all content loading can be skipped for typeof().
|
|
*/
|
|
case OP_Column: {
|
|
u32 payloadSize; /* Number of bytes in the record */
|
|
i64 payloadSize64; /* Number of bytes in the record */
|
|
int p1; /* P1 value of the opcode */
|
|
int p2; /* column number to retrieve */
|
|
VdbeCursor *pC; /* The VDBE cursor */
|
|
char *zRec; /* Pointer to complete record-data */
|
|
BtCursor *pCrsr; /* The BTree cursor */
|
|
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
|
|
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
|
|
int nField; /* number of fields in the record */
|
|
int len; /* The length of the serialized data for the column */
|
|
int i; /* Loop counter */
|
|
char *zData; /* Part of the record being decoded */
|
|
Mem *pDest; /* Where to write the extracted value */
|
|
Mem sMem; /* For storing the record being decoded */
|
|
u8 *zIdx; /* Index into header */
|
|
u8 *zEndHdr; /* Pointer to first byte after the header */
|
|
u32 offset; /* Offset into the data */
|
|
u32 szField; /* Number of bytes in the content of a field */
|
|
int szHdr; /* Size of the header size field at start of record */
|
|
int avail; /* Number of bytes of available data */
|
|
u32 t; /* A type code from the record header */
|
|
Mem *pReg; /* PseudoTable input register */
|
|
|
|
|
|
p1 = pOp->p1;
|
|
p2 = pOp->p2;
|
|
pC = 0;
|
|
memset(&sMem, 0, sizeof(sMem));
|
|
assert( p1<p->nCursor );
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pDest = &aMem[pOp->p3];
|
|
memAboutToChange(p, pDest);
|
|
zRec = 0;
|
|
|
|
/* This block sets the variable payloadSize to be the total number of
|
|
** bytes in the record.
|
|
**
|
|
** zRec is set to be the complete text of the record if it is available.
|
|
** The complete record text is always available for pseudo-tables
|
|
** If the record is stored in a cursor, the complete record text
|
|
** might be available in the pC->aRow cache. Or it might not be.
|
|
** If the data is unavailable, zRec is set to NULL.
|
|
**
|
|
** We also compute the number of columns in the record. For cursors,
|
|
** the number of columns is stored in the VdbeCursor.nField element.
|
|
*/
|
|
pC = p->apCsr[p1];
|
|
assert( pC!=0 );
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
assert( pC->pVtabCursor==0 );
|
|
#endif
|
|
pCrsr = pC->pCursor;
|
|
if( pCrsr!=0 ){
|
|
/* The record is stored in a B-Tree */
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
if( pC->nullRow ){
|
|
payloadSize = 0;
|
|
}else if( pC->cacheStatus==p->cacheCtr ){
|
|
payloadSize = pC->payloadSize;
|
|
zRec = (char*)pC->aRow;
|
|
}else if( pC->isIndex ){
|
|
assert( sqlite3BtreeCursorIsValid(pCrsr) );
|
|
VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
|
|
assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
|
|
/* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
|
|
** payload size, so it is impossible for payloadSize64 to be
|
|
** larger than 32 bits. */
|
|
assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
|
|
payloadSize = (u32)payloadSize64;
|
|
}else{
|
|
assert( sqlite3BtreeCursorIsValid(pCrsr) );
|
|
VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
|
|
assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
|
|
}
|
|
}else if( ALWAYS(pC->pseudoTableReg>0) ){
|
|
pReg = &aMem[pC->pseudoTableReg];
|
|
if( pC->multiPseudo ){
|
|
sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
|
|
Deephemeralize(pDest);
|
|
goto op_column_out;
|
|
}
|
|
assert( pReg->flags & MEM_Blob );
|
|
assert( memIsValid(pReg) );
|
|
payloadSize = pReg->n;
|
|
zRec = pReg->z;
|
|
pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
|
|
assert( payloadSize==0 || zRec!=0 );
|
|
}else{
|
|
/* Consider the row to be NULL */
|
|
payloadSize = 0;
|
|
}
|
|
|
|
/* If payloadSize is 0, then just store a NULL. This can happen because of
|
|
** nullRow or because of a corrupt database. */
|
|
if( payloadSize==0 ){
|
|
MemSetTypeFlag(pDest, MEM_Null);
|
|
goto op_column_out;
|
|
}
|
|
assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
|
|
if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
|
|
nField = pC->nField;
|
|
assert( p2<nField );
|
|
|
|
/* Read and parse the table header. Store the results of the parse
|
|
** into the record header cache fields of the cursor.
|
|
*/
|
|
aType = pC->aType;
|
|
if( pC->cacheStatus==p->cacheCtr ){
|
|
aOffset = pC->aOffset;
|
|
}else{
|
|
assert(aType);
|
|
avail = 0;
|
|
pC->aOffset = aOffset = &aType[nField];
|
|
pC->payloadSize = payloadSize;
|
|
pC->cacheStatus = p->cacheCtr;
|
|
|
|
/* Figure out how many bytes are in the header */
|
|
if( zRec ){
|
|
zData = zRec;
|
|
}else{
|
|
if( pC->isIndex ){
|
|
zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
|
|
}else{
|
|
zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
|
|
}
|
|
/* If KeyFetch()/DataFetch() managed to get the entire payload,
|
|
** save the payload in the pC->aRow cache. That will save us from
|
|
** having to make additional calls to fetch the content portion of
|
|
** the record.
|
|
*/
|
|
assert( avail>=0 );
|
|
if( payloadSize <= (u32)avail ){
|
|
zRec = zData;
|
|
pC->aRow = (u8*)zData;
|
|
}else{
|
|
pC->aRow = 0;
|
|
}
|
|
}
|
|
/* The following assert is true in all cases except when
|
|
** the database file has been corrupted externally.
|
|
** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
|
|
szHdr = getVarint32((u8*)zData, offset);
|
|
|
|
/* Make sure a corrupt database has not given us an oversize header.
|
|
** Do this now to avoid an oversize memory allocation.
|
|
**
|
|
** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
|
|
** types use so much data space that there can only be 4096 and 32 of
|
|
** them, respectively. So the maximum header length results from a
|
|
** 3-byte type for each of the maximum of 32768 columns plus three
|
|
** extra bytes for the header length itself. 32768*3 + 3 = 98307.
|
|
*/
|
|
if( offset > 98307 ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto op_column_out;
|
|
}
|
|
|
|
/* Compute in len the number of bytes of data we need to read in order
|
|
** to get nField type values. offset is an upper bound on this. But
|
|
** nField might be significantly less than the true number of columns
|
|
** in the table, and in that case, 5*nField+3 might be smaller than offset.
|
|
** We want to minimize len in order to limit the size of the memory
|
|
** allocation, especially if a corrupt database file has caused offset
|
|
** to be oversized. Offset is limited to 98307 above. But 98307 might
|
|
** still exceed Robson memory allocation limits on some configurations.
|
|
** On systems that cannot tolerate large memory allocations, nField*5+3
|
|
** will likely be much smaller since nField will likely be less than
|
|
** 20 or so. This insures that Robson memory allocation limits are
|
|
** not exceeded even for corrupt database files.
|
|
*/
|
|
len = nField*5 + 3;
|
|
if( len > (int)offset ) len = (int)offset;
|
|
|
|
/* The KeyFetch() or DataFetch() above are fast and will get the entire
|
|
** record header in most cases. But they will fail to get the complete
|
|
** record header if the record header does not fit on a single page
|
|
** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
|
|
** acquire the complete header text.
|
|
*/
|
|
if( !zRec && avail<len ){
|
|
sMem.flags = 0;
|
|
sMem.db = 0;
|
|
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
|
|
if( rc!=SQLITE_OK ){
|
|
goto op_column_out;
|
|
}
|
|
zData = sMem.z;
|
|
}
|
|
zEndHdr = (u8 *)&zData[len];
|
|
zIdx = (u8 *)&zData[szHdr];
|
|
|
|
/* Scan the header and use it to fill in the aType[] and aOffset[]
|
|
** arrays. aType[i] will contain the type integer for the i-th
|
|
** column and aOffset[i] will contain the offset from the beginning
|
|
** of the record to the start of the data for the i-th column
|
|
*/
|
|
for(i=0; i<nField; i++){
|
|
if( zIdx<zEndHdr ){
|
|
aOffset[i] = offset;
|
|
if( zIdx[0]<0x80 ){
|
|
t = zIdx[0];
|
|
zIdx++;
|
|
}else{
|
|
zIdx += sqlite3GetVarint32(zIdx, &t);
|
|
}
|
|
aType[i] = t;
|
|
szField = sqlite3VdbeSerialTypeLen(t);
|
|
offset += szField;
|
|
if( offset<szField ){ /* True if offset overflows */
|
|
zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
|
|
break;
|
|
}
|
|
}else{
|
|
/* If i is less that nField, then there are fewer fields in this
|
|
** record than SetNumColumns indicated there are columns in the
|
|
** table. Set the offset for any extra columns not present in
|
|
** the record to 0. This tells code below to store the default value
|
|
** for the column instead of deserializing a value from the record.
|
|
*/
|
|
aOffset[i] = 0;
|
|
}
|
|
}
|
|
sqlite3VdbeMemRelease(&sMem);
|
|
sMem.flags = MEM_Null;
|
|
|
|
/* If we have read more header data than was contained in the header,
|
|
** or if the end of the last field appears to be past the end of the
|
|
** record, or if the end of the last field appears to be before the end
|
|
** of the record (when all fields present), then we must be dealing
|
|
** with a corrupt database.
|
|
*/
|
|
if( (zIdx > zEndHdr) || (offset > payloadSize)
|
|
|| (zIdx==zEndHdr && offset!=payloadSize) ){
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto op_column_out;
|
|
}
|
|
}
|
|
|
|
/* Get the column information. If aOffset[p2] is non-zero, then
|
|
** deserialize the value from the record. If aOffset[p2] is zero,
|
|
** then there are not enough fields in the record to satisfy the
|
|
** request. In this case, set the value NULL or to P4 if P4 is
|
|
** a pointer to a Mem object.
|
|
*/
|
|
if( aOffset[p2] ){
|
|
assert( rc==SQLITE_OK );
|
|
if( zRec ){
|
|
/* This is the common case where the whole row fits on a single page */
|
|
VdbeMemRelease(pDest);
|
|
sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
|
|
}else{
|
|
/* This branch happens only when the row overflows onto multiple pages */
|
|
t = aType[p2];
|
|
if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
|
|
&& ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
|
|
){
|
|
/* Content is irrelevant for the typeof() function and for
|
|
** the length(X) function if X is a blob. So we might as well use
|
|
** bogus content rather than reading content from disk. NULL works
|
|
** for text and blob and whatever is in the payloadSize64 variable
|
|
** will work for everything else. */
|
|
zData = t<12 ? (char*)&payloadSize64 : 0;
|
|
}else{
|
|
len = sqlite3VdbeSerialTypeLen(t);
|
|
sqlite3VdbeMemMove(&sMem, pDest);
|
|
rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
|
|
&sMem);
|
|
if( rc!=SQLITE_OK ){
|
|
goto op_column_out;
|
|
}
|
|
zData = sMem.z;
|
|
}
|
|
sqlite3VdbeSerialGet((u8*)zData, t, pDest);
|
|
}
|
|
pDest->enc = encoding;
|
|
}else{
|
|
if( pOp->p4type==P4_MEM ){
|
|
sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
|
|
}else{
|
|
MemSetTypeFlag(pDest, MEM_Null);
|
|
}
|
|
}
|
|
|
|
/* If we dynamically allocated space to hold the data (in the
|
|
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
|
|
** dynamically allocated space over to the pDest structure.
|
|
** This prevents a memory copy.
|
|
*/
|
|
if( sMem.zMalloc ){
|
|
assert( sMem.z==sMem.zMalloc );
|
|
assert( !(pDest->flags & MEM_Dyn) );
|
|
assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
|
|
pDest->flags &= ~(MEM_Ephem|MEM_Static);
|
|
pDest->flags |= MEM_Term;
|
|
pDest->z = sMem.z;
|
|
pDest->zMalloc = sMem.zMalloc;
|
|
}
|
|
|
|
rc = sqlite3VdbeMemMakeWriteable(pDest);
|
|
|
|
op_column_out:
|
|
UPDATE_MAX_BLOBSIZE(pDest);
|
|
REGISTER_TRACE(pOp->p3, pDest);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Affinity P1 P2 * P4 *
|
|
**
|
|
** Apply affinities to a range of P2 registers starting with P1.
|
|
**
|
|
** P4 is a string that is P2 characters long. The nth character of the
|
|
** string indicates the column affinity that should be used for the nth
|
|
** memory cell in the range.
|
|
*/
|
|
case OP_Affinity: {
|
|
const char *zAffinity; /* The affinity to be applied */
|
|
char cAff; /* A single character of affinity */
|
|
|
|
zAffinity = pOp->p4.z;
|
|
assert( zAffinity!=0 );
|
|
assert( zAffinity[pOp->p2]==0 );
|
|
pIn1 = &aMem[pOp->p1];
|
|
while( (cAff = *(zAffinity++))!=0 ){
|
|
assert( pIn1 <= &p->aMem[p->nMem] );
|
|
assert( memIsValid(pIn1) );
|
|
ExpandBlob(pIn1);
|
|
applyAffinity(pIn1, cAff, encoding);
|
|
pIn1++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: MakeRecord P1 P2 P3 P4 *
|
|
**
|
|
** Convert P2 registers beginning with P1 into the [record format]
|
|
** use as a data record in a database table or as a key
|
|
** in an index. The OP_Column opcode can decode the record later.
|
|
**
|
|
** P4 may be a string that is P2 characters long. The nth character of the
|
|
** string indicates the column affinity that should be used for the nth
|
|
** field of the index key.
|
|
**
|
|
** The mapping from character to affinity is given by the SQLITE_AFF_
|
|
** macros defined in sqliteInt.h.
|
|
**
|
|
** If P4 is NULL then all index fields have the affinity NONE.
|
|
*/
|
|
case OP_MakeRecord: {
|
|
u8 *zNewRecord; /* A buffer to hold the data for the new record */
|
|
Mem *pRec; /* The new record */
|
|
u64 nData; /* Number of bytes of data space */
|
|
int nHdr; /* Number of bytes of header space */
|
|
i64 nByte; /* Data space required for this record */
|
|
int nZero; /* Number of zero bytes at the end of the record */
|
|
int nVarint; /* Number of bytes in a varint */
|
|
u32 serial_type; /* Type field */
|
|
Mem *pData0; /* First field to be combined into the record */
|
|
Mem *pLast; /* Last field of the record */
|
|
int nField; /* Number of fields in the record */
|
|
char *zAffinity; /* The affinity string for the record */
|
|
int file_format; /* File format to use for encoding */
|
|
int i; /* Space used in zNewRecord[] */
|
|
int len; /* Length of a field */
|
|
|
|
/* Assuming the record contains N fields, the record format looks
|
|
** like this:
|
|
**
|
|
** ------------------------------------------------------------------------
|
|
** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
|
|
** ------------------------------------------------------------------------
|
|
**
|
|
** Data(0) is taken from register P1. Data(1) comes from register P1+1
|
|
** and so froth.
|
|
**
|
|
** Each type field is a varint representing the serial type of the
|
|
** corresponding data element (see sqlite3VdbeSerialType()). The
|
|
** hdr-size field is also a varint which is the offset from the beginning
|
|
** of the record to data0.
|
|
*/
|
|
nData = 0; /* Number of bytes of data space */
|
|
nHdr = 0; /* Number of bytes of header space */
|
|
nZero = 0; /* Number of zero bytes at the end of the record */
|
|
nField = pOp->p1;
|
|
zAffinity = pOp->p4.z;
|
|
assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
|
|
pData0 = &aMem[nField];
|
|
nField = pOp->p2;
|
|
pLast = &pData0[nField-1];
|
|
file_format = p->minWriteFileFormat;
|
|
|
|
/* Identify the output register */
|
|
assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
|
|
pOut = &aMem[pOp->p3];
|
|
memAboutToChange(p, pOut);
|
|
|
|
/* Loop through the elements that will make up the record to figure
|
|
** out how much space is required for the new record.
|
|
*/
|
|
for(pRec=pData0; pRec<=pLast; pRec++){
|
|
assert( memIsValid(pRec) );
|
|
if( zAffinity ){
|
|
applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
|
|
}
|
|
if( pRec->flags&MEM_Zero && pRec->n>0 ){
|
|
sqlite3VdbeMemExpandBlob(pRec);
|
|
}
|
|
serial_type = sqlite3VdbeSerialType(pRec, file_format);
|
|
len = sqlite3VdbeSerialTypeLen(serial_type);
|
|
nData += len;
|
|
nHdr += sqlite3VarintLen(serial_type);
|
|
if( pRec->flags & MEM_Zero ){
|
|
/* Only pure zero-filled BLOBs can be input to this Opcode.
|
|
** We do not allow blobs with a prefix and a zero-filled tail. */
|
|
nZero += pRec->u.nZero;
|
|
}else if( len ){
|
|
nZero = 0;
|
|
}
|
|
}
|
|
|
|
/* Add the initial header varint and total the size */
|
|
nHdr += nVarint = sqlite3VarintLen(nHdr);
|
|
if( nVarint<sqlite3VarintLen(nHdr) ){
|
|
nHdr++;
|
|
}
|
|
nByte = nHdr+nData-nZero;
|
|
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
|
|
/* Make sure the output register has a buffer large enough to store
|
|
** the new record. The output register (pOp->p3) is not allowed to
|
|
** be one of the input registers (because the following call to
|
|
** sqlite3VdbeMemGrow() could clobber the value before it is used).
|
|
*/
|
|
if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
|
|
goto no_mem;
|
|
}
|
|
zNewRecord = (u8 *)pOut->z;
|
|
|
|
/* Write the record */
|
|
i = putVarint32(zNewRecord, nHdr);
|
|
for(pRec=pData0; pRec<=pLast; pRec++){
|
|
serial_type = sqlite3VdbeSerialType(pRec, file_format);
|
|
i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
|
|
}
|
|
for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
|
|
i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
|
|
}
|
|
assert( i==nByte );
|
|
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pOut->n = (int)nByte;
|
|
pOut->flags = MEM_Blob | MEM_Dyn;
|
|
pOut->xDel = 0;
|
|
if( nZero ){
|
|
pOut->u.nZero = nZero;
|
|
pOut->flags |= MEM_Zero;
|
|
}
|
|
pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
|
|
REGISTER_TRACE(pOp->p3, pOut);
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Count P1 P2 * * *
|
|
**
|
|
** Store the number of entries (an integer value) in the table or index
|
|
** opened by cursor P1 in register P2
|
|
*/
|
|
#ifndef SQLITE_OMIT_BTREECOUNT
|
|
case OP_Count: { /* out2-prerelease */
|
|
i64 nEntry;
|
|
BtCursor *pCrsr;
|
|
|
|
pCrsr = p->apCsr[pOp->p1]->pCursor;
|
|
if( ALWAYS(pCrsr) ){
|
|
rc = sqlite3BtreeCount(pCrsr, &nEntry);
|
|
}else{
|
|
nEntry = 0;
|
|
}
|
|
pOut->u.i = nEntry;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* Opcode: Savepoint P1 * * P4 *
|
|
**
|
|
** Open, release or rollback the savepoint named by parameter P4, depending
|
|
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
|
|
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
|
|
*/
|
|
case OP_Savepoint: {
|
|
int p1; /* Value of P1 operand */
|
|
char *zName; /* Name of savepoint */
|
|
int nName;
|
|
Savepoint *pNew;
|
|
Savepoint *pSavepoint;
|
|
Savepoint *pTmp;
|
|
int iSavepoint;
|
|
int ii;
|
|
|
|
p1 = pOp->p1;
|
|
zName = pOp->p4.z;
|
|
|
|
/* Assert that the p1 parameter is valid. Also that if there is no open
|
|
** transaction, then there cannot be any savepoints.
|
|
*/
|
|
assert( db->pSavepoint==0 || db->autoCommit==0 );
|
|
assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
|
|
assert( db->pSavepoint || db->isTransactionSavepoint==0 );
|
|
assert( checkSavepointCount(db) );
|
|
|
|
if( p1==SAVEPOINT_BEGIN ){
|
|
if( db->writeVdbeCnt>0 ){
|
|
/* A new savepoint cannot be created if there are active write
|
|
** statements (i.e. open read/write incremental blob handles).
|
|
*/
|
|
sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
|
|
"SQL statements in progress");
|
|
rc = SQLITE_BUSY;
|
|
}else{
|
|
nName = sqlite3Strlen30(zName);
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* This call is Ok even if this savepoint is actually a transaction
|
|
** savepoint (and therefore should not prompt xSavepoint()) callbacks.
|
|
** If this is a transaction savepoint being opened, it is guaranteed
|
|
** that the db->aVTrans[] array is empty. */
|
|
assert( db->autoCommit==0 || db->nVTrans==0 );
|
|
rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
|
|
db->nStatement+db->nSavepoint);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
#endif
|
|
|
|
/* Create a new savepoint structure. */
|
|
pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
|
|
if( pNew ){
|
|
pNew->zName = (char *)&pNew[1];
|
|
memcpy(pNew->zName, zName, nName+1);
|
|
|
|
/* If there is no open transaction, then mark this as a special
|
|
** "transaction savepoint". */
|
|
if( db->autoCommit ){
|
|
db->autoCommit = 0;
|
|
db->isTransactionSavepoint = 1;
|
|
}else{
|
|
db->nSavepoint++;
|
|
}
|
|
|
|
/* Link the new savepoint into the database handle's list. */
|
|
pNew->pNext = db->pSavepoint;
|
|
db->pSavepoint = pNew;
|
|
pNew->nDeferredCons = db->nDeferredCons;
|
|
}
|
|
}
|
|
}else{
|
|
iSavepoint = 0;
|
|
|
|
/* Find the named savepoint. If there is no such savepoint, then an
|
|
** an error is returned to the user. */
|
|
for(
|
|
pSavepoint = db->pSavepoint;
|
|
pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
|
|
pSavepoint = pSavepoint->pNext
|
|
){
|
|
iSavepoint++;
|
|
}
|
|
if( !pSavepoint ){
|
|
sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
|
|
rc = SQLITE_ERROR;
|
|
}else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
|
|
/* It is not possible to release (commit) a savepoint if there are
|
|
** active write statements.
|
|
*/
|
|
sqlite3SetString(&p->zErrMsg, db,
|
|
"cannot release savepoint - SQL statements in progress"
|
|
);
|
|
rc = SQLITE_BUSY;
|
|
}else{
|
|
|
|
/* Determine whether or not this is a transaction savepoint. If so,
|
|
** and this is a RELEASE command, then the current transaction
|
|
** is committed.
|
|
*/
|
|
int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
|
|
if( isTransaction && p1==SAVEPOINT_RELEASE ){
|
|
if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
|
|
goto vdbe_return;
|
|
}
|
|
db->autoCommit = 1;
|
|
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
|
p->pc = pc;
|
|
db->autoCommit = 0;
|
|
p->rc = rc = SQLITE_BUSY;
|
|
goto vdbe_return;
|
|
}
|
|
db->isTransactionSavepoint = 0;
|
|
rc = p->rc;
|
|
}else{
|
|
iSavepoint = db->nSavepoint - iSavepoint - 1;
|
|
if( p1==SAVEPOINT_ROLLBACK ){
|
|
for(ii=0; ii<db->nDb; ii++){
|
|
sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
|
|
}
|
|
}
|
|
for(ii=0; ii<db->nDb; ii++){
|
|
rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
|
|
sqlite3ExpirePreparedStatements(db);
|
|
sqlite3ResetAllSchemasOfConnection(db);
|
|
db->flags = (db->flags | SQLITE_InternChanges);
|
|
}
|
|
}
|
|
|
|
/* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
|
|
** savepoints nested inside of the savepoint being operated on. */
|
|
while( db->pSavepoint!=pSavepoint ){
|
|
pTmp = db->pSavepoint;
|
|
db->pSavepoint = pTmp->pNext;
|
|
sqlite3DbFree(db, pTmp);
|
|
db->nSavepoint--;
|
|
}
|
|
|
|
/* If it is a RELEASE, then destroy the savepoint being operated on
|
|
** too. If it is a ROLLBACK TO, then set the number of deferred
|
|
** constraint violations present in the database to the value stored
|
|
** when the savepoint was created. */
|
|
if( p1==SAVEPOINT_RELEASE ){
|
|
assert( pSavepoint==db->pSavepoint );
|
|
db->pSavepoint = pSavepoint->pNext;
|
|
sqlite3DbFree(db, pSavepoint);
|
|
if( !isTransaction ){
|
|
db->nSavepoint--;
|
|
}
|
|
}else{
|
|
db->nDeferredCons = pSavepoint->nDeferredCons;
|
|
}
|
|
|
|
if( !isTransaction ){
|
|
rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AutoCommit P1 P2 * * *
|
|
**
|
|
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
|
|
** back any currently active btree transactions. If there are any active
|
|
** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
|
|
** there are active writing VMs or active VMs that use shared cache.
|
|
**
|
|
** This instruction causes the VM to halt.
|
|
*/
|
|
case OP_AutoCommit: {
|
|
int desiredAutoCommit;
|
|
int iRollback;
|
|
int turnOnAC;
|
|
|
|
desiredAutoCommit = pOp->p1;
|
|
iRollback = pOp->p2;
|
|
turnOnAC = desiredAutoCommit && !db->autoCommit;
|
|
assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
|
|
assert( desiredAutoCommit==1 || iRollback==0 );
|
|
assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
|
|
|
|
#if 0
|
|
if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
|
|
/* If this instruction implements a ROLLBACK and other VMs are
|
|
** still running, and a transaction is active, return an error indicating
|
|
** that the other VMs must complete first.
|
|
*/
|
|
sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
|
|
"SQL statements in progress");
|
|
rc = SQLITE_BUSY;
|
|
}else
|
|
#endif
|
|
if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
|
|
/* If this instruction implements a COMMIT and other VMs are writing
|
|
** return an error indicating that the other VMs must complete first.
|
|
*/
|
|
sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
|
|
"SQL statements in progress");
|
|
rc = SQLITE_BUSY;
|
|
}else if( desiredAutoCommit!=db->autoCommit ){
|
|
if( iRollback ){
|
|
assert( desiredAutoCommit==1 );
|
|
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
|
|
db->autoCommit = 1;
|
|
}else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
|
|
goto vdbe_return;
|
|
}else{
|
|
db->autoCommit = (u8)desiredAutoCommit;
|
|
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
|
p->pc = pc;
|
|
db->autoCommit = (u8)(1-desiredAutoCommit);
|
|
p->rc = rc = SQLITE_BUSY;
|
|
goto vdbe_return;
|
|
}
|
|
}
|
|
assert( db->nStatement==0 );
|
|
sqlite3CloseSavepoints(db);
|
|
if( p->rc==SQLITE_OK ){
|
|
rc = SQLITE_DONE;
|
|
}else{
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
goto vdbe_return;
|
|
}else{
|
|
sqlite3SetString(&p->zErrMsg, db,
|
|
(!desiredAutoCommit)?"cannot start a transaction within a transaction":(
|
|
(iRollback)?"cannot rollback - no transaction is active":
|
|
"cannot commit - no transaction is active"));
|
|
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Transaction P1 P2 * * *
|
|
**
|
|
** Begin a transaction. The transaction ends when a Commit or Rollback
|
|
** opcode is encountered. Depending on the ON CONFLICT setting, the
|
|
** transaction might also be rolled back if an error is encountered.
|
|
**
|
|
** P1 is the index of the database file on which the transaction is
|
|
** started. Index 0 is the main database file and index 1 is the
|
|
** file used for temporary tables. Indices of 2 or more are used for
|
|
** attached databases.
|
|
**
|
|
** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
|
|
** obtained on the database file when a write-transaction is started. No
|
|
** other process can start another write transaction while this transaction is
|
|
** underway. Starting a write transaction also creates a rollback journal. A
|
|
** write transaction must be started before any changes can be made to the
|
|
** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
|
|
** on the file.
|
|
**
|
|
** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
|
|
** true (this flag is set if the Vdbe may modify more than one row and may
|
|
** throw an ABORT exception), a statement transaction may also be opened.
|
|
** More specifically, a statement transaction is opened iff the database
|
|
** connection is currently not in autocommit mode, or if there are other
|
|
** active statements. A statement transaction allows the changes made by this
|
|
** VDBE to be rolled back after an error without having to roll back the
|
|
** entire transaction. If no error is encountered, the statement transaction
|
|
** will automatically commit when the VDBE halts.
|
|
**
|
|
** If P2 is zero, then a read-lock is obtained on the database file.
|
|
*/
|
|
case OP_Transaction: {
|
|
Btree *pBt;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
|
|
if( pBt ){
|
|
rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
|
|
if( rc==SQLITE_BUSY ){
|
|
p->pc = pc;
|
|
p->rc = rc = SQLITE_BUSY;
|
|
goto vdbe_return;
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
|
|
if( pOp->p2 && p->usesStmtJournal
|
|
&& (db->autoCommit==0 || db->activeVdbeCnt>1)
|
|
){
|
|
assert( sqlite3BtreeIsInTrans(pBt) );
|
|
if( p->iStatement==0 ){
|
|
assert( db->nStatement>=0 && db->nSavepoint>=0 );
|
|
db->nStatement++;
|
|
p->iStatement = db->nSavepoint + db->nStatement;
|
|
}
|
|
|
|
rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
|
|
}
|
|
|
|
/* Store the current value of the database handles deferred constraint
|
|
** counter. If the statement transaction needs to be rolled back,
|
|
** the value of this counter needs to be restored too. */
|
|
p->nStmtDefCons = db->nDeferredCons;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ReadCookie P1 P2 P3 * *
|
|
**
|
|
** Read cookie number P3 from database P1 and write it into register P2.
|
|
** P3==1 is the schema version. P3==2 is the database format.
|
|
** P3==3 is the recommended pager cache size, and so forth. P1==0 is
|
|
** the main database file and P1==1 is the database file used to store
|
|
** temporary tables.
|
|
**
|
|
** There must be a read-lock on the database (either a transaction
|
|
** must be started or there must be an open cursor) before
|
|
** executing this instruction.
|
|
*/
|
|
case OP_ReadCookie: { /* out2-prerelease */
|
|
int iMeta;
|
|
int iDb;
|
|
int iCookie;
|
|
|
|
iDb = pOp->p1;
|
|
iCookie = pOp->p3;
|
|
assert( pOp->p3<SQLITE_N_BTREE_META );
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
|
|
|
|
sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
|
|
pOut->u.i = iMeta;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SetCookie P1 P2 P3 * *
|
|
**
|
|
** Write the content of register P3 (interpreted as an integer)
|
|
** into cookie number P2 of database P1. P2==1 is the schema version.
|
|
** P2==2 is the database format. P2==3 is the recommended pager cache
|
|
** size, and so forth. P1==0 is the main database file and P1==1 is the
|
|
** database file used to store temporary tables.
|
|
**
|
|
** A transaction must be started before executing this opcode.
|
|
*/
|
|
case OP_SetCookie: { /* in3 */
|
|
Db *pDb;
|
|
assert( pOp->p2<SQLITE_N_BTREE_META );
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
|
|
pDb = &db->aDb[pOp->p1];
|
|
assert( pDb->pBt!=0 );
|
|
assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
|
|
pIn3 = &aMem[pOp->p3];
|
|
sqlite3VdbeMemIntegerify(pIn3);
|
|
/* See note about index shifting on OP_ReadCookie */
|
|
rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
|
|
if( pOp->p2==BTREE_SCHEMA_VERSION ){
|
|
/* When the schema cookie changes, record the new cookie internally */
|
|
pDb->pSchema->schema_cookie = (int)pIn3->u.i;
|
|
db->flags |= SQLITE_InternChanges;
|
|
}else if( pOp->p2==BTREE_FILE_FORMAT ){
|
|
/* Record changes in the file format */
|
|
pDb->pSchema->file_format = (u8)pIn3->u.i;
|
|
}
|
|
if( pOp->p1==1 ){
|
|
/* Invalidate all prepared statements whenever the TEMP database
|
|
** schema is changed. Ticket #1644 */
|
|
sqlite3ExpirePreparedStatements(db);
|
|
p->expired = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: VerifyCookie P1 P2 P3 * *
|
|
**
|
|
** Check the value of global database parameter number 0 (the
|
|
** schema version) and make sure it is equal to P2 and that the
|
|
** generation counter on the local schema parse equals P3.
|
|
**
|
|
** P1 is the database number which is 0 for the main database file
|
|
** and 1 for the file holding temporary tables and some higher number
|
|
** for auxiliary databases.
|
|
**
|
|
** The cookie changes its value whenever the database schema changes.
|
|
** This operation is used to detect when that the cookie has changed
|
|
** and that the current process needs to reread the schema.
|
|
**
|
|
** Either a transaction needs to have been started or an OP_Open needs
|
|
** to be executed (to establish a read lock) before this opcode is
|
|
** invoked.
|
|
*/
|
|
case OP_VerifyCookie: {
|
|
int iMeta;
|
|
int iGen;
|
|
Btree *pBt;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
|
|
assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
if( pBt ){
|
|
sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
|
|
iGen = db->aDb[pOp->p1].pSchema->iGeneration;
|
|
}else{
|
|
iGen = iMeta = 0;
|
|
}
|
|
if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
|
|
sqlite3DbFree(db, p->zErrMsg);
|
|
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
|
|
/* If the schema-cookie from the database file matches the cookie
|
|
** stored with the in-memory representation of the schema, do
|
|
** not reload the schema from the database file.
|
|
**
|
|
** If virtual-tables are in use, this is not just an optimization.
|
|
** Often, v-tables store their data in other SQLite tables, which
|
|
** are queried from within xNext() and other v-table methods using
|
|
** prepared queries. If such a query is out-of-date, we do not want to
|
|
** discard the database schema, as the user code implementing the
|
|
** v-table would have to be ready for the sqlite3_vtab structure itself
|
|
** to be invalidated whenever sqlite3_step() is called from within
|
|
** a v-table method.
|
|
*/
|
|
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
|
|
sqlite3ResetOneSchema(db, pOp->p1);
|
|
}
|
|
|
|
p->expired = 1;
|
|
rc = SQLITE_SCHEMA;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenRead P1 P2 P3 P4 P5
|
|
**
|
|
** Open a read-only cursor for the database table whose root page is
|
|
** P2 in a database file. The database file is determined by P3.
|
|
** P3==0 means the main database, P3==1 means the database used for
|
|
** temporary tables, and P3>1 means used the corresponding attached
|
|
** database. Give the new cursor an identifier of P1. The P1
|
|
** values need not be contiguous but all P1 values should be small integers.
|
|
** It is an error for P1 to be negative.
|
|
**
|
|
** If P5!=0 then use the content of register P2 as the root page, not
|
|
** the value of P2 itself.
|
|
**
|
|
** There will be a read lock on the database whenever there is an
|
|
** open cursor. If the database was unlocked prior to this instruction
|
|
** then a read lock is acquired as part of this instruction. A read
|
|
** lock allows other processes to read the database but prohibits
|
|
** any other process from modifying the database. The read lock is
|
|
** released when all cursors are closed. If this instruction attempts
|
|
** to get a read lock but fails, the script terminates with an
|
|
** SQLITE_BUSY error code.
|
|
**
|
|
** The P4 value may be either an integer (P4_INT32) or a pointer to
|
|
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
|
|
** structure, then said structure defines the content and collating
|
|
** sequence of the index being opened. Otherwise, if P4 is an integer
|
|
** value, it is set to the number of columns in the table.
|
|
**
|
|
** See also OpenWrite.
|
|
*/
|
|
/* Opcode: OpenWrite P1 P2 P3 P4 P5
|
|
**
|
|
** Open a read/write cursor named P1 on the table or index whose root
|
|
** page is P2. Or if P5!=0 use the content of register P2 to find the
|
|
** root page.
|
|
**
|
|
** The P4 value may be either an integer (P4_INT32) or a pointer to
|
|
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
|
|
** structure, then said structure defines the content and collating
|
|
** sequence of the index being opened. Otherwise, if P4 is an integer
|
|
** value, it is set to the number of columns in the table, or to the
|
|
** largest index of any column of the table that is actually used.
|
|
**
|
|
** This instruction works just like OpenRead except that it opens the cursor
|
|
** in read/write mode. For a given table, there can be one or more read-only
|
|
** cursors or a single read/write cursor but not both.
|
|
**
|
|
** See also OpenRead.
|
|
*/
|
|
case OP_OpenRead:
|
|
case OP_OpenWrite: {
|
|
int nField;
|
|
KeyInfo *pKeyInfo;
|
|
int p2;
|
|
int iDb;
|
|
int wrFlag;
|
|
Btree *pX;
|
|
VdbeCursor *pCur;
|
|
Db *pDb;
|
|
|
|
assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
|
|
assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
|
|
|
|
if( p->expired ){
|
|
rc = SQLITE_ABORT;
|
|
break;
|
|
}
|
|
|
|
nField = 0;
|
|
pKeyInfo = 0;
|
|
p2 = pOp->p2;
|
|
iDb = pOp->p3;
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
|
|
pDb = &db->aDb[iDb];
|
|
pX = pDb->pBt;
|
|
assert( pX!=0 );
|
|
if( pOp->opcode==OP_OpenWrite ){
|
|
wrFlag = 1;
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
if( pDb->pSchema->file_format < p->minWriteFileFormat ){
|
|
p->minWriteFileFormat = pDb->pSchema->file_format;
|
|
}
|
|
}else{
|
|
wrFlag = 0;
|
|
}
|
|
if( pOp->p5 & OPFLAG_P2ISREG ){
|
|
assert( p2>0 );
|
|
assert( p2<=p->nMem );
|
|
pIn2 = &aMem[p2];
|
|
assert( memIsValid(pIn2) );
|
|
assert( (pIn2->flags & MEM_Int)!=0 );
|
|
sqlite3VdbeMemIntegerify(pIn2);
|
|
p2 = (int)pIn2->u.i;
|
|
/* The p2 value always comes from a prior OP_CreateTable opcode and
|
|
** that opcode will always set the p2 value to 2 or more or else fail.
|
|
** If there were a failure, the prepared statement would have halted
|
|
** before reaching this instruction. */
|
|
if( NEVER(p2<2) ) {
|
|
rc = SQLITE_CORRUPT_BKPT;
|
|
goto abort_due_to_error;
|
|
}
|
|
}
|
|
if( pOp->p4type==P4_KEYINFO ){
|
|
pKeyInfo = pOp->p4.pKeyInfo;
|
|
pKeyInfo->enc = ENC(p->db);
|
|
nField = pKeyInfo->nField+1;
|
|
}else if( pOp->p4type==P4_INT32 ){
|
|
nField = pOp->p4.i;
|
|
}
|
|
assert( pOp->p1>=0 );
|
|
pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
|
|
if( pCur==0 ) goto no_mem;
|
|
pCur->nullRow = 1;
|
|
pCur->isOrdered = 1;
|
|
rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
|
|
pCur->pKeyInfo = pKeyInfo;
|
|
assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
|
|
sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
|
|
|
|
/* Since it performs no memory allocation or IO, the only value that
|
|
** sqlite3BtreeCursor() may return is SQLITE_OK. */
|
|
assert( rc==SQLITE_OK );
|
|
|
|
/* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
|
|
** SQLite used to check if the root-page flags were sane at this point
|
|
** and report database corruption if they were not, but this check has
|
|
** since moved into the btree layer. */
|
|
pCur->isTable = pOp->p4type!=P4_KEYINFO;
|
|
pCur->isIndex = !pCur->isTable;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenEphemeral P1 P2 * P4 P5
|
|
**
|
|
** Open a new cursor P1 to a transient table.
|
|
** The cursor is always opened read/write even if
|
|
** the main database is read-only. The ephemeral
|
|
** table is deleted automatically when the cursor is closed.
|
|
**
|
|
** P2 is the number of columns in the ephemeral table.
|
|
** The cursor points to a BTree table if P4==0 and to a BTree index
|
|
** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
|
|
** that defines the format of keys in the index.
|
|
**
|
|
** This opcode was once called OpenTemp. But that created
|
|
** confusion because the term "temp table", might refer either
|
|
** to a TEMP table at the SQL level, or to a table opened by
|
|
** this opcode. Then this opcode was call OpenVirtual. But
|
|
** that created confusion with the whole virtual-table idea.
|
|
**
|
|
** The P5 parameter can be a mask of the BTREE_* flags defined
|
|
** in btree.h. These flags control aspects of the operation of
|
|
** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
|
|
** added automatically.
|
|
*/
|
|
/* Opcode: OpenAutoindex P1 P2 * P4 *
|
|
**
|
|
** This opcode works the same as OP_OpenEphemeral. It has a
|
|
** different name to distinguish its use. Tables created using
|
|
** by this opcode will be used for automatically created transient
|
|
** indices in joins.
|
|
*/
|
|
case OP_OpenAutoindex:
|
|
case OP_OpenEphemeral: {
|
|
VdbeCursor *pCx;
|
|
static const int vfsFlags =
|
|
SQLITE_OPEN_READWRITE |
|
|
SQLITE_OPEN_CREATE |
|
|
SQLITE_OPEN_EXCLUSIVE |
|
|
SQLITE_OPEN_DELETEONCLOSE |
|
|
SQLITE_OPEN_TRANSIENT_DB;
|
|
|
|
assert( pOp->p1>=0 );
|
|
pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
|
|
if( pCx==0 ) goto no_mem;
|
|
pCx->nullRow = 1;
|
|
rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
|
|
BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
/* If a transient index is required, create it by calling
|
|
** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
|
|
** opening it. If a transient table is required, just use the
|
|
** automatically created table with root-page 1 (an BLOB_INTKEY table).
|
|
*/
|
|
if( pOp->p4.pKeyInfo ){
|
|
int pgno;
|
|
assert( pOp->p4type==P4_KEYINFO );
|
|
rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
|
|
if( rc==SQLITE_OK ){
|
|
assert( pgno==MASTER_ROOT+1 );
|
|
rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
|
|
(KeyInfo*)pOp->p4.z, pCx->pCursor);
|
|
pCx->pKeyInfo = pOp->p4.pKeyInfo;
|
|
pCx->pKeyInfo->enc = ENC(p->db);
|
|
}
|
|
pCx->isTable = 0;
|
|
}else{
|
|
rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
|
|
pCx->isTable = 1;
|
|
}
|
|
}
|
|
pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
|
|
pCx->isIndex = !pCx->isTable;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SorterOpen P1 P2 * P4 *
|
|
**
|
|
** This opcode works like OP_OpenEphemeral except that it opens
|
|
** a transient index that is specifically designed to sort large
|
|
** tables using an external merge-sort algorithm.
|
|
*/
|
|
case OP_SorterOpen: {
|
|
VdbeCursor *pCx;
|
|
|
|
pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
|
|
if( pCx==0 ) goto no_mem;
|
|
pCx->pKeyInfo = pOp->p4.pKeyInfo;
|
|
pCx->pKeyInfo->enc = ENC(p->db);
|
|
pCx->isSorter = 1;
|
|
rc = sqlite3VdbeSorterInit(db, pCx);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: OpenPseudo P1 P2 P3 * P5
|
|
**
|
|
** Open a new cursor that points to a fake table that contains a single
|
|
** row of data. The content of that one row in the content of memory
|
|
** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
|
|
** MEM_Blob content contained in register P2. When P5==1, then the
|
|
** row is represented by P3 consecutive registers beginning with P2.
|
|
**
|
|
** A pseudo-table created by this opcode is used to hold a single
|
|
** row output from the sorter so that the row can be decomposed into
|
|
** individual columns using the OP_Column opcode. The OP_Column opcode
|
|
** is the only cursor opcode that works with a pseudo-table.
|
|
**
|
|
** P3 is the number of fields in the records that will be stored by
|
|
** the pseudo-table.
|
|
*/
|
|
case OP_OpenPseudo: {
|
|
VdbeCursor *pCx;
|
|
|
|
assert( pOp->p1>=0 );
|
|
pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
|
|
if( pCx==0 ) goto no_mem;
|
|
pCx->nullRow = 1;
|
|
pCx->pseudoTableReg = pOp->p2;
|
|
pCx->isTable = 1;
|
|
pCx->isIndex = 0;
|
|
pCx->multiPseudo = pOp->p5;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Close P1 * * * *
|
|
**
|
|
** Close a cursor previously opened as P1. If P1 is not
|
|
** currently open, this instruction is a no-op.
|
|
*/
|
|
case OP_Close: {
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
|
|
p->apCsr[pOp->p1] = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SeekGe P1 P2 P3 P4 *
|
|
**
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
** use the value in register P3 as the key. If cursor P1 refers
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
** that are used as an unpacked index key.
|
|
**
|
|
** Reposition cursor P1 so that it points to the smallest entry that
|
|
** is greater than or equal to the key value. If there are no records
|
|
** greater than or equal to the key and P2 is not zero, then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
|
|
*/
|
|
/* Opcode: SeekGt P1 P2 P3 P4 *
|
|
**
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
** use the value in register P3 as a key. If cursor P1 refers
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
** that are used as an unpacked index key.
|
|
**
|
|
** Reposition cursor P1 so that it points to the smallest entry that
|
|
** is greater than the key value. If there are no records greater than
|
|
** the key and P2 is not zero, then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
|
|
*/
|
|
/* Opcode: SeekLt P1 P2 P3 P4 *
|
|
**
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
** use the value in register P3 as a key. If cursor P1 refers
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
** that are used as an unpacked index key.
|
|
**
|
|
** Reposition cursor P1 so that it points to the largest entry that
|
|
** is less than the key value. If there are no records less than
|
|
** the key and P2 is not zero, then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
|
|
*/
|
|
/* Opcode: SeekLe P1 P2 P3 P4 *
|
|
**
|
|
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
|
** use the value in register P3 as a key. If cursor P1 refers
|
|
** to an SQL index, then P3 is the first in an array of P4 registers
|
|
** that are used as an unpacked index key.
|
|
**
|
|
** Reposition cursor P1 so that it points to the largest entry that
|
|
** is less than or equal to the key value. If there are no records
|
|
** less than or equal to the key and P2 is not zero, then jump to P2.
|
|
**
|
|
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
|
|
*/
|
|
case OP_SeekLt: /* jump, in3 */
|
|
case OP_SeekLe: /* jump, in3 */
|
|
case OP_SeekGe: /* jump, in3 */
|
|
case OP_SeekGt: { /* jump, in3 */
|
|
int res;
|
|
int oc;
|
|
VdbeCursor *pC;
|
|
UnpackedRecord r;
|
|
int nField;
|
|
i64 iKey; /* The rowid we are to seek to */
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
assert( pOp->p2!=0 );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
assert( pC->pseudoTableReg==0 );
|
|
assert( OP_SeekLe == OP_SeekLt+1 );
|
|
assert( OP_SeekGe == OP_SeekLt+2 );
|
|
assert( OP_SeekGt == OP_SeekLt+3 );
|
|
assert( pC->isOrdered );
|
|
if( ALWAYS(pC->pCursor!=0) ){
|
|
oc = pOp->opcode;
|
|
pC->nullRow = 0;
|
|
if( pC->isTable ){
|
|
/* The input value in P3 might be of any type: integer, real, string,
|
|
** blob, or NULL. But it needs to be an integer before we can do
|
|
** the seek, so covert it. */
|
|
pIn3 = &aMem[pOp->p3];
|
|
applyNumericAffinity(pIn3);
|
|
iKey = sqlite3VdbeIntValue(pIn3);
|
|
pC->rowidIsValid = 0;
|
|
|
|
/* If the P3 value could not be converted into an integer without
|
|
** loss of information, then special processing is required... */
|
|
if( (pIn3->flags & MEM_Int)==0 ){
|
|
if( (pIn3->flags & MEM_Real)==0 ){
|
|
/* If the P3 value cannot be converted into any kind of a number,
|
|
** then the seek is not possible, so jump to P2 */
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
/* If we reach this point, then the P3 value must be a floating
|
|
** point number. */
|
|
assert( (pIn3->flags & MEM_Real)!=0 );
|
|
|
|
if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
|
|
/* The P3 value is too large in magnitude to be expressed as an
|
|
** integer. */
|
|
res = 1;
|
|
if( pIn3->r<0 ){
|
|
if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
|
|
rc = sqlite3BtreeFirst(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
}
|
|
}else{
|
|
if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
|
|
rc = sqlite3BtreeLast(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
}
|
|
}
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}else if( oc==OP_SeekLt || oc==OP_SeekGe ){
|
|
/* Use the ceiling() function to convert real->int */
|
|
if( pIn3->r > (double)iKey ) iKey++;
|
|
}else{
|
|
/* Use the floor() function to convert real->int */
|
|
assert( oc==OP_SeekLe || oc==OP_SeekGt );
|
|
if( pIn3->r < (double)iKey ) iKey--;
|
|
}
|
|
}
|
|
rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( res==0 ){
|
|
pC->rowidIsValid = 1;
|
|
pC->lastRowid = iKey;
|
|
}
|
|
}else{
|
|
nField = pOp->p4.i;
|
|
assert( pOp->p4type==P4_INT32 );
|
|
assert( nField>0 );
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
r.nField = (u16)nField;
|
|
|
|
/* The next line of code computes as follows, only faster:
|
|
** if( oc==OP_SeekGt || oc==OP_SeekLe ){
|
|
** r.flags = UNPACKED_INCRKEY;
|
|
** }else{
|
|
** r.flags = 0;
|
|
** }
|
|
*/
|
|
r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
|
|
assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
|
|
assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
|
|
assert( oc!=OP_SeekGe || r.flags==0 );
|
|
assert( oc!=OP_SeekLt || r.flags==0 );
|
|
|
|
r.aMem = &aMem[pOp->p3];
|
|
#ifdef SQLITE_DEBUG
|
|
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
|
|
#endif
|
|
ExpandBlob(r.aMem);
|
|
rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
pC->rowidIsValid = 0;
|
|
}
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_search_count++;
|
|
#endif
|
|
if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
|
|
if( res<0 || (res==0 && oc==OP_SeekGt) ){
|
|
rc = sqlite3BtreeNext(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
pC->rowidIsValid = 0;
|
|
}else{
|
|
res = 0;
|
|
}
|
|
}else{
|
|
assert( oc==OP_SeekLt || oc==OP_SeekLe );
|
|
if( res>0 || (res==0 && oc==OP_SeekLt) ){
|
|
rc = sqlite3BtreePrevious(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
|
pC->rowidIsValid = 0;
|
|
}else{
|
|
/* res might be negative because the table is empty. Check to
|
|
** see if this is the case.
|
|
*/
|
|
res = sqlite3BtreeEof(pC->pCursor);
|
|
}
|
|
}
|
|
assert( pOp->p2>0 );
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}else{
|
|
/* This happens when attempting to open the sqlite3_master table
|
|
** for read access returns SQLITE_EMPTY. In this case always
|
|
** take the jump (since there are no records in the table).
|
|
*/
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Seek P1 P2 * * *
|
|
**
|
|
** P1 is an open table cursor and P2 is a rowid integer. Arrange
|
|
** for P1 to move so that it points to the rowid given by P2.
|
|
**
|
|
** This is actually a deferred seek. Nothing actually happens until
|
|
** the cursor is used to read a record. That way, if no reads
|
|
** occur, no unnecessary I/O happens.
|
|
*/
|
|
case OP_Seek: { /* in2 */
|
|
VdbeCursor *pC;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
if( ALWAYS(pC->pCursor!=0) ){
|
|
assert( pC->isTable );
|
|
pC->nullRow = 0;
|
|
pIn2 = &aMem[pOp->p2];
|
|
pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
|
|
pC->rowidIsValid = 0;
|
|
pC->deferredMoveto = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: Found P1 P2 P3 P4 *
|
|
**
|
|
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
|
|
** P4>0 then register P3 is the first of P4 registers that form an unpacked
|
|
** record.
|
|
**
|
|
** Cursor P1 is on an index btree. If the record identified by P3 and P4
|
|
** is a prefix of any entry in P1 then a jump is made to P2 and
|
|
** P1 is left pointing at the matching entry.
|
|
*/
|
|
/* Opcode: NotFound P1 P2 P3 P4 *
|
|
**
|
|
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
|
|
** P4>0 then register P3 is the first of P4 registers that form an unpacked
|
|
** record.
|
|
**
|
|
** Cursor P1 is on an index btree. If the record identified by P3 and P4
|
|
** is not the prefix of any entry in P1 then a jump is made to P2. If P1
|
|
** does contain an entry whose prefix matches the P3/P4 record then control
|
|
** falls through to the next instruction and P1 is left pointing at the
|
|
** matching entry.
|
|
**
|
|
** See also: Found, NotExists, IsUnique
|
|
*/
|
|
case OP_NotFound: /* jump, in3 */
|
|
case OP_Found: { /* jump, in3 */
|
|
int alreadyExists;
|
|
VdbeCursor *pC;
|
|
int res;
|
|
char *pFree;
|
|
UnpackedRecord *pIdxKey;
|
|
UnpackedRecord r;
|
|
char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
|
|
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_found_count++;
|
|
#endif
|
|
|
|
alreadyExists = 0;
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
assert( pOp->p4type==P4_INT32 );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
pIn3 = &aMem[pOp->p3];
|
|
if( ALWAYS(pC->pCursor!=0) ){
|
|
|
|
assert( pC->isTable==0 );
|
|
if( pOp->p4.i>0 ){
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
r.nField = (u16)pOp->p4.i;
|
|
r.aMem = pIn3;
|
|
#ifdef SQLITE_DEBUG
|
|
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
|
|
#endif
|
|
r.flags = UNPACKED_PREFIX_MATCH;
|
|
pIdxKey = &r;
|
|
}else{
|
|
pIdxKey = sqlite3VdbeAllocUnpackedRecord(
|
|
pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
|
|
);
|
|
if( pIdxKey==0 ) goto no_mem;
|
|
assert( pIn3->flags & MEM_Blob );
|
|
assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
|
|
sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
|
|
pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
|
|
}
|
|
rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
|
|
if( pOp->p4.i==0 ){
|
|
sqlite3DbFree(db, pFree);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
break;
|
|
}
|
|
alreadyExists = (res==0);
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
if( pOp->opcode==OP_Found ){
|
|
if( alreadyExists ) pc = pOp->p2 - 1;
|
|
}else{
|
|
if( !alreadyExists ) pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IsUnique P1 P2 P3 P4 *
|
|
**
|
|
** Cursor P1 is open on an index b-tree - that is to say, a btree which
|
|
** no data and where the key are records generated by OP_MakeRecord with
|
|
** the list field being the integer ROWID of the entry that the index
|
|
** entry refers to.
|
|
**
|
|
** The P3 register contains an integer record number. Call this record
|
|
** number R. Register P4 is the first in a set of N contiguous registers
|
|
** that make up an unpacked index key that can be used with cursor P1.
|
|
** The value of N can be inferred from the cursor. N includes the rowid
|
|
** value appended to the end of the index record. This rowid value may
|
|
** or may not be the same as R.
|
|
**
|
|
** If any of the N registers beginning with register P4 contains a NULL
|
|
** value, jump immediately to P2.
|
|
**
|
|
** Otherwise, this instruction checks if cursor P1 contains an entry
|
|
** where the first (N-1) fields match but the rowid value at the end
|
|
** of the index entry is not R. If there is no such entry, control jumps
|
|
** to instruction P2. Otherwise, the rowid of the conflicting index
|
|
** entry is copied to register P3 and control falls through to the next
|
|
** instruction.
|
|
**
|
|
** See also: NotFound, NotExists, Found
|
|
*/
|
|
case OP_IsUnique: { /* jump, in3 */
|
|
u16 ii;
|
|
VdbeCursor *pCx;
|
|
BtCursor *pCrsr;
|
|
u16 nField;
|
|
Mem *aMx;
|
|
UnpackedRecord r; /* B-Tree index search key */
|
|
i64 R; /* Rowid stored in register P3 */
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
aMx = &aMem[pOp->p4.i];
|
|
/* Assert that the values of parameters P1 and P4 are in range. */
|
|
assert( pOp->p4type==P4_INT32 );
|
|
assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
|
|
/* Find the index cursor. */
|
|
pCx = p->apCsr[pOp->p1];
|
|
assert( pCx->deferredMoveto==0 );
|
|
pCx->seekResult = 0;
|
|
pCx->cacheStatus = CACHE_STALE;
|
|
pCrsr = pCx->pCursor;
|
|
|
|
/* If any of the values are NULL, take the jump. */
|
|
nField = pCx->pKeyInfo->nField;
|
|
for(ii=0; ii<nField; ii++){
|
|
if( aMx[ii].flags & MEM_Null ){
|
|
pc = pOp->p2 - 1;
|
|
pCrsr = 0;
|
|
break;
|
|
}
|
|
}
|
|
assert( (aMx[nField].flags & MEM_Null)==0 );
|
|
|
|
if( pCrsr!=0 ){
|
|
/* Populate the index search key. */
|
|
r.pKeyInfo = pCx->pKeyInfo;
|
|
r.nField = nField + 1;
|
|
r.flags = UNPACKED_PREFIX_SEARCH;
|
|
r.aMem = aMx;
|
|
#ifdef SQLITE_DEBUG
|
|
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
|
|
#endif
|
|
|
|
/* Extract the value of R from register P3. */
|
|
sqlite3VdbeMemIntegerify(pIn3);
|
|
R = pIn3->u.i;
|
|
|
|
/* Search the B-Tree index. If no conflicting record is found, jump
|
|
** to P2. Otherwise, copy the rowid of the conflicting record to
|
|
** register P3 and fall through to the next instruction. */
|
|
rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
|
|
if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
|
|
pc = pOp->p2 - 1;
|
|
}else{
|
|
pIn3->u.i = r.rowid;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NotExists P1 P2 P3 * *
|
|
**
|
|
** Use the content of register P3 as an integer key. If a record
|
|
** with that key does not exist in table of P1, then jump to P2.
|
|
** If the record does exist, then fall through. The cursor is left
|
|
** pointing to the record if it exists.
|
|
**
|
|
** The difference between this operation and NotFound is that this
|
|
** operation assumes the key is an integer and that P1 is a table whereas
|
|
** NotFound assumes key is a blob constructed from MakeRecord and
|
|
** P1 is an index.
|
|
**
|
|
** See also: Found, NotFound, IsUnique
|
|
*/
|
|
case OP_NotExists: { /* jump, in3 */
|
|
VdbeCursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
u64 iKey;
|
|
|
|
pIn3 = &aMem[pOp->p3];
|
|
assert( pIn3->flags & MEM_Int );
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
assert( pC->isTable );
|
|
assert( pC->pseudoTableReg==0 );
|
|
pCrsr = pC->pCursor;
|
|
if( ALWAYS(pCrsr!=0) ){
|
|
res = 0;
|
|
iKey = pIn3->u.i;
|
|
rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
|
|
pC->lastRowid = pIn3->u.i;
|
|
pC->rowidIsValid = res==0 ?1:0;
|
|
pC->nullRow = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
pC->deferredMoveto = 0;
|
|
if( res!=0 ){
|
|
pc = pOp->p2 - 1;
|
|
assert( pC->rowidIsValid==0 );
|
|
}
|
|
pC->seekResult = res;
|
|
}else{
|
|
/* This happens when an attempt to open a read cursor on the
|
|
** sqlite_master table returns SQLITE_EMPTY.
|
|
*/
|
|
pc = pOp->p2 - 1;
|
|
assert( pC->rowidIsValid==0 );
|
|
pC->seekResult = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Sequence P1 P2 * * *
|
|
**
|
|
** Find the next available sequence number for cursor P1.
|
|
** Write the sequence number into register P2.
|
|
** The sequence number on the cursor is incremented after this
|
|
** instruction.
|
|
*/
|
|
case OP_Sequence: { /* out2-prerelease */
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
assert( p->apCsr[pOp->p1]!=0 );
|
|
pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: NewRowid P1 P2 P3 * *
|
|
**
|
|
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
|
|
** The record number is not previously used as a key in the database
|
|
** table that cursor P1 points to. The new record number is written
|
|
** written to register P2.
|
|
**
|
|
** If P3>0 then P3 is a register in the root frame of this VDBE that holds
|
|
** the largest previously generated record number. No new record numbers are
|
|
** allowed to be less than this value. When this value reaches its maximum,
|
|
** an SQLITE_FULL error is generated. The P3 register is updated with the '
|
|
** generated record number. This P3 mechanism is used to help implement the
|
|
** AUTOINCREMENT feature.
|
|
*/
|
|
case OP_NewRowid: { /* out2-prerelease */
|
|
i64 v; /* The new rowid */
|
|
VdbeCursor *pC; /* Cursor of table to get the new rowid */
|
|
int res; /* Result of an sqlite3BtreeLast() */
|
|
int cnt; /* Counter to limit the number of searches */
|
|
Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
|
|
VdbeFrame *pFrame; /* Root frame of VDBE */
|
|
|
|
v = 0;
|
|
res = 0;
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
if( NEVER(pC->pCursor==0) ){
|
|
/* The zero initialization above is all that is needed */
|
|
}else{
|
|
/* The next rowid or record number (different terms for the same
|
|
** thing) is obtained in a two-step algorithm.
|
|
**
|
|
** First we attempt to find the largest existing rowid and add one
|
|
** to that. But if the largest existing rowid is already the maximum
|
|
** positive integer, we have to fall through to the second
|
|
** probabilistic algorithm
|
|
**
|
|
** The second algorithm is to select a rowid at random and see if
|
|
** it already exists in the table. If it does not exist, we have
|
|
** succeeded. If the random rowid does exist, we select a new one
|
|
** and try again, up to 100 times.
|
|
*/
|
|
assert( pC->isTable );
|
|
|
|
#ifdef SQLITE_32BIT_ROWID
|
|
# define MAX_ROWID 0x7fffffff
|
|
#else
|
|
/* Some compilers complain about constants of the form 0x7fffffffffffffff.
|
|
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
|
|
** to provide the constant while making all compilers happy.
|
|
*/
|
|
# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
|
|
#endif
|
|
|
|
if( !pC->useRandomRowid ){
|
|
v = sqlite3BtreeGetCachedRowid(pC->pCursor);
|
|
if( v==0 ){
|
|
rc = sqlite3BtreeLast(pC->pCursor, &res);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
if( res ){
|
|
v = 1; /* IMP: R-61914-48074 */
|
|
}else{
|
|
assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
|
|
rc = sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
|
|
if( v>=MAX_ROWID ){
|
|
pC->useRandomRowid = 1;
|
|
}else{
|
|
v++; /* IMP: R-29538-34987 */
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
if( pOp->p3 ){
|
|
/* Assert that P3 is a valid memory cell. */
|
|
assert( pOp->p3>0 );
|
|
if( p->pFrame ){
|
|
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
|
|
/* Assert that P3 is a valid memory cell. */
|
|
assert( pOp->p3<=pFrame->nMem );
|
|
pMem = &pFrame->aMem[pOp->p3];
|
|
}else{
|
|
/* Assert that P3 is a valid memory cell. */
|
|
assert( pOp->p3<=p->nMem );
|
|
pMem = &aMem[pOp->p3];
|
|
memAboutToChange(p, pMem);
|
|
}
|
|
assert( memIsValid(pMem) );
|
|
|
|
REGISTER_TRACE(pOp->p3, pMem);
|
|
sqlite3VdbeMemIntegerify(pMem);
|
|
assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
|
|
if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
|
|
rc = SQLITE_FULL; /* IMP: R-12275-61338 */
|
|
goto abort_due_to_error;
|
|
}
|
|
if( v<pMem->u.i+1 ){
|
|
v = pMem->u.i + 1;
|
|
}
|
|
pMem->u.i = v;
|
|
}
|
|
#endif
|
|
|
|
sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
|
|
}
|
|
if( pC->useRandomRowid ){
|
|
/* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
|
|
** largest possible integer (9223372036854775807) then the database
|
|
** engine starts picking positive candidate ROWIDs at random until
|
|
** it finds one that is not previously used. */
|
|
assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
|
|
** an AUTOINCREMENT table. */
|
|
/* on the first attempt, simply do one more than previous */
|
|
v = lastRowid;
|
|
v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
|
|
v++; /* ensure non-zero */
|
|
cnt = 0;
|
|
while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
|
|
0, &res))==SQLITE_OK)
|
|
&& (res==0)
|
|
&& (++cnt<100)){
|
|
/* collision - try another random rowid */
|
|
sqlite3_randomness(sizeof(v), &v);
|
|
if( cnt<5 ){
|
|
/* try "small" random rowids for the initial attempts */
|
|
v &= 0xffffff;
|
|
}else{
|
|
v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
|
|
}
|
|
v++; /* ensure non-zero */
|
|
}
|
|
if( rc==SQLITE_OK && res==0 ){
|
|
rc = SQLITE_FULL; /* IMP: R-38219-53002 */
|
|
goto abort_due_to_error;
|
|
}
|
|
assert( v>0 ); /* EV: R-40812-03570 */
|
|
}
|
|
pC->rowidIsValid = 0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
pOut->u.i = v;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Insert P1 P2 P3 P4 P5
|
|
**
|
|
** Write an entry into the table of cursor P1. A new entry is
|
|
** created if it doesn't already exist or the data for an existing
|
|
** entry is overwritten. The data is the value MEM_Blob stored in register
|
|
** number P2. The key is stored in register P3. The key must
|
|
** be a MEM_Int.
|
|
**
|
|
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
|
|
** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
|
|
** then rowid is stored for subsequent return by the
|
|
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
|
|
**
|
|
** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
|
|
** the last seek operation (OP_NotExists) was a success, then this
|
|
** operation will not attempt to find the appropriate row before doing
|
|
** the insert but will instead overwrite the row that the cursor is
|
|
** currently pointing to. Presumably, the prior OP_NotExists opcode
|
|
** has already positioned the cursor correctly. This is an optimization
|
|
** that boosts performance by avoiding redundant seeks.
|
|
**
|
|
** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
|
|
** UPDATE operation. Otherwise (if the flag is clear) then this opcode
|
|
** is part of an INSERT operation. The difference is only important to
|
|
** the update hook.
|
|
**
|
|
** Parameter P4 may point to a string containing the table-name, or
|
|
** may be NULL. If it is not NULL, then the update-hook
|
|
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
|
|
**
|
|
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
|
|
** allocated, then ownership of P2 is transferred to the pseudo-cursor
|
|
** and register P2 becomes ephemeral. If the cursor is changed, the
|
|
** value of register P2 will then change. Make sure this does not
|
|
** cause any problems.)
|
|
**
|
|
** This instruction only works on tables. The equivalent instruction
|
|
** for indices is OP_IdxInsert.
|
|
*/
|
|
/* Opcode: InsertInt P1 P2 P3 P4 P5
|
|
**
|
|
** This works exactly like OP_Insert except that the key is the
|
|
** integer value P3, not the value of the integer stored in register P3.
|
|
*/
|
|
case OP_Insert:
|
|
case OP_InsertInt: {
|
|
Mem *pData; /* MEM cell holding data for the record to be inserted */
|
|
Mem *pKey; /* MEM cell holding key for the record */
|
|
i64 iKey; /* The integer ROWID or key for the record to be inserted */
|
|
VdbeCursor *pC; /* Cursor to table into which insert is written */
|
|
int nZero; /* Number of zero-bytes to append */
|
|
int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
|
|
const char *zDb; /* database name - used by the update hook */
|
|
const char *zTbl; /* Table name - used by the opdate hook */
|
|
int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
|
|
|
|
pData = &aMem[pOp->p2];
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
assert( memIsValid(pData) );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
assert( pC->pCursor!=0 );
|
|
assert( pC->pseudoTableReg==0 );
|
|
assert( pC->isTable );
|
|
REGISTER_TRACE(pOp->p2, pData);
|
|
|
|
if( pOp->opcode==OP_Insert ){
|
|
pKey = &aMem[pOp->p3];
|
|
assert( pKey->flags & MEM_Int );
|
|
assert( memIsValid(pKey) );
|
|
REGISTER_TRACE(pOp->p3, pKey);
|
|
iKey = pKey->u.i;
|
|
}else{
|
|
assert( pOp->opcode==OP_InsertInt );
|
|
iKey = pOp->p3;
|
|
}
|
|
|
|
if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
|
|
if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
|
|
if( pData->flags & MEM_Null ){
|
|
pData->z = 0;
|
|
pData->n = 0;
|
|
}else{
|
|
assert( pData->flags & (MEM_Blob|MEM_Str) );
|
|
}
|
|
seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
|
|
if( pData->flags & MEM_Zero ){
|
|
nZero = pData->u.nZero;
|
|
}else{
|
|
nZero = 0;
|
|
}
|
|
sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
|
|
rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
|
|
pData->z, pData->n, nZero,
|
|
pOp->p5 & OPFLAG_APPEND, seekResult
|
|
);
|
|
pC->rowidIsValid = 0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
/* Invoke the update-hook if required. */
|
|
if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
|
|
zDb = db->aDb[pC->iDb].zName;
|
|
zTbl = pOp->p4.z;
|
|
op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
|
|
assert( pC->isTable );
|
|
db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
|
|
assert( pC->iDb>=0 );
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Delete P1 P2 * P4 *
|
|
**
|
|
** Delete the record at which the P1 cursor is currently pointing.
|
|
**
|
|
** The cursor will be left pointing at either the next or the previous
|
|
** record in the table. If it is left pointing at the next record, then
|
|
** the next Next instruction will be a no-op. Hence it is OK to delete
|
|
** a record from within an Next loop.
|
|
**
|
|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
|
** incremented (otherwise not).
|
|
**
|
|
** P1 must not be pseudo-table. It has to be a real table with
|
|
** multiple rows.
|
|
**
|
|
** If P4 is not NULL, then it is the name of the table that P1 is
|
|
** pointing to. The update hook will be invoked, if it exists.
|
|
** If P4 is not NULL then the P1 cursor must have been positioned
|
|
** using OP_NotFound prior to invoking this opcode.
|
|
*/
|
|
case OP_Delete: {
|
|
i64 iKey;
|
|
VdbeCursor *pC;
|
|
|
|
iKey = 0;
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
|
|
|
|
/* If the update-hook will be invoked, set iKey to the rowid of the
|
|
** row being deleted.
|
|
*/
|
|
if( db->xUpdateCallback && pOp->p4.z ){
|
|
assert( pC->isTable );
|
|
assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
|
|
iKey = pC->lastRowid;
|
|
}
|
|
|
|
/* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
|
|
** OP_Column on the same table without any intervening operations that
|
|
** might move or invalidate the cursor. Hence cursor pC is always pointing
|
|
** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
|
|
** below is always a no-op and cannot fail. We will run it anyhow, though,
|
|
** to guard against future changes to the code generator.
|
|
**/
|
|
assert( pC->deferredMoveto==0 );
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
|
|
|
|
sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
|
|
rc = sqlite3BtreeDelete(pC->pCursor);
|
|
pC->cacheStatus = CACHE_STALE;
|
|
|
|
/* Invoke the update-hook if required. */
|
|
if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
|
|
const char *zDb = db->aDb[pC->iDb].zName;
|
|
const char *zTbl = pOp->p4.z;
|
|
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
|
|
assert( pC->iDb>=0 );
|
|
}
|
|
if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
|
|
break;
|
|
}
|
|
/* Opcode: ResetCount * * * * *
|
|
**
|
|
** The value of the change counter is copied to the database handle
|
|
** change counter (returned by subsequent calls to sqlite3_changes()).
|
|
** Then the VMs internal change counter resets to 0.
|
|
** This is used by trigger programs.
|
|
*/
|
|
case OP_ResetCount: {
|
|
sqlite3VdbeSetChanges(db, p->nChange);
|
|
p->nChange = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: SorterCompare P1 P2 P3
|
|
**
|
|
** P1 is a sorter cursor. This instruction compares the record blob in
|
|
** register P3 with the entry that the sorter cursor currently points to.
|
|
** If, excluding the rowid fields at the end, the two records are a match,
|
|
** fall through to the next instruction. Otherwise, jump to instruction P2.
|
|
*/
|
|
case OP_SorterCompare: {
|
|
VdbeCursor *pC;
|
|
int res;
|
|
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( isSorter(pC) );
|
|
pIn3 = &aMem[pOp->p3];
|
|
rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
|
|
if( res ){
|
|
pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
};
|
|
|
|
/* Opcode: SorterData P1 P2 * * *
|
|
**
|
|
** Write into register P2 the current sorter data for sorter cursor P1.
|
|
*/
|
|
case OP_SorterData: {
|
|
VdbeCursor *pC;
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC->isSorter );
|
|
rc = sqlite3VdbeSorterRowkey(pC, pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: RowData P1 P2 * * *
|
|
**
|
|
** Write into register P2 the complete row data for cursor P1.
|
|
** There is no interpretation of the data.
|
|
** It is just copied onto the P2 register exactly as
|
|
** it is found in the database file.
|
|
**
|
|
** If the P1 cursor must be pointing to a valid row (not a NULL row)
|
|
** of a real table, not a pseudo-table.
|
|
*/
|
|
/* Opcode: RowKey P1 P2 * * *
|
|
**
|
|
** Write into register P2 the complete row key for cursor P1.
|
|
** There is no interpretation of the data.
|
|
** The key is copied onto the P3 register exactly as
|
|
** it is found in the database file.
|
|
**
|
|
** If the P1 cursor must be pointing to a valid row (not a NULL row)
|
|
** of a real table, not a pseudo-table.
|
|
*/
|
|
case OP_RowKey:
|
|
case OP_RowData: {
|
|
VdbeCursor *pC;
|
|
BtCursor *pCrsr;
|
|
u32 n;
|
|
i64 n64;
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
memAboutToChange(p, pOut);
|
|
|
|
/* Note that RowKey and RowData are really exactly the same instruction */
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC->isSorter==0 );
|
|
assert( pC->isTable || pOp->opcode!=OP_RowData );
|
|
assert( pC->isIndex || pOp->opcode==OP_RowData );
|
|
assert( pC!=0 );
|
|
assert( pC->nullRow==0 );
|
|
assert( pC->pseudoTableReg==0 );
|
|
assert( pC->pCursor!=0 );
|
|
pCrsr = pC->pCursor;
|
|
assert( sqlite3BtreeCursorIsValid(pCrsr) );
|
|
|
|
/* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
|
|
** OP_Rewind/Op_Next with no intervening instructions that might invalidate
|
|
** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
|
|
** a no-op and can never fail. But we leave it in place as a safety.
|
|
*/
|
|
assert( pC->deferredMoveto==0 );
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
|
|
|
|
if( pC->isIndex ){
|
|
assert( !pC->isTable );
|
|
VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
|
|
assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
|
|
if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
n = (u32)n64;
|
|
}else{
|
|
VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
|
|
assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
|
|
if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
goto too_big;
|
|
}
|
|
}
|
|
if( sqlite3VdbeMemGrow(pOut, n, 0) ){
|
|
goto no_mem;
|
|
}
|
|
pOut->n = n;
|
|
MemSetTypeFlag(pOut, MEM_Blob);
|
|
if( pC->isIndex ){
|
|
rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
|
|
}else{
|
|
rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
|
|
}
|
|
pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
|
|
UPDATE_MAX_BLOBSIZE(pOut);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Rowid P1 P2 * * *
|
|
**
|
|
** Store in register P2 an integer which is the key of the table entry that
|
|
** P1 is currently point to.
|
|
**
|
|
** P1 can be either an ordinary table or a virtual table. There used to
|
|
** be a separate OP_VRowid opcode for use with virtual tables, but this
|
|
** one opcode now works for both table types.
|
|
*/
|
|
case OP_Rowid: { /* out2-prerelease */
|
|
VdbeCursor *pC;
|
|
i64 v;
|
|
sqlite3_vtab *pVtab;
|
|
const sqlite3_module *pModule;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
assert( pC->pseudoTableReg==0 || pC->nullRow );
|
|
if( pC->nullRow ){
|
|
pOut->flags = MEM_Null;
|
|
break;
|
|
}else if( pC->deferredMoveto ){
|
|
v = pC->movetoTarget;
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
}else if( pC->pVtabCursor ){
|
|
pVtab = pC->pVtabCursor->pVtab;
|
|
pModule = pVtab->pModule;
|
|
assert( pModule->xRowid );
|
|
rc = pModule->xRowid(pC->pVtabCursor, &v);
|
|
importVtabErrMsg(p, pVtab);
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
}else{
|
|
assert( pC->pCursor!=0 );
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( rc ) goto abort_due_to_error;
|
|
if( pC->rowidIsValid ){
|
|
v = pC->lastRowid;
|
|
}else{
|
|
rc = sqlite3BtreeKeySize(pC->pCursor, &v);
|
|
assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
|
|
}
|
|
}
|
|
pOut->u.i = v;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: NullRow P1 * * * *
|
|
**
|
|
** Move the cursor P1 to a null row. Any OP_Column operations
|
|
** that occur while the cursor is on the null row will always
|
|
** write a NULL.
|
|
*/
|
|
case OP_NullRow: {
|
|
VdbeCursor *pC;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
pC->nullRow = 1;
|
|
pC->rowidIsValid = 0;
|
|
assert( pC->pCursor || pC->pVtabCursor );
|
|
if( pC->pCursor ){
|
|
sqlite3BtreeClearCursor(pC->pCursor);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Last P1 P2 * * *
|
|
**
|
|
** The next use of the Rowid or Column or Next instruction for P1
|
|
** will refer to the last entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Last: { /* jump */
|
|
VdbeCursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
pCrsr = pC->pCursor;
|
|
res = 0;
|
|
if( ALWAYS(pCrsr!=0) ){
|
|
rc = sqlite3BtreeLast(pCrsr, &res);
|
|
}
|
|
pC->nullRow = (u8)res;
|
|
pC->deferredMoveto = 0;
|
|
pC->rowidIsValid = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
if( pOp->p2>0 && res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
/* Opcode: Sort P1 P2 * * *
|
|
**
|
|
** This opcode does exactly the same thing as OP_Rewind except that
|
|
** it increments an undocumented global variable used for testing.
|
|
**
|
|
** Sorting is accomplished by writing records into a sorting index,
|
|
** then rewinding that index and playing it back from beginning to
|
|
** end. We use the OP_Sort opcode instead of OP_Rewind to do the
|
|
** rewinding so that the global variable will be incremented and
|
|
** regression tests can determine whether or not the optimizer is
|
|
** correctly optimizing out sorts.
|
|
*/
|
|
case OP_SorterSort: /* jump */
|
|
case OP_Sort: { /* jump */
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_sort_count++;
|
|
sqlite3_search_count--;
|
|
#endif
|
|
p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
|
|
/* Fall through into OP_Rewind */
|
|
}
|
|
/* Opcode: Rewind P1 P2 * * *
|
|
**
|
|
** The next use of the Rowid or Column or Next instruction for P1
|
|
** will refer to the first entry in the database table or index.
|
|
** If the table or index is empty and P2>0, then jump immediately to P2.
|
|
** If P2 is 0 or if the table or index is not empty, fall through
|
|
** to the following instruction.
|
|
*/
|
|
case OP_Rewind: { /* jump */
|
|
VdbeCursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
|
|
res = 1;
|
|
if( isSorter(pC) ){
|
|
rc = sqlite3VdbeSorterRewind(db, pC, &res);
|
|
}else{
|
|
pCrsr = pC->pCursor;
|
|
assert( pCrsr );
|
|
rc = sqlite3BtreeFirst(pCrsr, &res);
|
|
pC->atFirst = res==0 ?1:0;
|
|
pC->deferredMoveto = 0;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
pC->rowidIsValid = 0;
|
|
}
|
|
pC->nullRow = (u8)res;
|
|
assert( pOp->p2>0 && pOp->p2<p->nOp );
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Next P1 P2 * P4 P5
|
|
**
|
|
** Advance cursor P1 so that it points to the next key/data pair in its
|
|
** table or index. If there are no more key/value pairs then fall through
|
|
** to the following instruction. But if the cursor advance was successful,
|
|
** jump immediately to P2.
|
|
**
|
|
** The P1 cursor must be for a real table, not a pseudo-table.
|
|
**
|
|
** P4 is always of type P4_ADVANCE. The function pointer points to
|
|
** sqlite3BtreeNext().
|
|
**
|
|
** If P5 is positive and the jump is taken, then event counter
|
|
** number P5-1 in the prepared statement is incremented.
|
|
**
|
|
** See also: Prev
|
|
*/
|
|
/* Opcode: Prev P1 P2 * * P5
|
|
**
|
|
** Back up cursor P1 so that it points to the previous key/data pair in its
|
|
** table or index. If there is no previous key/value pairs then fall through
|
|
** to the following instruction. But if the cursor backup was successful,
|
|
** jump immediately to P2.
|
|
**
|
|
** The P1 cursor must be for a real table, not a pseudo-table.
|
|
**
|
|
** P4 is always of type P4_ADVANCE. The function pointer points to
|
|
** sqlite3BtreePrevious().
|
|
**
|
|
** If P5 is positive and the jump is taken, then event counter
|
|
** number P5-1 in the prepared statement is incremented.
|
|
*/
|
|
case OP_SorterNext: /* jump */
|
|
case OP_Prev: /* jump */
|
|
case OP_Next: { /* jump */
|
|
VdbeCursor *pC;
|
|
int res;
|
|
|
|
CHECK_FOR_INTERRUPT;
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
assert( pOp->p5<=ArraySize(p->aCounter) );
|
|
pC = p->apCsr[pOp->p1];
|
|
if( pC==0 ){
|
|
break; /* See ticket #2273 */
|
|
}
|
|
assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
|
|
if( isSorter(pC) ){
|
|
assert( pOp->opcode==OP_SorterNext );
|
|
rc = sqlite3VdbeSorterNext(db, pC, &res);
|
|
}else{
|
|
res = 1;
|
|
assert( pC->deferredMoveto==0 );
|
|
assert( pC->pCursor );
|
|
assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
|
|
assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
|
|
rc = pOp->p4.xAdvance(pC->pCursor, &res);
|
|
}
|
|
pC->nullRow = (u8)res;
|
|
pC->cacheStatus = CACHE_STALE;
|
|
if( res==0 ){
|
|
pc = pOp->p2 - 1;
|
|
if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_search_count++;
|
|
#endif
|
|
}
|
|
pC->rowidIsValid = 0;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxInsert P1 P2 P3 * P5
|
|
**
|
|
** Register P2 holds an SQL index key made using the
|
|
** MakeRecord instructions. This opcode writes that key
|
|
** into the index P1. Data for the entry is nil.
|
|
**
|
|
** P3 is a flag that provides a hint to the b-tree layer that this
|
|
** insert is likely to be an append.
|
|
**
|
|
** This instruction only works for indices. The equivalent instruction
|
|
** for tables is OP_Insert.
|
|
*/
|
|
case OP_SorterInsert: /* in2 */
|
|
case OP_IdxInsert: { /* in2 */
|
|
VdbeCursor *pC;
|
|
BtCursor *pCrsr;
|
|
int nKey;
|
|
const char *zKey;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
|
|
pIn2 = &aMem[pOp->p2];
|
|
assert( pIn2->flags & MEM_Blob );
|
|
pCrsr = pC->pCursor;
|
|
if( ALWAYS(pCrsr!=0) ){
|
|
assert( pC->isTable==0 );
|
|
rc = ExpandBlob(pIn2);
|
|
if( rc==SQLITE_OK ){
|
|
if( isSorter(pC) ){
|
|
rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
|
|
}else{
|
|
nKey = pIn2->n;
|
|
zKey = pIn2->z;
|
|
rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
|
|
((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
|
|
);
|
|
assert( pC->deferredMoveto==0 );
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxDelete P1 P2 P3 * *
|
|
**
|
|
** The content of P3 registers starting at register P2 form
|
|
** an unpacked index key. This opcode removes that entry from the
|
|
** index opened by cursor P1.
|
|
*/
|
|
case OP_IdxDelete: {
|
|
VdbeCursor *pC;
|
|
BtCursor *pCrsr;
|
|
int res;
|
|
UnpackedRecord r;
|
|
|
|
assert( pOp->p3>0 );
|
|
assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
pCrsr = pC->pCursor;
|
|
if( ALWAYS(pCrsr!=0) ){
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
r.nField = (u16)pOp->p3;
|
|
r.flags = 0;
|
|
r.aMem = &aMem[pOp->p2];
|
|
#ifdef SQLITE_DEBUG
|
|
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
|
|
#endif
|
|
rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
|
|
if( rc==SQLITE_OK && res==0 ){
|
|
rc = sqlite3BtreeDelete(pCrsr);
|
|
}
|
|
assert( pC->deferredMoveto==0 );
|
|
pC->cacheStatus = CACHE_STALE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxRowid P1 P2 * * *
|
|
**
|
|
** Write into register P2 an integer which is the last entry in the record at
|
|
** the end of the index key pointed to by cursor P1. This integer should be
|
|
** the rowid of the table entry to which this index entry points.
|
|
**
|
|
** See also: Rowid, MakeRecord.
|
|
*/
|
|
case OP_IdxRowid: { /* out2-prerelease */
|
|
BtCursor *pCrsr;
|
|
VdbeCursor *pC;
|
|
i64 rowid;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
pCrsr = pC->pCursor;
|
|
pOut->flags = MEM_Null;
|
|
if( ALWAYS(pCrsr!=0) ){
|
|
rc = sqlite3VdbeCursorMoveto(pC);
|
|
if( NEVER(rc) ) goto abort_due_to_error;
|
|
assert( pC->deferredMoveto==0 );
|
|
assert( pC->isTable==0 );
|
|
if( !pC->nullRow ){
|
|
rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
|
|
if( rc!=SQLITE_OK ){
|
|
goto abort_due_to_error;
|
|
}
|
|
pOut->u.i = rowid;
|
|
pOut->flags = MEM_Int;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IdxGE P1 P2 P3 P4 P5
|
|
**
|
|
** The P4 register values beginning with P3 form an unpacked index
|
|
** key that omits the ROWID. Compare this key value against the index
|
|
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
|
|
**
|
|
** If the P1 index entry is greater than or equal to the key value
|
|
** then jump to P2. Otherwise fall through to the next instruction.
|
|
**
|
|
** If P5 is non-zero then the key value is increased by an epsilon
|
|
** prior to the comparison. This make the opcode work like IdxGT except
|
|
** that if the key from register P3 is a prefix of the key in the cursor,
|
|
** the result is false whereas it would be true with IdxGT.
|
|
*/
|
|
/* Opcode: IdxLT P1 P2 P3 P4 P5
|
|
**
|
|
** The P4 register values beginning with P3 form an unpacked index
|
|
** key that omits the ROWID. Compare this key value against the index
|
|
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
|
|
**
|
|
** If the P1 index entry is less than the key value then jump to P2.
|
|
** Otherwise fall through to the next instruction.
|
|
**
|
|
** If P5 is non-zero then the key value is increased by an epsilon prior
|
|
** to the comparison. This makes the opcode work like IdxLE.
|
|
*/
|
|
case OP_IdxLT: /* jump */
|
|
case OP_IdxGE: { /* jump */
|
|
VdbeCursor *pC;
|
|
int res;
|
|
UnpackedRecord r;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
|
pC = p->apCsr[pOp->p1];
|
|
assert( pC!=0 );
|
|
assert( pC->isOrdered );
|
|
if( ALWAYS(pC->pCursor!=0) ){
|
|
assert( pC->deferredMoveto==0 );
|
|
assert( pOp->p5==0 || pOp->p5==1 );
|
|
assert( pOp->p4type==P4_INT32 );
|
|
r.pKeyInfo = pC->pKeyInfo;
|
|
r.nField = (u16)pOp->p4.i;
|
|
if( pOp->p5 ){
|
|
r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
|
|
}else{
|
|
r.flags = UNPACKED_PREFIX_MATCH;
|
|
}
|
|
r.aMem = &aMem[pOp->p3];
|
|
#ifdef SQLITE_DEBUG
|
|
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
|
|
#endif
|
|
rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
|
|
if( pOp->opcode==OP_IdxLT ){
|
|
res = -res;
|
|
}else{
|
|
assert( pOp->opcode==OP_IdxGE );
|
|
res++;
|
|
}
|
|
if( res>0 ){
|
|
pc = pOp->p2 - 1 ;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Destroy P1 P2 P3 * *
|
|
**
|
|
** Delete an entire database table or index whose root page in the database
|
|
** file is given by P1.
|
|
**
|
|
** The table being destroyed is in the main database file if P3==0. If
|
|
** P3==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** If AUTOVACUUM is enabled then it is possible that another root page
|
|
** might be moved into the newly deleted root page in order to keep all
|
|
** root pages contiguous at the beginning of the database. The former
|
|
** value of the root page that moved - its value before the move occurred -
|
|
** is stored in register P2. If no page
|
|
** movement was required (because the table being dropped was already
|
|
** the last one in the database) then a zero is stored in register P2.
|
|
** If AUTOVACUUM is disabled then a zero is stored in register P2.
|
|
**
|
|
** See also: Clear
|
|
*/
|
|
case OP_Destroy: { /* out2-prerelease */
|
|
int iMoved;
|
|
int iCnt;
|
|
Vdbe *pVdbe;
|
|
int iDb;
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
iCnt = 0;
|
|
for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
|
|
if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
|
|
iCnt++;
|
|
}
|
|
}
|
|
#else
|
|
iCnt = db->activeVdbeCnt;
|
|
#endif
|
|
pOut->flags = MEM_Null;
|
|
if( iCnt>1 ){
|
|
rc = SQLITE_LOCKED;
|
|
p->errorAction = OE_Abort;
|
|
}else{
|
|
iDb = pOp->p3;
|
|
assert( iCnt==1 );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
|
|
rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
|
|
pOut->flags = MEM_Int;
|
|
pOut->u.i = iMoved;
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
if( rc==SQLITE_OK && iMoved!=0 ){
|
|
sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
|
|
/* All OP_Destroy operations occur on the same btree */
|
|
assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
|
|
resetSchemaOnFault = iDb+1;
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Clear P1 P2 P3
|
|
**
|
|
** Delete all contents of the database table or index whose root page
|
|
** in the database file is given by P1. But, unlike Destroy, do not
|
|
** remove the table or index from the database file.
|
|
**
|
|
** The table being clear is in the main database file if P2==0. If
|
|
** P2==1 then the table to be clear is in the auxiliary database file
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE.
|
|
**
|
|
** If the P3 value is non-zero, then the table referred to must be an
|
|
** intkey table (an SQL table, not an index). In this case the row change
|
|
** count is incremented by the number of rows in the table being cleared.
|
|
** If P3 is greater than zero, then the value stored in register P3 is
|
|
** also incremented by the number of rows in the table being cleared.
|
|
**
|
|
** See also: Destroy
|
|
*/
|
|
case OP_Clear: {
|
|
int nChange;
|
|
|
|
nChange = 0;
|
|
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
|
|
rc = sqlite3BtreeClearTable(
|
|
db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
|
|
);
|
|
if( pOp->p3 ){
|
|
p->nChange += nChange;
|
|
if( pOp->p3>0 ){
|
|
assert( memIsValid(&aMem[pOp->p3]) );
|
|
memAboutToChange(p, &aMem[pOp->p3]);
|
|
aMem[pOp->p3].u.i += nChange;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: CreateTable P1 P2 * * *
|
|
**
|
|
** Allocate a new table in the main database file if P1==0 or in the
|
|
** auxiliary database file if P1==1 or in an attached database if
|
|
** P1>1. Write the root page number of the new table into
|
|
** register P2
|
|
**
|
|
** The difference between a table and an index is this: A table must
|
|
** have a 4-byte integer key and can have arbitrary data. An index
|
|
** has an arbitrary key but no data.
|
|
**
|
|
** See also: CreateIndex
|
|
*/
|
|
/* Opcode: CreateIndex P1 P2 * * *
|
|
**
|
|
** Allocate a new index in the main database file if P1==0 or in the
|
|
** auxiliary database file if P1==1 or in an attached database if
|
|
** P1>1. Write the root page number of the new table into
|
|
** register P2.
|
|
**
|
|
** See documentation on OP_CreateTable for additional information.
|
|
*/
|
|
case OP_CreateIndex: /* out2-prerelease */
|
|
case OP_CreateTable: { /* out2-prerelease */
|
|
int pgno;
|
|
int flags;
|
|
Db *pDb;
|
|
|
|
pgno = 0;
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
|
|
pDb = &db->aDb[pOp->p1];
|
|
assert( pDb->pBt!=0 );
|
|
if( pOp->opcode==OP_CreateTable ){
|
|
/* flags = BTREE_INTKEY; */
|
|
flags = BTREE_INTKEY;
|
|
}else{
|
|
flags = BTREE_BLOBKEY;
|
|
}
|
|
rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
|
|
pOut->u.i = pgno;
|
|
break;
|
|
}
|
|
|
|
/* Opcode: ParseSchema P1 * * P4 *
|
|
**
|
|
** Read and parse all entries from the SQLITE_MASTER table of database P1
|
|
** that match the WHERE clause P4.
|
|
**
|
|
** This opcode invokes the parser to create a new virtual machine,
|
|
** then runs the new virtual machine. It is thus a re-entrant opcode.
|
|
*/
|
|
case OP_ParseSchema: {
|
|
int iDb;
|
|
const char *zMaster;
|
|
char *zSql;
|
|
InitData initData;
|
|
|
|
/* Any prepared statement that invokes this opcode will hold mutexes
|
|
** on every btree. This is a prerequisite for invoking
|
|
** sqlite3InitCallback().
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
for(iDb=0; iDb<db->nDb; iDb++){
|
|
assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
|
}
|
|
#endif
|
|
|
|
iDb = pOp->p1;
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
|
|
/* Used to be a conditional */ {
|
|
zMaster = SCHEMA_TABLE(iDb);
|
|
initData.db = db;
|
|
initData.iDb = pOp->p1;
|
|
initData.pzErrMsg = &p->zErrMsg;
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
|
|
db->aDb[iDb].zName, zMaster, pOp->p4.z);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
assert( db->init.busy==0 );
|
|
db->init.busy = 1;
|
|
initData.rc = SQLITE_OK;
|
|
assert( !db->mallocFailed );
|
|
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
|
if( rc==SQLITE_OK ) rc = initData.rc;
|
|
sqlite3DbFree(db, zSql);
|
|
db->init.busy = 0;
|
|
}
|
|
}
|
|
if( rc ) sqlite3ResetAllSchemasOfConnection(db);
|
|
if( rc==SQLITE_NOMEM ){
|
|
goto no_mem;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_ANALYZE)
|
|
/* Opcode: LoadAnalysis P1 * * * *
|
|
**
|
|
** Read the sqlite_stat1 table for database P1 and load the content
|
|
** of that table into the internal index hash table. This will cause
|
|
** the analysis to be used when preparing all subsequent queries.
|
|
*/
|
|
case OP_LoadAnalysis: {
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
rc = sqlite3AnalysisLoad(db, pOp->p1);
|
|
break;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_ANALYZE) */
|
|
|
|
/* Opcode: DropTable P1 * * P4 *
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the table named P4 in database P1. This is called after a table
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropTable: {
|
|
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: DropIndex P1 * * P4 *
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the index named P4 in database P1. This is called after an index
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropIndex: {
|
|
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: DropTrigger P1 * * P4 *
|
|
**
|
|
** Remove the internal (in-memory) data structures that describe
|
|
** the trigger named P4 in database P1. This is called after a trigger
|
|
** is dropped in order to keep the internal representation of the
|
|
** schema consistent with what is on disk.
|
|
*/
|
|
case OP_DropTrigger: {
|
|
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
|
|
break;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
|
/* Opcode: IntegrityCk P1 P2 P3 * P5
|
|
**
|
|
** Do an analysis of the currently open database. Store in
|
|
** register P1 the text of an error message describing any problems.
|
|
** If no problems are found, store a NULL in register P1.
|
|
**
|
|
** The register P3 contains the maximum number of allowed errors.
|
|
** At most reg(P3) errors will be reported.
|
|
** In other words, the analysis stops as soon as reg(P1) errors are
|
|
** seen. Reg(P1) is updated with the number of errors remaining.
|
|
**
|
|
** The root page numbers of all tables in the database are integer
|
|
** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
|
|
** total.
|
|
**
|
|
** If P5 is not zero, the check is done on the auxiliary database
|
|
** file, not the main database file.
|
|
**
|
|
** This opcode is used to implement the integrity_check pragma.
|
|
*/
|
|
case OP_IntegrityCk: {
|
|
int nRoot; /* Number of tables to check. (Number of root pages.) */
|
|
int *aRoot; /* Array of rootpage numbers for tables to be checked */
|
|
int j; /* Loop counter */
|
|
int nErr; /* Number of errors reported */
|
|
char *z; /* Text of the error report */
|
|
Mem *pnErr; /* Register keeping track of errors remaining */
|
|
|
|
nRoot = pOp->p2;
|
|
assert( nRoot>0 );
|
|
aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
|
|
if( aRoot==0 ) goto no_mem;
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pnErr = &aMem[pOp->p3];
|
|
assert( (pnErr->flags & MEM_Int)!=0 );
|
|
assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
|
|
pIn1 = &aMem[pOp->p1];
|
|
for(j=0; j<nRoot; j++){
|
|
aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
|
|
}
|
|
aRoot[j] = 0;
|
|
assert( pOp->p5<db->nDb );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
|
|
z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
|
|
(int)pnErr->u.i, &nErr);
|
|
sqlite3DbFree(db, aRoot);
|
|
pnErr->u.i -= nErr;
|
|
sqlite3VdbeMemSetNull(pIn1);
|
|
if( nErr==0 ){
|
|
assert( z==0 );
|
|
}else if( z==0 ){
|
|
goto no_mem;
|
|
}else{
|
|
sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
|
|
}
|
|
UPDATE_MAX_BLOBSIZE(pIn1);
|
|
sqlite3VdbeChangeEncoding(pIn1, encoding);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
|
|
|
/* Opcode: RowSetAdd P1 P2 * * *
|
|
**
|
|
** Insert the integer value held by register P2 into a boolean index
|
|
** held in register P1.
|
|
**
|
|
** An assertion fails if P2 is not an integer.
|
|
*/
|
|
case OP_RowSetAdd: { /* in1, in2 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
pIn2 = &aMem[pOp->p2];
|
|
assert( (pIn2->flags & MEM_Int)!=0 );
|
|
if( (pIn1->flags & MEM_RowSet)==0 ){
|
|
sqlite3VdbeMemSetRowSet(pIn1);
|
|
if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
|
|
}
|
|
sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
|
|
break;
|
|
}
|
|
|
|
/* Opcode: RowSetRead P1 P2 P3 * *
|
|
**
|
|
** Extract the smallest value from boolean index P1 and put that value into
|
|
** register P3. Or, if boolean index P1 is initially empty, leave P3
|
|
** unchanged and jump to instruction P2.
|
|
*/
|
|
case OP_RowSetRead: { /* jump, in1, out3 */
|
|
i64 val;
|
|
CHECK_FOR_INTERRUPT;
|
|
pIn1 = &aMem[pOp->p1];
|
|
if( (pIn1->flags & MEM_RowSet)==0
|
|
|| sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
|
|
){
|
|
/* The boolean index is empty */
|
|
sqlite3VdbeMemSetNull(pIn1);
|
|
pc = pOp->p2 - 1;
|
|
}else{
|
|
/* A value was pulled from the index */
|
|
sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: RowSetTest P1 P2 P3 P4
|
|
**
|
|
** Register P3 is assumed to hold a 64-bit integer value. If register P1
|
|
** contains a RowSet object and that RowSet object contains
|
|
** the value held in P3, jump to register P2. Otherwise, insert the
|
|
** integer in P3 into the RowSet and continue on to the
|
|
** next opcode.
|
|
**
|
|
** The RowSet object is optimized for the case where successive sets
|
|
** of integers, where each set contains no duplicates. Each set
|
|
** of values is identified by a unique P4 value. The first set
|
|
** must have P4==0, the final set P4=-1. P4 must be either -1 or
|
|
** non-negative. For non-negative values of P4 only the lower 4
|
|
** bits are significant.
|
|
**
|
|
** This allows optimizations: (a) when P4==0 there is no need to test
|
|
** the rowset object for P3, as it is guaranteed not to contain it,
|
|
** (b) when P4==-1 there is no need to insert the value, as it will
|
|
** never be tested for, and (c) when a value that is part of set X is
|
|
** inserted, there is no need to search to see if the same value was
|
|
** previously inserted as part of set X (only if it was previously
|
|
** inserted as part of some other set).
|
|
*/
|
|
case OP_RowSetTest: { /* jump, in1, in3 */
|
|
int iSet;
|
|
int exists;
|
|
|
|
pIn1 = &aMem[pOp->p1];
|
|
pIn3 = &aMem[pOp->p3];
|
|
iSet = pOp->p4.i;
|
|
assert( pIn3->flags&MEM_Int );
|
|
|
|
/* If there is anything other than a rowset object in memory cell P1,
|
|
** delete it now and initialize P1 with an empty rowset
|
|
*/
|
|
if( (pIn1->flags & MEM_RowSet)==0 ){
|
|
sqlite3VdbeMemSetRowSet(pIn1);
|
|
if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
|
|
}
|
|
|
|
assert( pOp->p4type==P4_INT32 );
|
|
assert( iSet==-1 || iSet>=0 );
|
|
if( iSet ){
|
|
exists = sqlite3RowSetTest(pIn1->u.pRowSet,
|
|
(u8)(iSet>=0 ? iSet & 0xf : 0xff),
|
|
pIn3->u.i);
|
|
if( exists ){
|
|
pc = pOp->p2 - 1;
|
|
break;
|
|
}
|
|
}
|
|
if( iSet>=0 ){
|
|
sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
|
|
/* Opcode: Program P1 P2 P3 P4 *
|
|
**
|
|
** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
|
|
**
|
|
** P1 contains the address of the memory cell that contains the first memory
|
|
** cell in an array of values used as arguments to the sub-program. P2
|
|
** contains the address to jump to if the sub-program throws an IGNORE
|
|
** exception using the RAISE() function. Register P3 contains the address
|
|
** of a memory cell in this (the parent) VM that is used to allocate the
|
|
** memory required by the sub-vdbe at runtime.
|
|
**
|
|
** P4 is a pointer to the VM containing the trigger program.
|
|
*/
|
|
case OP_Program: { /* jump */
|
|
int nMem; /* Number of memory registers for sub-program */
|
|
int nByte; /* Bytes of runtime space required for sub-program */
|
|
Mem *pRt; /* Register to allocate runtime space */
|
|
Mem *pMem; /* Used to iterate through memory cells */
|
|
Mem *pEnd; /* Last memory cell in new array */
|
|
VdbeFrame *pFrame; /* New vdbe frame to execute in */
|
|
SubProgram *pProgram; /* Sub-program to execute */
|
|
void *t; /* Token identifying trigger */
|
|
|
|
pProgram = pOp->p4.pProgram;
|
|
pRt = &aMem[pOp->p3];
|
|
assert( pProgram->nOp>0 );
|
|
|
|
/* If the p5 flag is clear, then recursive invocation of triggers is
|
|
** disabled for backwards compatibility (p5 is set if this sub-program
|
|
** is really a trigger, not a foreign key action, and the flag set
|
|
** and cleared by the "PRAGMA recursive_triggers" command is clear).
|
|
**
|
|
** It is recursive invocation of triggers, at the SQL level, that is
|
|
** disabled. In some cases a single trigger may generate more than one
|
|
** SubProgram (if the trigger may be executed with more than one different
|
|
** ON CONFLICT algorithm). SubProgram structures associated with a
|
|
** single trigger all have the same value for the SubProgram.token
|
|
** variable. */
|
|
if( pOp->p5 ){
|
|
t = pProgram->token;
|
|
for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
|
|
if( pFrame ) break;
|
|
}
|
|
|
|
if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
|
|
rc = SQLITE_ERROR;
|
|
sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
|
|
break;
|
|
}
|
|
|
|
/* Register pRt is used to store the memory required to save the state
|
|
** of the current program, and the memory required at runtime to execute
|
|
** the trigger program. If this trigger has been fired before, then pRt
|
|
** is already allocated. Otherwise, it must be initialized. */
|
|
if( (pRt->flags&MEM_Frame)==0 ){
|
|
/* SubProgram.nMem is set to the number of memory cells used by the
|
|
** program stored in SubProgram.aOp. As well as these, one memory
|
|
** cell is required for each cursor used by the program. Set local
|
|
** variable nMem (and later, VdbeFrame.nChildMem) to this value.
|
|
*/
|
|
nMem = pProgram->nMem + pProgram->nCsr;
|
|
nByte = ROUND8(sizeof(VdbeFrame))
|
|
+ nMem * sizeof(Mem)
|
|
+ pProgram->nCsr * sizeof(VdbeCursor *)
|
|
+ pProgram->nOnce * sizeof(u8);
|
|
pFrame = sqlite3DbMallocZero(db, nByte);
|
|
if( !pFrame ){
|
|
goto no_mem;
|
|
}
|
|
sqlite3VdbeMemRelease(pRt);
|
|
pRt->flags = MEM_Frame;
|
|
pRt->u.pFrame = pFrame;
|
|
|
|
pFrame->v = p;
|
|
pFrame->nChildMem = nMem;
|
|
pFrame->nChildCsr = pProgram->nCsr;
|
|
pFrame->pc = pc;
|
|
pFrame->aMem = p->aMem;
|
|
pFrame->nMem = p->nMem;
|
|
pFrame->apCsr = p->apCsr;
|
|
pFrame->nCursor = p->nCursor;
|
|
pFrame->aOp = p->aOp;
|
|
pFrame->nOp = p->nOp;
|
|
pFrame->token = pProgram->token;
|
|
pFrame->aOnceFlag = p->aOnceFlag;
|
|
pFrame->nOnceFlag = p->nOnceFlag;
|
|
|
|
pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
|
|
for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
|
|
pMem->flags = MEM_Invalid;
|
|
pMem->db = db;
|
|
}
|
|
}else{
|
|
pFrame = pRt->u.pFrame;
|
|
assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
|
|
assert( pProgram->nCsr==pFrame->nChildCsr );
|
|
assert( pc==pFrame->pc );
|
|
}
|
|
|
|
p->nFrame++;
|
|
pFrame->pParent = p->pFrame;
|
|
pFrame->lastRowid = lastRowid;
|
|
pFrame->nChange = p->nChange;
|
|
p->nChange = 0;
|
|
p->pFrame = pFrame;
|
|
p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
|
|
p->nMem = pFrame->nChildMem;
|
|
p->nCursor = (u16)pFrame->nChildCsr;
|
|
p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
|
|
p->aOp = aOp = pProgram->aOp;
|
|
p->nOp = pProgram->nOp;
|
|
p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
|
|
p->nOnceFlag = pProgram->nOnce;
|
|
pc = -1;
|
|
memset(p->aOnceFlag, 0, p->nOnceFlag);
|
|
|
|
break;
|
|
}
|
|
|
|
/* Opcode: Param P1 P2 * * *
|
|
**
|
|
** This opcode is only ever present in sub-programs called via the
|
|
** OP_Program instruction. Copy a value currently stored in a memory
|
|
** cell of the calling (parent) frame to cell P2 in the current frames
|
|
** address space. This is used by trigger programs to access the new.*
|
|
** and old.* values.
|
|
**
|
|
** The address of the cell in the parent frame is determined by adding
|
|
** the value of the P1 argument to the value of the P1 argument to the
|
|
** calling OP_Program instruction.
|
|
*/
|
|
case OP_Param: { /* out2-prerelease */
|
|
VdbeFrame *pFrame;
|
|
Mem *pIn;
|
|
pFrame = p->pFrame;
|
|
pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
|
|
sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
|
|
break;
|
|
}
|
|
|
|
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
/* Opcode: FkCounter P1 P2 * * *
|
|
**
|
|
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
|
|
** If P1 is non-zero, the database constraint counter is incremented
|
|
** (deferred foreign key constraints). Otherwise, if P1 is zero, the
|
|
** statement counter is incremented (immediate foreign key constraints).
|
|
*/
|
|
case OP_FkCounter: {
|
|
if( pOp->p1 ){
|
|
db->nDeferredCons += pOp->p2;
|
|
}else{
|
|
p->nFkConstraint += pOp->p2;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: FkIfZero P1 P2 * * *
|
|
**
|
|
** This opcode tests if a foreign key constraint-counter is currently zero.
|
|
** If so, jump to instruction P2. Otherwise, fall through to the next
|
|
** instruction.
|
|
**
|
|
** If P1 is non-zero, then the jump is taken if the database constraint-counter
|
|
** is zero (the one that counts deferred constraint violations). If P1 is
|
|
** zero, the jump is taken if the statement constraint-counter is zero
|
|
** (immediate foreign key constraint violations).
|
|
*/
|
|
case OP_FkIfZero: { /* jump */
|
|
if( pOp->p1 ){
|
|
if( db->nDeferredCons==0 ) pc = pOp->p2-1;
|
|
}else{
|
|
if( p->nFkConstraint==0 ) pc = pOp->p2-1;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/* Opcode: MemMax P1 P2 * * *
|
|
**
|
|
** P1 is a register in the root frame of this VM (the root frame is
|
|
** different from the current frame if this instruction is being executed
|
|
** within a sub-program). Set the value of register P1 to the maximum of
|
|
** its current value and the value in register P2.
|
|
**
|
|
** This instruction throws an error if the memory cell is not initially
|
|
** an integer.
|
|
*/
|
|
case OP_MemMax: { /* in2 */
|
|
Mem *pIn1;
|
|
VdbeFrame *pFrame;
|
|
if( p->pFrame ){
|
|
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
|
|
pIn1 = &pFrame->aMem[pOp->p1];
|
|
}else{
|
|
pIn1 = &aMem[pOp->p1];
|
|
}
|
|
assert( memIsValid(pIn1) );
|
|
sqlite3VdbeMemIntegerify(pIn1);
|
|
pIn2 = &aMem[pOp->p2];
|
|
sqlite3VdbeMemIntegerify(pIn2);
|
|
if( pIn1->u.i<pIn2->u.i){
|
|
pIn1->u.i = pIn2->u.i;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
|
|
|
/* Opcode: IfPos P1 P2 * * *
|
|
**
|
|
** If the value of register P1 is 1 or greater, jump to P2.
|
|
**
|
|
** It is illegal to use this instruction on a register that does
|
|
** not contain an integer. An assertion fault will result if you try.
|
|
*/
|
|
case OP_IfPos: { /* jump, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
assert( pIn1->flags&MEM_Int );
|
|
if( pIn1->u.i>0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IfNeg P1 P2 * * *
|
|
**
|
|
** If the value of register P1 is less than zero, jump to P2.
|
|
**
|
|
** It is illegal to use this instruction on a register that does
|
|
** not contain an integer. An assertion fault will result if you try.
|
|
*/
|
|
case OP_IfNeg: { /* jump, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
assert( pIn1->flags&MEM_Int );
|
|
if( pIn1->u.i<0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: IfZero P1 P2 P3 * *
|
|
**
|
|
** The register P1 must contain an integer. Add literal P3 to the
|
|
** value in register P1. If the result is exactly 0, jump to P2.
|
|
**
|
|
** It is illegal to use this instruction on a register that does
|
|
** not contain an integer. An assertion fault will result if you try.
|
|
*/
|
|
case OP_IfZero: { /* jump, in1 */
|
|
pIn1 = &aMem[pOp->p1];
|
|
assert( pIn1->flags&MEM_Int );
|
|
pIn1->u.i += pOp->p3;
|
|
if( pIn1->u.i==0 ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggStep * P2 P3 P4 P5
|
|
**
|
|
** Execute the step function for an aggregate. The
|
|
** function has P5 arguments. P4 is a pointer to the FuncDef
|
|
** structure that specifies the function. Use register
|
|
** P3 as the accumulator.
|
|
**
|
|
** The P5 arguments are taken from register P2 and its
|
|
** successors.
|
|
*/
|
|
case OP_AggStep: {
|
|
int n;
|
|
int i;
|
|
Mem *pMem;
|
|
Mem *pRec;
|
|
sqlite3_context ctx;
|
|
sqlite3_value **apVal;
|
|
|
|
n = pOp->p5;
|
|
assert( n>=0 );
|
|
pRec = &aMem[pOp->p2];
|
|
apVal = p->apArg;
|
|
assert( apVal || n==0 );
|
|
for(i=0; i<n; i++, pRec++){
|
|
assert( memIsValid(pRec) );
|
|
apVal[i] = pRec;
|
|
memAboutToChange(p, pRec);
|
|
sqlite3VdbeMemStoreType(pRec);
|
|
}
|
|
ctx.pFunc = pOp->p4.pFunc;
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
ctx.pMem = pMem = &aMem[pOp->p3];
|
|
pMem->n++;
|
|
ctx.s.flags = MEM_Null;
|
|
ctx.s.z = 0;
|
|
ctx.s.zMalloc = 0;
|
|
ctx.s.xDel = 0;
|
|
ctx.s.db = db;
|
|
ctx.isError = 0;
|
|
ctx.pColl = 0;
|
|
ctx.skipFlag = 0;
|
|
if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
|
|
assert( pOp>p->aOp );
|
|
assert( pOp[-1].p4type==P4_COLLSEQ );
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
ctx.pColl = pOp[-1].p4.pColl;
|
|
}
|
|
(ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
|
|
if( ctx.isError ){
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
|
|
rc = ctx.isError;
|
|
}
|
|
if( ctx.skipFlag ){
|
|
assert( pOp[-1].opcode==OP_CollSeq );
|
|
i = pOp[-1].p1;
|
|
if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
|
|
}
|
|
|
|
sqlite3VdbeMemRelease(&ctx.s);
|
|
|
|
break;
|
|
}
|
|
|
|
/* Opcode: AggFinal P1 P2 * P4 *
|
|
**
|
|
** Execute the finalizer function for an aggregate. P1 is
|
|
** the memory location that is the accumulator for the aggregate.
|
|
**
|
|
** P2 is the number of arguments that the step function takes and
|
|
** P4 is a pointer to the FuncDef for this function. The P2
|
|
** argument is not used by this opcode. It is only there to disambiguate
|
|
** functions that can take varying numbers of arguments. The
|
|
** P4 argument is only needed for the degenerate case where
|
|
** the step function was not previously called.
|
|
*/
|
|
case OP_AggFinal: {
|
|
Mem *pMem;
|
|
assert( pOp->p1>0 && pOp->p1<=p->nMem );
|
|
pMem = &aMem[pOp->p1];
|
|
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
|
|
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
|
|
if( rc ){
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
|
|
}
|
|
sqlite3VdbeChangeEncoding(pMem, encoding);
|
|
UPDATE_MAX_BLOBSIZE(pMem);
|
|
if( sqlite3VdbeMemTooBig(pMem) ){
|
|
goto too_big;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_WAL
|
|
/* Opcode: Checkpoint P1 P2 P3 * *
|
|
**
|
|
** Checkpoint database P1. This is a no-op if P1 is not currently in
|
|
** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
|
|
** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
|
|
** SQLITE_BUSY or not, respectively. Write the number of pages in the
|
|
** WAL after the checkpoint into mem[P3+1] and the number of pages
|
|
** in the WAL that have been checkpointed after the checkpoint
|
|
** completes into mem[P3+2]. However on an error, mem[P3+1] and
|
|
** mem[P3+2] are initialized to -1.
|
|
*/
|
|
case OP_Checkpoint: {
|
|
int i; /* Loop counter */
|
|
int aRes[3]; /* Results */
|
|
Mem *pMem; /* Write results here */
|
|
|
|
aRes[0] = 0;
|
|
aRes[1] = aRes[2] = -1;
|
|
assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
|
|
|| pOp->p2==SQLITE_CHECKPOINT_FULL
|
|
|| pOp->p2==SQLITE_CHECKPOINT_RESTART
|
|
);
|
|
rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
|
|
if( rc==SQLITE_BUSY ){
|
|
rc = SQLITE_OK;
|
|
aRes[0] = 1;
|
|
}
|
|
for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
|
|
sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
|
|
}
|
|
break;
|
|
};
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_PRAGMA
|
|
/* Opcode: JournalMode P1 P2 P3 * P5
|
|
**
|
|
** Change the journal mode of database P1 to P3. P3 must be one of the
|
|
** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
|
|
** modes (delete, truncate, persist, off and memory), this is a simple
|
|
** operation. No IO is required.
|
|
**
|
|
** If changing into or out of WAL mode the procedure is more complicated.
|
|
**
|
|
** Write a string containing the final journal-mode to register P2.
|
|
*/
|
|
case OP_JournalMode: { /* out2-prerelease */
|
|
Btree *pBt; /* Btree to change journal mode of */
|
|
Pager *pPager; /* Pager associated with pBt */
|
|
int eNew; /* New journal mode */
|
|
int eOld; /* The old journal mode */
|
|
#ifndef SQLITE_OMIT_WAL
|
|
const char *zFilename; /* Name of database file for pPager */
|
|
#endif
|
|
|
|
eNew = pOp->p3;
|
|
assert( eNew==PAGER_JOURNALMODE_DELETE
|
|
|| eNew==PAGER_JOURNALMODE_TRUNCATE
|
|
|| eNew==PAGER_JOURNALMODE_PERSIST
|
|
|| eNew==PAGER_JOURNALMODE_OFF
|
|
|| eNew==PAGER_JOURNALMODE_MEMORY
|
|
|| eNew==PAGER_JOURNALMODE_WAL
|
|
|| eNew==PAGER_JOURNALMODE_QUERY
|
|
);
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
pPager = sqlite3BtreePager(pBt);
|
|
eOld = sqlite3PagerGetJournalMode(pPager);
|
|
if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
|
|
if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
|
|
|
|
#ifndef SQLITE_OMIT_WAL
|
|
zFilename = sqlite3PagerFilename(pPager, 1);
|
|
|
|
/* Do not allow a transition to journal_mode=WAL for a database
|
|
** in temporary storage or if the VFS does not support shared memory
|
|
*/
|
|
if( eNew==PAGER_JOURNALMODE_WAL
|
|
&& (sqlite3Strlen30(zFilename)==0 /* Temp file */
|
|
|| !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
|
|
){
|
|
eNew = eOld;
|
|
}
|
|
|
|
if( (eNew!=eOld)
|
|
&& (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
|
|
){
|
|
if( !db->autoCommit || db->activeVdbeCnt>1 ){
|
|
rc = SQLITE_ERROR;
|
|
sqlite3SetString(&p->zErrMsg, db,
|
|
"cannot change %s wal mode from within a transaction",
|
|
(eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
|
|
);
|
|
break;
|
|
}else{
|
|
|
|
if( eOld==PAGER_JOURNALMODE_WAL ){
|
|
/* If leaving WAL mode, close the log file. If successful, the call
|
|
** to PagerCloseWal() checkpoints and deletes the write-ahead-log
|
|
** file. An EXCLUSIVE lock may still be held on the database file
|
|
** after a successful return.
|
|
*/
|
|
rc = sqlite3PagerCloseWal(pPager);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3PagerSetJournalMode(pPager, eNew);
|
|
}
|
|
}else if( eOld==PAGER_JOURNALMODE_MEMORY ){
|
|
/* Cannot transition directly from MEMORY to WAL. Use mode OFF
|
|
** as an intermediate */
|
|
sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
|
|
}
|
|
|
|
/* Open a transaction on the database file. Regardless of the journal
|
|
** mode, this transaction always uses a rollback journal.
|
|
*/
|
|
assert( sqlite3BtreeIsInTrans(pBt)==0 );
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
|
|
}
|
|
}
|
|
}
|
|
#endif /* ifndef SQLITE_OMIT_WAL */
|
|
|
|
if( rc ){
|
|
eNew = eOld;
|
|
}
|
|
eNew = sqlite3PagerSetJournalMode(pPager, eNew);
|
|
|
|
pOut = &aMem[pOp->p2];
|
|
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
|
|
pOut->z = (char *)sqlite3JournalModename(eNew);
|
|
pOut->n = sqlite3Strlen30(pOut->z);
|
|
pOut->enc = SQLITE_UTF8;
|
|
sqlite3VdbeChangeEncoding(pOut, encoding);
|
|
break;
|
|
};
|
|
#endif /* SQLITE_OMIT_PRAGMA */
|
|
|
|
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
|
|
/* Opcode: Vacuum * * * * *
|
|
**
|
|
** Vacuum the entire database. This opcode will cause other virtual
|
|
** machines to be created and run. It may not be called from within
|
|
** a transaction.
|
|
*/
|
|
case OP_Vacuum: {
|
|
rc = sqlite3RunVacuum(&p->zErrMsg, db);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(SQLITE_OMIT_AUTOVACUUM)
|
|
/* Opcode: IncrVacuum P1 P2 * * *
|
|
**
|
|
** Perform a single step of the incremental vacuum procedure on
|
|
** the P1 database. If the vacuum has finished, jump to instruction
|
|
** P2. Otherwise, fall through to the next instruction.
|
|
*/
|
|
case OP_IncrVacuum: { /* jump */
|
|
Btree *pBt;
|
|
|
|
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
rc = sqlite3BtreeIncrVacuum(pBt);
|
|
if( rc==SQLITE_DONE ){
|
|
pc = pOp->p2 - 1;
|
|
rc = SQLITE_OK;
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* Opcode: Expire P1 * * * *
|
|
**
|
|
** Cause precompiled statements to become expired. An expired statement
|
|
** fails with an error code of SQLITE_SCHEMA if it is ever executed
|
|
** (via sqlite3_step()).
|
|
**
|
|
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
|
|
** then only the currently executing statement is affected.
|
|
*/
|
|
case OP_Expire: {
|
|
if( !pOp->p1 ){
|
|
sqlite3ExpirePreparedStatements(db);
|
|
}else{
|
|
p->expired = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/* Opcode: TableLock P1 P2 P3 P4 *
|
|
**
|
|
** Obtain a lock on a particular table. This instruction is only used when
|
|
** the shared-cache feature is enabled.
|
|
**
|
|
** P1 is the index of the database in sqlite3.aDb[] of the database
|
|
** on which the lock is acquired. A readlock is obtained if P3==0 or
|
|
** a write lock if P3==1.
|
|
**
|
|
** P2 contains the root-page of the table to lock.
|
|
**
|
|
** P4 contains a pointer to the name of the table being locked. This is only
|
|
** used to generate an error message if the lock cannot be obtained.
|
|
*/
|
|
case OP_TableLock: {
|
|
u8 isWriteLock = (u8)pOp->p3;
|
|
if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
|
|
int p1 = pOp->p1;
|
|
assert( p1>=0 && p1<db->nDb );
|
|
assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
|
|
assert( isWriteLock==0 || isWriteLock==1 );
|
|
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
|
|
if( (rc&0xFF)==SQLITE_LOCKED ){
|
|
const char *z = pOp->p4.z;
|
|
sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_SHARED_CACHE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VBegin * * * P4 *
|
|
**
|
|
** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
|
|
** xBegin method for that table.
|
|
**
|
|
** Also, whether or not P4 is set, check that this is not being called from
|
|
** within a callback to a virtual table xSync() method. If it is, the error
|
|
** code will be set to SQLITE_LOCKED.
|
|
*/
|
|
case OP_VBegin: {
|
|
VTable *pVTab;
|
|
pVTab = pOp->p4.pVtab;
|
|
rc = sqlite3VtabBegin(db, pVTab);
|
|
if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VCreate P1 * * P4 *
|
|
**
|
|
** P4 is the name of a virtual table in database P1. Call the xCreate method
|
|
** for that table.
|
|
*/
|
|
case OP_VCreate: {
|
|
rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VDestroy P1 * * P4 *
|
|
**
|
|
** P4 is the name of a virtual table in database P1. Call the xDestroy method
|
|
** of that table.
|
|
*/
|
|
case OP_VDestroy: {
|
|
p->inVtabMethod = 2;
|
|
rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
|
|
p->inVtabMethod = 0;
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VOpen P1 * * P4 *
|
|
**
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
** P1 is a cursor number. This opcode opens a cursor to the virtual
|
|
** table and stores that cursor in P1.
|
|
*/
|
|
case OP_VOpen: {
|
|
VdbeCursor *pCur;
|
|
sqlite3_vtab_cursor *pVtabCursor;
|
|
sqlite3_vtab *pVtab;
|
|
sqlite3_module *pModule;
|
|
|
|
pCur = 0;
|
|
pVtabCursor = 0;
|
|
pVtab = pOp->p4.pVtab->pVtab;
|
|
pModule = (sqlite3_module *)pVtab->pModule;
|
|
assert(pVtab && pModule);
|
|
rc = pModule->xOpen(pVtab, &pVtabCursor);
|
|
importVtabErrMsg(p, pVtab);
|
|
if( SQLITE_OK==rc ){
|
|
/* Initialize sqlite3_vtab_cursor base class */
|
|
pVtabCursor->pVtab = pVtab;
|
|
|
|
/* Initialize vdbe cursor object */
|
|
pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
|
|
if( pCur ){
|
|
pCur->pVtabCursor = pVtabCursor;
|
|
pCur->pModule = pVtabCursor->pVtab->pModule;
|
|
}else{
|
|
db->mallocFailed = 1;
|
|
pModule->xClose(pVtabCursor);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VFilter P1 P2 P3 P4 *
|
|
**
|
|
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
|
|
** the filtered result set is empty.
|
|
**
|
|
** P4 is either NULL or a string that was generated by the xBestIndex
|
|
** method of the module. The interpretation of the P4 string is left
|
|
** to the module implementation.
|
|
**
|
|
** This opcode invokes the xFilter method on the virtual table specified
|
|
** by P1. The integer query plan parameter to xFilter is stored in register
|
|
** P3. Register P3+1 stores the argc parameter to be passed to the
|
|
** xFilter method. Registers P3+2..P3+1+argc are the argc
|
|
** additional parameters which are passed to
|
|
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
|
|
**
|
|
** A jump is made to P2 if the result set after filtering would be empty.
|
|
*/
|
|
case OP_VFilter: { /* jump */
|
|
int nArg;
|
|
int iQuery;
|
|
const sqlite3_module *pModule;
|
|
Mem *pQuery;
|
|
Mem *pArgc;
|
|
sqlite3_vtab_cursor *pVtabCursor;
|
|
sqlite3_vtab *pVtab;
|
|
VdbeCursor *pCur;
|
|
int res;
|
|
int i;
|
|
Mem **apArg;
|
|
|
|
pQuery = &aMem[pOp->p3];
|
|
pArgc = &pQuery[1];
|
|
pCur = p->apCsr[pOp->p1];
|
|
assert( memIsValid(pQuery) );
|
|
REGISTER_TRACE(pOp->p3, pQuery);
|
|
assert( pCur->pVtabCursor );
|
|
pVtabCursor = pCur->pVtabCursor;
|
|
pVtab = pVtabCursor->pVtab;
|
|
pModule = pVtab->pModule;
|
|
|
|
/* Grab the index number and argc parameters */
|
|
assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
|
|
nArg = (int)pArgc->u.i;
|
|
iQuery = (int)pQuery->u.i;
|
|
|
|
/* Invoke the xFilter method */
|
|
{
|
|
res = 0;
|
|
apArg = p->apArg;
|
|
for(i = 0; i<nArg; i++){
|
|
apArg[i] = &pArgc[i+1];
|
|
sqlite3VdbeMemStoreType(apArg[i]);
|
|
}
|
|
|
|
p->inVtabMethod = 1;
|
|
rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
|
|
p->inVtabMethod = 0;
|
|
importVtabErrMsg(p, pVtab);
|
|
if( rc==SQLITE_OK ){
|
|
res = pModule->xEof(pVtabCursor);
|
|
}
|
|
|
|
if( res ){
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
}
|
|
pCur->nullRow = 0;
|
|
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VColumn P1 P2 P3 * *
|
|
**
|
|
** Store the value of the P2-th column of
|
|
** the row of the virtual-table that the
|
|
** P1 cursor is pointing to into register P3.
|
|
*/
|
|
case OP_VColumn: {
|
|
sqlite3_vtab *pVtab;
|
|
const sqlite3_module *pModule;
|
|
Mem *pDest;
|
|
sqlite3_context sContext;
|
|
|
|
VdbeCursor *pCur = p->apCsr[pOp->p1];
|
|
assert( pCur->pVtabCursor );
|
|
assert( pOp->p3>0 && pOp->p3<=p->nMem );
|
|
pDest = &aMem[pOp->p3];
|
|
memAboutToChange(p, pDest);
|
|
if( pCur->nullRow ){
|
|
sqlite3VdbeMemSetNull(pDest);
|
|
break;
|
|
}
|
|
pVtab = pCur->pVtabCursor->pVtab;
|
|
pModule = pVtab->pModule;
|
|
assert( pModule->xColumn );
|
|
memset(&sContext, 0, sizeof(sContext));
|
|
|
|
/* The output cell may already have a buffer allocated. Move
|
|
** the current contents to sContext.s so in case the user-function
|
|
** can use the already allocated buffer instead of allocating a
|
|
** new one.
|
|
*/
|
|
sqlite3VdbeMemMove(&sContext.s, pDest);
|
|
MemSetTypeFlag(&sContext.s, MEM_Null);
|
|
|
|
rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
|
|
importVtabErrMsg(p, pVtab);
|
|
if( sContext.isError ){
|
|
rc = sContext.isError;
|
|
}
|
|
|
|
/* Copy the result of the function to the P3 register. We
|
|
** do this regardless of whether or not an error occurred to ensure any
|
|
** dynamic allocation in sContext.s (a Mem struct) is released.
|
|
*/
|
|
sqlite3VdbeChangeEncoding(&sContext.s, encoding);
|
|
sqlite3VdbeMemMove(pDest, &sContext.s);
|
|
REGISTER_TRACE(pOp->p3, pDest);
|
|
UPDATE_MAX_BLOBSIZE(pDest);
|
|
|
|
if( sqlite3VdbeMemTooBig(pDest) ){
|
|
goto too_big;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VNext P1 P2 * * *
|
|
**
|
|
** Advance virtual table P1 to the next row in its result set and
|
|
** jump to instruction P2. Or, if the virtual table has reached
|
|
** the end of its result set, then fall through to the next instruction.
|
|
*/
|
|
case OP_VNext: { /* jump */
|
|
sqlite3_vtab *pVtab;
|
|
const sqlite3_module *pModule;
|
|
int res;
|
|
VdbeCursor *pCur;
|
|
|
|
res = 0;
|
|
pCur = p->apCsr[pOp->p1];
|
|
assert( pCur->pVtabCursor );
|
|
if( pCur->nullRow ){
|
|
break;
|
|
}
|
|
pVtab = pCur->pVtabCursor->pVtab;
|
|
pModule = pVtab->pModule;
|
|
assert( pModule->xNext );
|
|
|
|
/* Invoke the xNext() method of the module. There is no way for the
|
|
** underlying implementation to return an error if one occurs during
|
|
** xNext(). Instead, if an error occurs, true is returned (indicating that
|
|
** data is available) and the error code returned when xColumn or
|
|
** some other method is next invoked on the save virtual table cursor.
|
|
*/
|
|
p->inVtabMethod = 1;
|
|
rc = pModule->xNext(pCur->pVtabCursor);
|
|
p->inVtabMethod = 0;
|
|
importVtabErrMsg(p, pVtab);
|
|
if( rc==SQLITE_OK ){
|
|
res = pModule->xEof(pCur->pVtabCursor);
|
|
}
|
|
|
|
if( !res ){
|
|
/* If there is data, jump to P2 */
|
|
pc = pOp->p2 - 1;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VRename P1 * * P4 *
|
|
**
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
** This opcode invokes the corresponding xRename method. The value
|
|
** in register P1 is passed as the zName argument to the xRename method.
|
|
*/
|
|
case OP_VRename: {
|
|
sqlite3_vtab *pVtab;
|
|
Mem *pName;
|
|
|
|
pVtab = pOp->p4.pVtab->pVtab;
|
|
pName = &aMem[pOp->p1];
|
|
assert( pVtab->pModule->xRename );
|
|
assert( memIsValid(pName) );
|
|
REGISTER_TRACE(pOp->p1, pName);
|
|
assert( pName->flags & MEM_Str );
|
|
testcase( pName->enc==SQLITE_UTF8 );
|
|
testcase( pName->enc==SQLITE_UTF16BE );
|
|
testcase( pName->enc==SQLITE_UTF16LE );
|
|
rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
|
|
if( rc==SQLITE_OK ){
|
|
rc = pVtab->pModule->xRename(pVtab, pName->z);
|
|
importVtabErrMsg(p, pVtab);
|
|
p->expired = 0;
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
/* Opcode: VUpdate P1 P2 P3 P4 *
|
|
**
|
|
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
|
** This opcode invokes the corresponding xUpdate method. P2 values
|
|
** are contiguous memory cells starting at P3 to pass to the xUpdate
|
|
** invocation. The value in register (P3+P2-1) corresponds to the
|
|
** p2th element of the argv array passed to xUpdate.
|
|
**
|
|
** The xUpdate method will do a DELETE or an INSERT or both.
|
|
** The argv[0] element (which corresponds to memory cell P3)
|
|
** is the rowid of a row to delete. If argv[0] is NULL then no
|
|
** deletion occurs. The argv[1] element is the rowid of the new
|
|
** row. This can be NULL to have the virtual table select the new
|
|
** rowid for itself. The subsequent elements in the array are
|
|
** the values of columns in the new row.
|
|
**
|
|
** If P2==1 then no insert is performed. argv[0] is the rowid of
|
|
** a row to delete.
|
|
**
|
|
** P1 is a boolean flag. If it is set to true and the xUpdate call
|
|
** is successful, then the value returned by sqlite3_last_insert_rowid()
|
|
** is set to the value of the rowid for the row just inserted.
|
|
*/
|
|
case OP_VUpdate: {
|
|
sqlite3_vtab *pVtab;
|
|
sqlite3_module *pModule;
|
|
int nArg;
|
|
int i;
|
|
sqlite_int64 rowid;
|
|
Mem **apArg;
|
|
Mem *pX;
|
|
|
|
assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
|
|
|| pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
|
|
);
|
|
pVtab = pOp->p4.pVtab->pVtab;
|
|
pModule = (sqlite3_module *)pVtab->pModule;
|
|
nArg = pOp->p2;
|
|
assert( pOp->p4type==P4_VTAB );
|
|
if( ALWAYS(pModule->xUpdate) ){
|
|
u8 vtabOnConflict = db->vtabOnConflict;
|
|
apArg = p->apArg;
|
|
pX = &aMem[pOp->p3];
|
|
for(i=0; i<nArg; i++){
|
|
assert( memIsValid(pX) );
|
|
memAboutToChange(p, pX);
|
|
sqlite3VdbeMemStoreType(pX);
|
|
apArg[i] = pX;
|
|
pX++;
|
|
}
|
|
db->vtabOnConflict = pOp->p5;
|
|
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
|
|
db->vtabOnConflict = vtabOnConflict;
|
|
importVtabErrMsg(p, pVtab);
|
|
if( rc==SQLITE_OK && pOp->p1 ){
|
|
assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
|
|
db->lastRowid = lastRowid = rowid;
|
|
}
|
|
if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
|
|
if( pOp->p5==OE_Ignore ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
|
|
}
|
|
}else{
|
|
p->nChange++;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/* Opcode: Pagecount P1 P2 * * *
|
|
**
|
|
** Write the current number of pages in database P1 to memory cell P2.
|
|
*/
|
|
case OP_Pagecount: { /* out2-prerelease */
|
|
pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
|
/* Opcode: MaxPgcnt P1 P2 P3 * *
|
|
**
|
|
** Try to set the maximum page count for database P1 to the value in P3.
|
|
** Do not let the maximum page count fall below the current page count and
|
|
** do not change the maximum page count value if P3==0.
|
|
**
|
|
** Store the maximum page count after the change in register P2.
|
|
*/
|
|
case OP_MaxPgcnt: { /* out2-prerelease */
|
|
unsigned int newMax;
|
|
Btree *pBt;
|
|
|
|
pBt = db->aDb[pOp->p1].pBt;
|
|
newMax = 0;
|
|
if( pOp->p3 ){
|
|
newMax = sqlite3BtreeLastPage(pBt);
|
|
if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
|
|
}
|
|
pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/* Opcode: Trace * * * P4 *
|
|
**
|
|
** If tracing is enabled (by the sqlite3_trace()) interface, then
|
|
** the UTF-8 string contained in P4 is emitted on the trace callback.
|
|
*/
|
|
case OP_Trace: {
|
|
char *zTrace;
|
|
char *z;
|
|
|
|
if( db->xTrace
|
|
&& !p->doingRerun
|
|
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
|
|
){
|
|
z = sqlite3VdbeExpandSql(p, zTrace);
|
|
db->xTrace(db->pTraceArg, z);
|
|
sqlite3DbFree(db, z);
|
|
}
|
|
#ifdef SQLITE_DEBUG
|
|
if( (db->flags & SQLITE_SqlTrace)!=0
|
|
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
|
|
){
|
|
sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Opcode: Noop * * * * *
|
|
**
|
|
** Do nothing. This instruction is often useful as a jump
|
|
** destination.
|
|
*/
|
|
/*
|
|
** The magic Explain opcode are only inserted when explain==2 (which
|
|
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
|
|
** This opcode records information from the optimizer. It is the
|
|
** the same as a no-op. This opcodesnever appears in a real VM program.
|
|
*/
|
|
default: { /* This is really OP_Noop and OP_Explain */
|
|
assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
|
|
break;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
** The cases of the switch statement above this line should all be indented
|
|
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
|
|
** readability. From this point on down, the normal indentation rules are
|
|
** restored.
|
|
*****************************************************************************/
|
|
}
|
|
|
|
#ifdef VDBE_PROFILE
|
|
{
|
|
u64 elapsed = sqlite3Hwtime() - start;
|
|
pOp->cycles += elapsed;
|
|
pOp->cnt++;
|
|
#if 0
|
|
fprintf(stdout, "%10llu ", elapsed);
|
|
sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* The following code adds nothing to the actual functionality
|
|
** of the program. It is only here for testing and debugging.
|
|
** On the other hand, it does burn CPU cycles every time through
|
|
** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
|
*/
|
|
#ifndef NDEBUG
|
|
assert( pc>=-1 && pc<p->nOp );
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
if( p->trace ){
|
|
if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
|
|
if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
|
|
registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
|
|
}
|
|
if( pOp->opflags & OPFLG_OUT3 ){
|
|
registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
|
|
}
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
#endif /* NDEBUG */
|
|
} /* The end of the for(;;) loop the loops through opcodes */
|
|
|
|
/* If we reach this point, it means that execution is finished with
|
|
** an error of some kind.
|
|
*/
|
|
vdbe_error_halt:
|
|
assert( rc );
|
|
p->rc = rc;
|
|
testcase( sqlite3GlobalConfig.xLog!=0 );
|
|
sqlite3_log(rc, "statement aborts at %d: [%s] %s",
|
|
pc, p->zSql, p->zErrMsg);
|
|
sqlite3VdbeHalt(p);
|
|
if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
|
|
rc = SQLITE_ERROR;
|
|
if( resetSchemaOnFault>0 ){
|
|
sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
|
|
}
|
|
|
|
/* This is the only way out of this procedure. We have to
|
|
** release the mutexes on btrees that were acquired at the
|
|
** top. */
|
|
vdbe_return:
|
|
db->lastRowid = lastRowid;
|
|
sqlite3VdbeLeave(p);
|
|
return rc;
|
|
|
|
/* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
|
|
** is encountered.
|
|
*/
|
|
too_big:
|
|
sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
|
|
rc = SQLITE_TOOBIG;
|
|
goto vdbe_error_halt;
|
|
|
|
/* Jump to here if a malloc() fails.
|
|
*/
|
|
no_mem:
|
|
db->mallocFailed = 1;
|
|
sqlite3SetString(&p->zErrMsg, db, "out of memory");
|
|
rc = SQLITE_NOMEM;
|
|
goto vdbe_error_halt;
|
|
|
|
/* Jump to here for any other kind of fatal error. The "rc" variable
|
|
** should hold the error number.
|
|
*/
|
|
abort_due_to_error:
|
|
assert( p->zErrMsg==0 );
|
|
if( db->mallocFailed ) rc = SQLITE_NOMEM;
|
|
if( rc!=SQLITE_IOERR_NOMEM ){
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
|
|
}
|
|
goto vdbe_error_halt;
|
|
|
|
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
|
|
** flag.
|
|
*/
|
|
abort_due_to_interrupt:
|
|
assert( db->u1.isInterrupted );
|
|
rc = SQLITE_INTERRUPT;
|
|
p->rc = rc;
|
|
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
|
|
goto vdbe_error_halt;
|
|
}
|