Backend do_engine_steps performance improvements (#129)

Co-authored-by: Dan <daniel.h.funk@gmail.com>
This commit is contained in:
jbirddog 2023-02-06 15:25:49 -05:00 committed by GitHub
parent ab9614c6b4
commit c00338e951
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 47 additions and 18 deletions

View File

@ -3634,4 +3634,4 @@
"clientPolicies" : {
"policies" : [ ]
}
}
}

View File

@ -243,5 +243,5 @@ class DBHandler(logging.Handler):
# so at some point we are going to insert logs.
# we don't want to insert on every log, so we will insert every 100 logs, which is just about as fast as inserting
# on every 1,000 logs. if we get deadlocks in the database, this can be changed to 1 in order to insert on every log.
if len(self.logs) % 1 == 0:
if len(self.logs) >= 100:
self.bulk_insert_logs()

View File

@ -149,7 +149,7 @@ class BoxedTaskDataBasedScriptEngineEnvironment(BoxedTaskDataEnvironment): # ty
self._last_result = context
def last_result(self) -> Dict[str, Any]:
return self._last_result
return {k: v for k, v in self._last_result.items()}
def clear_state(self) -> None:
pass
@ -226,7 +226,7 @@ class NonTaskDataBasedScriptEngineEnvironment(BasePythonScriptEngineEnvironment)
}
def last_result(self) -> Dict[str, Any]:
return self.state
return {k: v for k, v in self.state.items()}
def clear_state(self) -> None:
self.state = {}
@ -254,8 +254,13 @@ class NonTaskDataBasedScriptEngineEnvironment(BasePythonScriptEngineEnvironment)
}
task.data = {k: v for k, v in task.data.items() if k in task_data_keys_to_keep}
if hasattr(task.task_spec, "_result_variable"):
result_variable = task.task_spec._result_variable(task)
if result_variable in task.data:
self.state[result_variable] = task.data.pop(result_variable)
class CustomScriptEngineEnvironment(BoxedTaskDataBasedScriptEngineEnvironment):
class CustomScriptEngineEnvironment(NonTaskDataBasedScriptEngineEnvironment):
pass
@ -685,9 +690,13 @@ class ProcessInstanceProcessor:
def spiff_step_details_mapping(self) -> dict:
"""SaveSpiffStepDetails."""
bpmn_json = self.serialize()
wf_json = json.loads(bpmn_json)
task_json = {"tasks": wf_json["tasks"], "subprocesses": wf_json["subprocesses"]}
# bpmn_json = self.serialize()
# wf_json = json.loads(bpmn_json)
task_json: Dict[str, Any] = {
# "tasks": wf_json["tasks"],
# "subprocesses": wf_json["subprocesses"],
# "python_env": self._script_engine.environment.last_result(),
}
return {
"process_instance_id": self.process_instance_model.id,
@ -700,13 +709,7 @@ class ProcessInstanceProcessor:
def spiff_step_details(self) -> SpiffStepDetailsModel:
"""SaveSpiffStepDetails."""
details_mapping = self.spiff_step_details_mapping()
details_model = SpiffStepDetailsModel(
process_instance_id=details_mapping["process_instance_id"],
spiff_step=details_mapping["spiff_step"],
task_json=details_mapping["task_json"],
timestamp=details_mapping["timestamp"],
# completed_by_user_id=details_mapping["completed_by_user_id"],
)
details_model = SpiffStepDetailsModel(**details_mapping)
return details_model
def extract_metadata(self, process_model_info: ProcessModelInfo) -> None:
@ -1490,16 +1493,42 @@ class ProcessInstanceProcessor:
"""Do_engine_steps."""
step_details = []
tasks_to_log = {
"BPMN Task",
"Script Task",
"Service Task"
# "End Event",
# "Default Start Event",
# "Exclusive Gateway",
# "End Join",
# "End Event",
# "Default Throwing Event",
# "Subprocess"
}
def should_log(task: SpiffTask) -> bool:
if (
task.task_spec.spec_type in tasks_to_log
and not task.task_spec.name.endswith(".EndJoin")
):
return True
return False
def will_complete_task(task: SpiffTask) -> None:
if should_log(task):
self.increment_spiff_step()
def did_complete_task(task: SpiffTask) -> None:
self._script_engine.environment.revise_state_with_task_data(task)
step_details.append(self.spiff_step_details_mapping())
if should_log(task):
self._script_engine.environment.revise_state_with_task_data(task)
step_details.append(self.spiff_step_details_mapping())
try:
self.bpmn_process_instance.refresh_waiting_tasks()
self.bpmn_process_instance.do_engine_steps(
exit_at=exit_at,
will_complete_task=lambda t: self.increment_spiff_step(),
will_complete_task=will_complete_task,
did_complete_task=did_complete_task,
)