149 lines
6.5 KiB
C
149 lines
6.5 KiB
C
/*************************************************************************
|
|
* Written in 2020-2022 by Elichai Turkel *
|
|
* To the extent possible under law, the author(s) have dedicated all *
|
|
* copyright and related and neighboring rights to the software in this *
|
|
* file to the public domain worldwide. This software is distributed *
|
|
* without any warranty. For the CC0 Public Domain Dedication, see *
|
|
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
|
*************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include <secp256k1.h>
|
|
#include <secp256k1_extrakeys.h>
|
|
#include <secp256k1_schnorrsig.h>
|
|
|
|
#include "random.h"
|
|
|
|
int main(void) {
|
|
unsigned char msg[12] = "Hello World!";
|
|
unsigned char msg_hash[32];
|
|
unsigned char tag[17] = "my_fancy_protocol";
|
|
unsigned char seckey[32];
|
|
unsigned char randomize[32];
|
|
unsigned char auxiliary_rand[32];
|
|
unsigned char serialized_pubkey[32];
|
|
unsigned char signature[64];
|
|
int is_signature_valid;
|
|
int return_val;
|
|
secp256k1_xonly_pubkey pubkey;
|
|
secp256k1_keypair keypair;
|
|
/* Before we can call actual API functions, we need to create a "context". */
|
|
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
|
if (!fill_random(randomize, sizeof(randomize))) {
|
|
printf("Failed to generate randomness\n");
|
|
return 1;
|
|
}
|
|
/* Randomizing the context is recommended to protect against side-channel
|
|
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
|
|
* information about it. This should never fail. */
|
|
return_val = secp256k1_context_randomize(ctx, randomize);
|
|
assert(return_val);
|
|
|
|
/*** Key Generation ***/
|
|
|
|
/* If the secret key is zero or out of range (bigger than secp256k1's
|
|
* order), we try to sample a new key. Note that the probability of this
|
|
* happening is negligible. */
|
|
while (1) {
|
|
if (!fill_random(seckey, sizeof(seckey))) {
|
|
printf("Failed to generate randomness\n");
|
|
return 1;
|
|
}
|
|
/* Try to create a keypair with a valid context, it should only fail if
|
|
* the secret key is zero or out of range. */
|
|
if (secp256k1_keypair_create(ctx, &keypair, seckey)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Extract the X-only public key from the keypair. We pass NULL for
|
|
* `pk_parity` as the parity isn't needed for signing or verification.
|
|
* `secp256k1_keypair_xonly_pub` supports returning the parity for
|
|
* other use cases such as tests or verifying Taproot tweaks.
|
|
* This should never fail with a valid context and public key. */
|
|
return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair);
|
|
assert(return_val);
|
|
|
|
/* Serialize the public key. Should always return 1 for a valid public key. */
|
|
return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey);
|
|
assert(return_val);
|
|
|
|
/*** Signing ***/
|
|
|
|
/* Instead of signing (possibly very long) messages directly, we sign a
|
|
* 32-byte hash of the message in this example.
|
|
*
|
|
* We use secp256k1_tagged_sha256 to create this hash. This function expects
|
|
* a context-specific "tag", which restricts the context in which the signed
|
|
* messages should be considered valid. For example, if protocol A mandates
|
|
* to use the tag "my_fancy_protocol" and protocol B mandates to use the tag
|
|
* "my_boring_protocol", then signed messages from protocol A will never be
|
|
* valid in protocol B (and vice versa), even if keys are reused across
|
|
* protocols. This implements "domain separation", which is considered good
|
|
* practice. It avoids attacks in which users are tricked into signing a
|
|
* message that has intended consequences in the intended context (e.g.,
|
|
* protocol A) but would have unintended consequences if it were valid in
|
|
* some other context (e.g., protocol B). */
|
|
return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
|
|
assert(return_val);
|
|
|
|
/* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */
|
|
if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) {
|
|
printf("Failed to generate randomness\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Generate a Schnorr signature.
|
|
*
|
|
* We use the secp256k1_schnorrsig_sign32 function that provides a simple
|
|
* interface for signing 32-byte messages (which in our case is a hash of
|
|
* the actual message). BIP-340 recommends passing 32 bytes of randomness
|
|
* to the signing function to improve security against side-channel attacks.
|
|
* Signing with a valid context, a 32-byte message, a verified keypair, and
|
|
* any 32 bytes of auxiliary random data should never fail. */
|
|
return_val = secp256k1_schnorrsig_sign32(ctx, signature, msg_hash, &keypair, auxiliary_rand);
|
|
assert(return_val);
|
|
|
|
/*** Verification ***/
|
|
|
|
/* Deserialize the public key. This will return 0 if the public key can't
|
|
* be parsed correctly */
|
|
if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) {
|
|
printf("Failed parsing the public key\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Compute the tagged hash on the received messages using the same tag as the signer. */
|
|
return_val = secp256k1_tagged_sha256(ctx, msg_hash, tag, sizeof(tag), msg, sizeof(msg));
|
|
assert(return_val);
|
|
|
|
/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
|
|
is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey);
|
|
|
|
|
|
printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
|
|
printf("Secret Key: ");
|
|
print_hex(seckey, sizeof(seckey));
|
|
printf("Public Key: ");
|
|
print_hex(serialized_pubkey, sizeof(serialized_pubkey));
|
|
printf("Signature: ");
|
|
print_hex(signature, sizeof(signature));
|
|
|
|
/* This will clear everything from the context and free the memory */
|
|
secp256k1_context_destroy(ctx);
|
|
|
|
/* It's best practice to try to clear secrets from memory after using them.
|
|
* This is done because some bugs can allow an attacker to leak memory, for
|
|
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
|
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
|
*
|
|
* TODO: Prevent these writes from being optimized out, as any good compiler
|
|
* will remove any writes that aren't used. */
|
|
memset(seckey, 0, sizeof(seckey));
|
|
|
|
return 0;
|
|
}
|