# -*- coding: utf-8 -*- # Copyright (C) 2012 Matthew Hampton # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301 USA from SpiffWorkflow.bpmn.specs.events.event_definitions import MessageEventDefinition, MultipleEventDefinition from .PythonScriptEngine import PythonScriptEngine from .specs.events.event_types import CatchingEvent from .specs.events.StartEvent import StartEvent from .specs.SubWorkflowTask import CallActivity from ..task import TaskState, Task from ..workflow import Workflow from ..exceptions import WorkflowException class BpmnMessage: def __init__(self, correlations, name, payload): self.correlations = correlations or {} self.name = name self.payload = payload class BpmnWorkflow(Workflow): """ The engine that executes a BPMN workflow. This specialises the standard Spiff Workflow class with a few extra methods and attributes. """ def __init__(self, top_level_spec, subprocess_specs=None, name=None, script_engine=None, **kwargs): """ Constructor. :param script_engine: set to an extension of PythonScriptEngine if you need a specialised version. Defaults to the script engine of the top most workflow, or to the PythonScriptEngine if none is provided. """ super(BpmnWorkflow, self).__init__(top_level_spec, **kwargs) self.name = name or top_level_spec.name self.subprocess_specs = subprocess_specs or {} self.subprocesses = {} self.bpmn_messages = [] self.correlations = {} self.__script_engine = script_engine or PythonScriptEngine() @property def script_engine(self): # The outermost script engine always takes precedence. # All call activities, sub-workflows and DMNs should use the # workflow engine of the outermost workflow. return self._get_outermost_workflow().__script_engine @script_engine.setter def script_engine(self, engine): self.__script_engine = engine def create_subprocess(self, my_task, spec_name, name): workflow = self._get_outermost_workflow(my_task) subprocess = BpmnWorkflow( workflow.subprocess_specs[spec_name], name=name, script_engine=self.script_engine, parent=my_task.workflow) workflow.subprocesses[my_task.id] = subprocess return subprocess def delete_subprocess(self, my_task): workflow = self._get_outermost_workflow(my_task) del workflow.subprocesses[my_task.id] def get_subprocess(self, my_task): workflow = self._get_outermost_workflow(my_task) return workflow.subprocesses.get(my_task.id) def add_subprocess(self, spec_name, name): new = CallActivity(self.spec, name, spec_name) self.spec.start.connect(new) task = Task(self, new) task._ready() start = self.get_tasks_from_spec_name('Start', workflow=self)[0] start.children.append(task) task.parent = start return self.subprocesses[task.id] def _get_outermost_workflow(self, task=None): workflow = task.workflow if task is not None else self while workflow != workflow.outer_workflow: workflow = workflow.outer_workflow return workflow def _get_or_create_subprocess(self, task_spec, wf_spec): if isinstance(task_spec.event_definition, MultipleEventDefinition): for sp in self.subprocesses.values(): start = sp.get_tasks_from_spec_name(task_spec.name) if len(start) and start[0].state == TaskState.WAITING: return sp return self.add_subprocess(wf_spec.name, f'{wf_spec.name}_{len(self.subprocesses)}') def catch(self, event_definition, correlations=None): """ Send an event definition to any tasks that catch it. Tasks can always catch events, regardless of their state. The event information is stored in the tasks internal data and processed when the task is reached in the workflow. If a task should only receive messages while it is running (eg a boundary event), the task should call the event_definition's reset method before executing to clear out a stale message. :param event_definition: the thrown event """ # Start a subprocess for known specs with start events that catch this # This is total hypocritical of me given how I've argued that specs should # be immutable, but I see no other way of doing this. for name, spec in self.subprocess_specs.items(): for task_spec in list(spec.task_specs.values()): if isinstance(task_spec, StartEvent) and task_spec.event_definition == event_definition: subprocess = self._get_or_create_subprocess(task_spec, spec) subprocess.correlations.update(correlations or {}) # We need to get all the tasks that catch an event before completing any of them # in order to prevent the scenario where multiple boundary events catch the # same event and the first executed cancels the rest tasks = [ t for t in self.get_catching_tasks() if t.task_spec.catches(t, event_definition, correlations or {}) ] for task in tasks: task.task_spec.catch(task, event_definition) # Figure out if we need to create an extenal message if len(tasks) == 0 and isinstance(event_definition, MessageEventDefinition): self.bpmn_messages.append( BpmnMessage(correlations, event_definition.name, event_definition.payload)) def get_bpmn_messages(self): messages = self.bpmn_messages self.bpmn_messages = [] return messages def catch_bpmn_message(self, name, payload, correlations=None): event_definition = MessageEventDefinition(name) event_definition.payload = payload self.catch(event_definition, correlations=correlations) def do_engine_steps(self, exit_at = None, will_complete_task=None, did_complete_task=None): """ Execute any READY tasks that are engine specific (for example, gateways or script tasks). This is done in a loop, so it will keep completing those tasks until there are only READY User tasks, or WAITING tasks left. :param exit_at: After executing a task with a name matching this param return the task object :param will_complete_task: Callback that will be called prior to completing a task :param did_complete_task: Callback that will be called after completing a task """ engine_steps = list( [t for t in self.get_tasks(TaskState.READY) if self._is_engine_task(t.task_spec)]) while engine_steps: for task in engine_steps: if will_complete_task is not None: will_complete_task(task) task.complete() if did_complete_task is not None: did_complete_task(task) if task.task_spec.name == exit_at: return task engine_steps = list( [t for t in self.get_tasks(TaskState.READY) if self._is_engine_task(t.task_spec)]) def refresh_waiting_tasks(self, will_refresh_task=None, did_refresh_task=None): """ Refresh the state of all WAITING tasks. This will, for example, update Catching Timer Events whose waiting time has passed. :param will_refresh_task: Callback that will be called prior to refreshing a task :param did_refresh_task: Callback that will be called after refreshing a task """ for my_task in self.get_tasks(TaskState.WAITING): if will_refresh_task is not None: will_refresh_task(my_task) my_task.task_spec._update(my_task) if did_refresh_task is not None: did_refresh_task(my_task) def get_tasks_from_spec_name(self, name, workflow=None): return [t for t in self.get_tasks(workflow=workflow) if t.task_spec.name == name] def get_tasks(self, state=TaskState.ANY_MASK, workflow=None): tasks = [] top = self._get_outermost_workflow() wf = workflow or top for task in Workflow.get_tasks(wf): subprocess = top.subprocesses.get(task.id) if subprocess is not None: tasks.extend(subprocess.get_tasks(state, subprocess)) if task._has_state(state): tasks.append(task) return tasks def _find_task(self, task_id): if task_id is None: raise WorkflowException('task_id is None', task_spec=self.spec) for task in self.get_tasks(): if task.id == task_id: return task raise WorkflowException(f'A task with the given task_id ({task_id}) was not found', task_spec=self.spec) def complete_task_from_id(self, task_id): # I don't even know why we use this stupid function instead of calling task.complete, # since all it does is search the task tree and call the method task = self._find_task(task_id) return task.complete() def reset_task_from_id(self, task_id): task = self._find_task(task_id) if task.workflow.last_task and task.workflow.last_task.data: data = task.workflow.last_task.data return task.reset_token(data) def get_ready_user_tasks(self,lane=None): """Returns a list of User Tasks that are READY for user action""" if lane is not None: return [t for t in self.get_tasks(TaskState.READY) if (not self._is_engine_task(t.task_spec)) and (t.task_spec.lane == lane)] else: return [t for t in self.get_tasks(TaskState.READY) if not self._is_engine_task(t.task_spec)] def get_waiting_tasks(self): """Returns a list of all WAITING tasks""" return self.get_tasks(TaskState.WAITING) def get_catching_tasks(self): return [ task for task in self.get_tasks() if isinstance(task.task_spec, CatchingEvent) ] def _is_engine_task(self, task_spec): return (not hasattr(task_spec, 'is_engine_task') or task_spec.is_engine_task()) def _task_completed_notify(self, task): super(BpmnWorkflow, self)._task_completed_notify(task)