spiff-arena/SpiffWorkflow/dmn/serializer/task_spec_converters.py
burnettk 71a2a3ec0e Squashed 'SpiffWorkflow/' changes from 46d3de27f..ffb168675
ffb168675 Option to run tests in parallel (#271)
062eaf15d another hot match -- assure hit policy is correctly passed through.
c79ee8407 Quick patch the DMN hit policy to fix a dump mistake.
36dd1b23a Fix ResourceWarning: unclosed file BpmnParser.py:60 (#270)
bba7ddf54 Merge pull request #268 from sartography/feature/multiple-event-definition
8cf770985 remove unused import
9d31e035e make multiple throw events work with start events
890c4b921 add throw support for multiple events
c1fc55660 add support for catching parallel multiple event definitions
511830b67 add event based gateway
56bd858dc add event type for multiple events

git-subtree-dir: SpiffWorkflow
git-subtree-split: ffb1686757f944065580dd2db8def73d6c1f0134
2022-12-10 23:39:00 -05:00

99 lines
3.6 KiB
Python

from ...bpmn.serializer.bpmn_converters import BpmnTaskSpecConverter
from ..specs.BusinessRuleTask import BusinessRuleTask
from ..specs.model import DecisionTable, Rule, HitPolicy
from ..specs.model import Input, InputEntry, Output, OutputEntry
from ..engine.DMNEngine import DMNEngine
class BusinessRuleTaskConverter(BpmnTaskSpecConverter):
def __init__(self, data_converter=None, typename=None):
super().__init__(BusinessRuleTask, data_converter, typename)
def to_dict(self, spec):
dct = self.get_default_attributes(spec)
dct.update(self.get_bpmn_attributes(spec))
# We only ever use one decision table
dct['decision_table'] = self.decision_table_to_dict(spec.dmnEngine.decision_table)
return dct
def decision_table_to_dict(self, table):
return {
'id': table.id,
'name': table.name,
'hit_policy': table.hit_policy,
'inputs': [val.__dict__ for val in table.inputs],
'outputs': [val.__dict__ for val in table.outputs],
'rules': [self.rule_to_dict(rule) for rule in table.rules],
}
def input_entry_to_dict(self, entry):
return {
'id': entry.id,
'input_id': entry.input.id,
'description': entry.description,
'lhs': entry.lhs,
}
def output_entry_to_dict(self, entry):
dct = {
'id': entry.id,
'output_id': entry.output.id,
'description': entry.description,
'text': entry.text,
}
return dct
def rule_to_dict(self, rule):
return {
'id': rule.id,
'description': rule.description,
'input_entries': [self.input_entry_to_dict(entry) for entry in rule.inputEntries],
'output_entries': [self.output_entry_to_dict(entry) for entry in rule.outputEntries],
}
def from_dict(self, dct):
table = self.decision_table_from_dict(dct.pop('decision_table'))
dct['dmnEngine'] = DMNEngine(table)
return self.task_spec_from_dict(dct)
def decision_table_from_dict(self, dct):
hit_policy = dct.get('hit_policy', HitPolicy.UNIQUE.value)
table = DecisionTable(dct['id'], dct['name'], hit_policy)
table.inputs = [ Input(**val) for val in dct['inputs'] ]
table.outputs = [ Output(**val) for val in dct['outputs'] ]
table.rules = [ self.rule_from_dict(rule, table.inputs, table.outputs)
for rule in dct['rules'] ]
return table
def input_entry_from_dict(self, dct, inputs):
input_id = dct.pop('input_id')
my_input = None
for i in inputs:
if i.id == input_id:
my_input = i
entry = InputEntry(dct['id'], my_input)
entry.description = dct['description']
entry.lhs = dct['lhs']
return entry
def output_entry_from_dict(self, dct, outputs):
output_id = dct['output_id']
my_output = None
for i in outputs:
if i.id == output_id:
my_output = i
entry = OutputEntry(dct['id'], my_output)
entry.description = dct['description']
entry.text = dct['text']
return entry
def rule_from_dict(self, dct, inputs, outputs):
rule = Rule(dct['id'])
rule.description = dct['description']
rule.inputEntries = [self.input_entry_from_dict(entry, inputs)
for entry in dct['input_entries']]
rule.outputEntries = [self.output_entry_from_dict(entry, outputs)
for entry in dct['output_entries']]
return rule