2008-07-30 13:15:43 +00:00
|
|
|
/*
|
|
|
|
** 2001 September 22
|
|
|
|
**
|
|
|
|
** The author disclaims copyright to this source code. In place of
|
|
|
|
** a legal notice, here is a blessing:
|
|
|
|
**
|
|
|
|
** May you do good and not evil.
|
|
|
|
** May you find forgiveness for yourself and forgive others.
|
|
|
|
** May you share freely, never taking more than you give.
|
|
|
|
**
|
|
|
|
*************************************************************************
|
|
|
|
** This is the implementation of generic hash-tables
|
|
|
|
** used in SQLite.
|
|
|
|
**
|
2009-02-20 20:33:35 +00:00
|
|
|
** $Id: hash.c,v 1.33 2009/01/09 01:12:28 drh Exp $
|
2008-07-30 13:15:43 +00:00
|
|
|
*/
|
|
|
|
#include "sqliteInt.h"
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
/* Turn bulk memory into a hash table object by initializing the
|
|
|
|
** fields of the Hash structure.
|
|
|
|
**
|
|
|
|
** "pNew" is a pointer to the hash table that is to be initialized.
|
2009-02-20 20:33:35 +00:00
|
|
|
** "copyKey" is true if the hash table should make its own private
|
|
|
|
** copy of keys and false if it should just use the supplied pointer.
|
2008-07-30 13:15:43 +00:00
|
|
|
*/
|
2009-02-20 20:33:35 +00:00
|
|
|
void sqlite3HashInit(Hash *pNew, int copyKey){
|
2008-07-30 13:15:43 +00:00
|
|
|
assert( pNew!=0 );
|
2009-02-20 20:33:35 +00:00
|
|
|
pNew->copyKey = copyKey!=0;
|
2008-07-30 13:15:43 +00:00
|
|
|
pNew->first = 0;
|
|
|
|
pNew->count = 0;
|
|
|
|
pNew->htsize = 0;
|
|
|
|
pNew->ht = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Remove all entries from a hash table. Reclaim all memory.
|
|
|
|
** Call this routine to delete a hash table or to reset a hash table
|
|
|
|
** to the empty state.
|
|
|
|
*/
|
|
|
|
void sqlite3HashClear(Hash *pH){
|
|
|
|
HashElem *elem; /* For looping over all elements of the table */
|
|
|
|
|
|
|
|
assert( pH!=0 );
|
|
|
|
elem = pH->first;
|
|
|
|
pH->first = 0;
|
|
|
|
sqlite3_free(pH->ht);
|
|
|
|
pH->ht = 0;
|
|
|
|
pH->htsize = 0;
|
|
|
|
while( elem ){
|
|
|
|
HashElem *next_elem = elem->next;
|
2009-02-20 20:33:35 +00:00
|
|
|
if( pH->copyKey ){
|
2008-07-30 13:15:43 +00:00
|
|
|
sqlite3_free(elem->pKey);
|
|
|
|
}
|
|
|
|
sqlite3_free(elem);
|
|
|
|
elem = next_elem;
|
|
|
|
}
|
|
|
|
pH->count = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Hash and comparison functions when the mode is SQLITE_HASH_STRING
|
|
|
|
*/
|
|
|
|
static int strHash(const void *pKey, int nKey){
|
|
|
|
const char *z = (const char *)pKey;
|
|
|
|
int h = 0;
|
2009-02-20 20:33:35 +00:00
|
|
|
if( nKey<=0 ) nKey = sqlite3Strlen30(z);
|
2008-07-30 13:15:43 +00:00
|
|
|
while( nKey > 0 ){
|
|
|
|
h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
|
|
|
|
nKey--;
|
|
|
|
}
|
|
|
|
return h & 0x7fffffff;
|
|
|
|
}
|
|
|
|
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
|
|
|
if( n1!=n2 ) return 1;
|
|
|
|
return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Link an element into the hash table
|
|
|
|
*/
|
|
|
|
static void insertElement(
|
|
|
|
Hash *pH, /* The complete hash table */
|
|
|
|
struct _ht *pEntry, /* The entry into which pNew is inserted */
|
|
|
|
HashElem *pNew /* The element to be inserted */
|
|
|
|
){
|
|
|
|
HashElem *pHead; /* First element already in pEntry */
|
|
|
|
pHead = pEntry->chain;
|
|
|
|
if( pHead ){
|
|
|
|
pNew->next = pHead;
|
|
|
|
pNew->prev = pHead->prev;
|
|
|
|
if( pHead->prev ){ pHead->prev->next = pNew; }
|
|
|
|
else { pH->first = pNew; }
|
|
|
|
pHead->prev = pNew;
|
|
|
|
}else{
|
|
|
|
pNew->next = pH->first;
|
|
|
|
if( pH->first ){ pH->first->prev = pNew; }
|
|
|
|
pNew->prev = 0;
|
|
|
|
pH->first = pNew;
|
|
|
|
}
|
|
|
|
pEntry->count++;
|
|
|
|
pEntry->chain = pNew;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Resize the hash table so that it cantains "new_size" buckets.
|
|
|
|
** "new_size" must be a power of 2. The hash table might fail
|
|
|
|
** to resize if sqlite3_malloc() fails.
|
|
|
|
*/
|
|
|
|
static void rehash(Hash *pH, int new_size){
|
|
|
|
struct _ht *new_ht; /* The new hash table */
|
|
|
|
HashElem *elem, *next_elem; /* For looping over existing elements */
|
|
|
|
|
|
|
|
#ifdef SQLITE_MALLOC_SOFT_LIMIT
|
|
|
|
if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
|
|
|
|
new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
|
|
|
|
}
|
|
|
|
if( new_size==pH->htsize ) return;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* There is a call to sqlite3_malloc() inside rehash(). If there is
|
|
|
|
** already an allocation at pH->ht, then if this malloc() fails it
|
|
|
|
** is benign (since failing to resize a hash table is a performance
|
|
|
|
** hit only, not a fatal error).
|
|
|
|
*/
|
|
|
|
if( pH->htsize>0 ) sqlite3BeginBenignMalloc();
|
|
|
|
new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
|
|
|
|
if( pH->htsize>0 ) sqlite3EndBenignMalloc();
|
|
|
|
|
|
|
|
if( new_ht==0 ) return;
|
|
|
|
sqlite3_free(pH->ht);
|
|
|
|
pH->ht = new_ht;
|
|
|
|
pH->htsize = new_size;
|
|
|
|
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
2009-02-20 20:33:35 +00:00
|
|
|
int h = strHash(elem->pKey, elem->nKey) & (new_size-1);
|
2008-07-30 13:15:43 +00:00
|
|
|
next_elem = elem->next;
|
|
|
|
insertElement(pH, &new_ht[h], elem);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This function (for internal use only) locates an element in an
|
|
|
|
** hash table that matches the given key. The hash for this key has
|
|
|
|
** already been computed and is passed as the 4th parameter.
|
|
|
|
*/
|
|
|
|
static HashElem *findElementGivenHash(
|
|
|
|
const Hash *pH, /* The pH to be searched */
|
|
|
|
const void *pKey, /* The key we are searching for */
|
|
|
|
int nKey,
|
|
|
|
int h /* The hash for this key. */
|
|
|
|
){
|
|
|
|
HashElem *elem; /* Used to loop thru the element list */
|
|
|
|
int count; /* Number of elements left to test */
|
|
|
|
|
|
|
|
if( pH->ht ){
|
|
|
|
struct _ht *pEntry = &pH->ht[h];
|
|
|
|
elem = pEntry->chain;
|
|
|
|
count = pEntry->count;
|
|
|
|
while( count-- && elem ){
|
2009-02-20 20:33:35 +00:00
|
|
|
if( strCompare(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
2008-07-30 13:15:43 +00:00
|
|
|
return elem;
|
|
|
|
}
|
|
|
|
elem = elem->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Remove a single entry from the hash table given a pointer to that
|
|
|
|
** element and a hash on the element's key.
|
|
|
|
*/
|
|
|
|
static void removeElementGivenHash(
|
|
|
|
Hash *pH, /* The pH containing "elem" */
|
|
|
|
HashElem* elem, /* The element to be removed from the pH */
|
|
|
|
int h /* Hash value for the element */
|
|
|
|
){
|
|
|
|
struct _ht *pEntry;
|
|
|
|
if( elem->prev ){
|
|
|
|
elem->prev->next = elem->next;
|
|
|
|
}else{
|
|
|
|
pH->first = elem->next;
|
|
|
|
}
|
|
|
|
if( elem->next ){
|
|
|
|
elem->next->prev = elem->prev;
|
|
|
|
}
|
|
|
|
pEntry = &pH->ht[h];
|
|
|
|
if( pEntry->chain==elem ){
|
|
|
|
pEntry->chain = elem->next;
|
|
|
|
}
|
|
|
|
pEntry->count--;
|
|
|
|
if( pEntry->count<=0 ){
|
|
|
|
pEntry->chain = 0;
|
|
|
|
}
|
|
|
|
if( pH->copyKey ){
|
|
|
|
sqlite3_free(elem->pKey);
|
|
|
|
}
|
|
|
|
sqlite3_free( elem );
|
|
|
|
pH->count--;
|
|
|
|
if( pH->count<=0 ){
|
|
|
|
assert( pH->first==0 );
|
|
|
|
assert( pH->count==0 );
|
|
|
|
sqlite3HashClear(pH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Attempt to locate an element of the hash table pH with a key
|
|
|
|
** that matches pKey,nKey. Return a pointer to the corresponding
|
|
|
|
** HashElem structure for this element if it is found, or NULL
|
|
|
|
** otherwise.
|
|
|
|
*/
|
|
|
|
HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
|
|
|
|
int h; /* A hash on key */
|
|
|
|
HashElem *elem; /* The element that matches key */
|
|
|
|
|
|
|
|
if( pH==0 || pH->ht==0 ) return 0;
|
2009-02-20 20:33:35 +00:00
|
|
|
h = strHash(pKey,nKey);
|
2008-07-30 13:15:43 +00:00
|
|
|
elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize);
|
|
|
|
return elem;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Attempt to locate an element of the hash table pH with a key
|
|
|
|
** that matches pKey,nKey. Return the data for this element if it is
|
|
|
|
** found, or NULL if there is no match.
|
|
|
|
*/
|
|
|
|
void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
|
|
|
|
HashElem *elem; /* The element that matches key */
|
|
|
|
elem = sqlite3HashFindElem(pH, pKey, nKey);
|
|
|
|
return elem ? elem->data : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Insert an element into the hash table pH. The key is pKey,nKey
|
|
|
|
** and the data is "data".
|
|
|
|
**
|
|
|
|
** If no element exists with a matching key, then a new
|
|
|
|
** element is created. A copy of the key is made if the copyKey
|
|
|
|
** flag is set. NULL is returned.
|
|
|
|
**
|
|
|
|
** If another element already exists with the same key, then the
|
|
|
|
** new data replaces the old data and the old data is returned.
|
|
|
|
** The key is not copied in this instance. If a malloc fails, then
|
|
|
|
** the new data is returned and the hash table is unchanged.
|
|
|
|
**
|
|
|
|
** If the "data" parameter to this function is NULL, then the
|
|
|
|
** element corresponding to "key" is removed from the hash table.
|
|
|
|
*/
|
|
|
|
void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
|
|
|
int hraw; /* Raw hash value of the key */
|
|
|
|
int h; /* the hash of the key modulo hash table size */
|
|
|
|
HashElem *elem; /* Used to loop thru the element list */
|
|
|
|
HashElem *new_elem; /* New element added to the pH */
|
|
|
|
|
|
|
|
assert( pH!=0 );
|
2009-02-20 20:33:35 +00:00
|
|
|
hraw = strHash(pKey, nKey);
|
2008-07-30 13:15:43 +00:00
|
|
|
if( pH->htsize ){
|
|
|
|
h = hraw % pH->htsize;
|
|
|
|
elem = findElementGivenHash(pH,pKey,nKey,h);
|
|
|
|
if( elem ){
|
|
|
|
void *old_data = elem->data;
|
|
|
|
if( data==0 ){
|
|
|
|
removeElementGivenHash(pH,elem,h);
|
|
|
|
}else{
|
|
|
|
elem->data = data;
|
|
|
|
if( !pH->copyKey ){
|
|
|
|
elem->pKey = (void *)pKey;
|
|
|
|
}
|
|
|
|
assert(nKey==elem->nKey);
|
|
|
|
}
|
|
|
|
return old_data;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( data==0 ) return 0;
|
|
|
|
new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
|
|
|
|
if( new_elem==0 ) return data;
|
|
|
|
if( pH->copyKey && pKey!=0 ){
|
|
|
|
new_elem->pKey = sqlite3Malloc( nKey );
|
|
|
|
if( new_elem->pKey==0 ){
|
|
|
|
sqlite3_free(new_elem);
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
memcpy((void*)new_elem->pKey, pKey, nKey);
|
|
|
|
}else{
|
|
|
|
new_elem->pKey = (void*)pKey;
|
|
|
|
}
|
|
|
|
new_elem->nKey = nKey;
|
|
|
|
pH->count++;
|
|
|
|
if( pH->htsize==0 ){
|
|
|
|
rehash(pH, 128/sizeof(pH->ht[0]));
|
|
|
|
if( pH->htsize==0 ){
|
|
|
|
pH->count = 0;
|
|
|
|
if( pH->copyKey ){
|
|
|
|
sqlite3_free(new_elem->pKey);
|
|
|
|
}
|
|
|
|
sqlite3_free(new_elem);
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( pH->count > pH->htsize ){
|
|
|
|
rehash(pH,pH->htsize*2);
|
|
|
|
}
|
|
|
|
assert( pH->htsize>0 );
|
|
|
|
h = hraw % pH->htsize;
|
|
|
|
insertElement(pH, &pH->ht[h], new_elem);
|
|
|
|
new_elem->data = data;
|
|
|
|
return 0;
|
|
|
|
}
|