Refactor TimelineCredScores data type (#1804)

This commit refactors the TimelineCredScores data type so it is an
array-of-objects rather than an object-of-arrays. I want to add several
more fields (for forward cred flow, backwards cred flow, seed flow,
synthetic loop flow), and feel it will be a lot cleaner with an
array-of-objects.

This is a refactor of a local data type, and there's test coverage.
Likelihood of regression is very low.

Test plan: Updated tests; `yarn test` passes.
This commit is contained in:
Dandelion Mané 2020-05-28 18:53:46 -07:00 committed by GitHub
parent 0449c9ea37
commit 0f6a765569
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 90 additions and 100 deletions

View File

@ -209,12 +209,12 @@ export class TimelineCred {
const addressToCred = new Map();
for (let i = 0; i < nodeOrder.length; i++) {
const addr = nodeOrder[i];
const addrCred = credScores.intervalCredScores.map((cred) => cred[i]);
const addrCred = credScores.map(({cred}) => cred[i]);
addressToCred.set(addr, addrCred);
}
return new TimelineCred(
weightedGraph,
credScores.intervals,
credScores.map((x) => x.interval),
addressToCred,
fullParams,
plugins

View File

@ -15,25 +15,17 @@ export opaque type NodeOrderedCredScores: Float64Array = Float64Array;
/**
* Represents cred scores over time.
*
* It contains an array of intervals, which give timing information, and an
* array of CredTimeSlices, which are Float64Arrays. Each CredTimeSlice
* contains cred scores for an interval. The cred scores are included in
* node-address-sorted order, and as such the CredScores can only be
* interpreted in the context of an associated Graph.
*
* As invariants, it is guaranteed that:
* - intervals and intervalCredScores will always have the same length
* - all of the intervalCredScores will have a consistent implicit node ordering
*
* The type is marked opaque so that no-one else can construct instances that
* don't conform to these invariants.
* The TimelineCredScores consists of a time-ordered array of IntervalCreds.
* Each IntervalCred contains the interval information, as well as the raw
* cred score for every node in the graph. The cred is stored as a Float64Array,
* with scores corresponding to nodes by the node's index in the Graph's
* canonical address-sorted node ordering.
*/
export opaque type TimelineCredScores: {|
+intervals: $ReadOnlyArray<Interval>,
+intervalCredScores: $ReadOnlyArray<NodeOrderedCredScores>,
|} = {|
+intervals: $ReadOnlyArray<Interval>,
+intervalCredScores: $ReadOnlyArray<NodeOrderedCredScores>,
export type TimelineCredScores = $ReadOnlyArray<IntervalCred>;
export type IntervalCred = {|
+interval: Interval,
+cred: NodeOrderedCredScores,
|};
/**
@ -59,9 +51,6 @@ export function distributionToCred(
nodeOrder: $ReadOnlyArray<NodeAddressT>,
scoringNodePrefixes: $ReadOnlyArray<NodeAddressT>
): TimelineCredScores {
if (ds.length === 0) {
return {intervals: [], intervalCredScores: []};
}
const scoringNodeIndices = [];
for (let i = 0; i < nodeOrder.length; i++) {
const addr = nodeOrder[i];
@ -69,8 +58,7 @@ export function distributionToCred(
scoringNodeIndices.push(i);
}
}
const intervals = ds.map((x) => x.interval);
const intervalCredScores = ds.map(({distribution, intervalWeight}) => {
return ds.map(({interval, distribution, intervalWeight}) => {
const intervalTotalScore = sum(
scoringNodeIndices.map((x) => distribution[x])
);
@ -78,32 +66,33 @@ export function distributionToCred(
const intervalNormalizer =
intervalTotalScore === 0 ? 0 : intervalWeight / intervalTotalScore;
const cred = distribution.map((x) => x * intervalNormalizer);
return cred;
return {interval, cred};
});
return {intervalCredScores, intervals};
}
const COMPAT_INFO = {type: "sourcecred/timelineCredScores", version: "0.1.0"};
const COMPAT_INFO = {type: "sourcecred/timelineCredScores", version: "0.2.0"};
export type TimelineCredScoresJSON = Compatible<{|
+intervals: $ReadOnlyArray<Interval>,
// TODO: Serializing floats as strings is space-inefficient. We can likely
// get space savings if we base64 encode a byte representation of the
// floats.
+intervalCredScores: $ReadOnlyArray<$ReadOnlyArray<number>>,
|}>;
export type TimelineCredScoresJSON = Compatible<
$ReadOnlyArray<{|
+interval: Interval,
// TODO: Serializing floats as strings is space-inefficient. We can likely
// get space savings if we base64 encode a byte representation of the
// floats.
+cred: $ReadOnlyArray<number>,
|}>
>;
export function toJSON(s: TimelineCredScores): TimelineCredScoresJSON {
return toCompat(COMPAT_INFO, {
intervals: s.intervals,
intervalCredScores: s.intervalCredScores.map((x) => Array.from(x)),
});
return toCompat(
COMPAT_INFO,
s.map(({interval, cred}) => ({interval, cred: Array.from(cred)}))
);
}
export function fromJSON(j: TimelineCredScoresJSON): TimelineCredScores {
const {intervals, intervalCredScores} = fromCompat(COMPAT_INFO, j);
return {
intervals,
intervalCredScores: intervalCredScores.map((x) => new Float64Array(x)),
};
const scoreArray = fromCompat(COMPAT_INFO, j);
return scoreArray.map(({cred, interval}) => ({
cred: new Float64Array(cred),
interval,
}));
}

View File

@ -21,16 +21,16 @@ describe("src/core/algorithm/distributionToCred", () => {
];
const nodeOrder = [na("foo"), na("bar")];
const actual = distributionToCred(ds, nodeOrder, [NodeAddress.empty]);
const expected = {
intervals: [
{startTimeMs: 0, endTimeMs: 10},
{startTimeMs: 10, endTimeMs: 20},
],
intervalCredScores: [
new Float64Array([1, 1]),
new Float64Array([9, 1]),
],
};
const expected = [
{
interval: {startTimeMs: 0, endTimeMs: 10},
cred: new Float64Array([1, 1]),
},
{
interval: {startTimeMs: 10, endTimeMs: 20},
cred: new Float64Array([9, 1]),
},
];
expect(expected).toEqual(actual);
});
it("correctly handles multiple scoring prefixes", () => {
@ -48,16 +48,16 @@ describe("src/core/algorithm/distributionToCred", () => {
];
const nodeOrder = [na("foo"), na("bar")];
const actual = distributionToCred(ds, nodeOrder, [na("foo"), na("bar")]);
const expected = {
intervals: [
{startTimeMs: 0, endTimeMs: 10},
{startTimeMs: 10, endTimeMs: 20},
],
intervalCredScores: [
new Float64Array([1, 1]),
new Float64Array([9, 1]),
],
};
const expected = [
{
interval: {startTimeMs: 0, endTimeMs: 10},
cred: new Float64Array([1, 1]),
},
{
interval: {startTimeMs: 10, endTimeMs: 20},
cred: new Float64Array([9, 1]),
},
];
expect(expected).toEqual(actual);
});
it("works in a case where some nodes are scoring", () => {
@ -75,16 +75,16 @@ describe("src/core/algorithm/distributionToCred", () => {
];
const nodeOrder = [na("foo"), na("bar")];
const actual = distributionToCred(ds, nodeOrder, [na("bar")]);
const expected = {
intervals: [
{startTimeMs: 0, endTimeMs: 10},
{startTimeMs: 10, endTimeMs: 20},
],
intervalCredScores: [
new Float64Array([2, 2]),
new Float64Array([90, 10]),
],
};
const expected = [
{
interval: {startTimeMs: 0, endTimeMs: 10},
cred: new Float64Array([2, 2]),
},
{
interval: {startTimeMs: 10, endTimeMs: 20},
cred: new Float64Array([90, 10]),
},
];
expect(expected).toEqual(actual);
});
it("handles the case where no nodes are scoring", () => {
@ -97,10 +97,12 @@ describe("src/core/algorithm/distributionToCred", () => {
];
const nodeOrder = [na("foo"), na("bar")];
const actual = distributionToCred(ds, nodeOrder, []);
const expected = {
intervals: [{startTimeMs: 0, endTimeMs: 10}],
intervalCredScores: [new Float64Array([0, 0])],
};
const expected = [
{
interval: {startTimeMs: 0, endTimeMs: 10},
cred: new Float64Array([0, 0]),
},
];
expect(actual).toEqual(expected);
});
@ -114,18 +116,17 @@ describe("src/core/algorithm/distributionToCred", () => {
];
const nodeOrder = [na("foo"), na("bar")];
const actual = distributionToCred(ds, nodeOrder, [na("bar")]);
const expected = {
intervals: [{startTimeMs: 0, endTimeMs: 10}],
intervalCredScores: [new Float64Array([0, 0])],
};
const expected = [
{
interval: {startTimeMs: 0, endTimeMs: 10},
cred: new Float64Array([0, 0]),
},
];
expect(actual).toEqual(expected);
});
it("returns empty CredScores if no intervals are present", () => {
expect(distributionToCred([], [], [])).toEqual({
intervals: [],
intervalCredScores: [],
});
expect(distributionToCred([], [], [])).toEqual([]);
});
});
describe("to/from JSON", () => {
@ -155,30 +156,30 @@ describe("src/core/algorithm/distributionToCred", () => {
Array [
Object {
"type": "sourcecred/timelineCredScores",
"version": "0.1.0",
"version": "0.2.0",
},
Object {
"intervalCredScores": Array [
Array [
Array [
Object {
"cred": Array [
2,
2,
],
Array [
90,
10,
],
],
"intervals": Array [
Object {
"interval": Object {
"endTimeMs": 10,
"startTimeMs": 0,
},
Object {
},
Object {
"cred": Array [
90,
10,
],
"interval": Object {
"endTimeMs": 20,
"startTimeMs": 10,
},
],
},
},
],
]
`);
});