157 lines
5.8 KiB
Python
157 lines
5.8 KiB
Python
load("secp256k1_params.sage")
|
|
|
|
MAX_ORDER = 1000
|
|
|
|
# Set of (curve) orders we have encountered so far.
|
|
orders_done = set()
|
|
|
|
# Map from (subgroup) orders to [b, int(gen.x), int(gen.y), gen, lambda] for those subgroups.
|
|
solutions = {}
|
|
|
|
# Iterate over curves of the form y^2 = x^3 + B.
|
|
for b in range(1, P):
|
|
# There are only 6 curves (up to isomorphism) of the form y^2 = x^3 + B. Stop once we have tried all.
|
|
if len(orders_done) == 6:
|
|
break
|
|
|
|
E = EllipticCurve(F, [0, b])
|
|
print("Analyzing curve y^2 = x^3 + %i" % b)
|
|
n = E.order()
|
|
|
|
# Skip curves with an order we've already tried
|
|
if n in orders_done:
|
|
print("- Isomorphic to earlier curve")
|
|
print()
|
|
continue
|
|
orders_done.add(n)
|
|
|
|
# Skip curves isomorphic to the real secp256k1
|
|
if n.is_pseudoprime():
|
|
assert E.is_isomorphic(C)
|
|
print("- Isomorphic to secp256k1")
|
|
print()
|
|
continue
|
|
|
|
print("- Finding prime subgroups")
|
|
|
|
# Map from group_order to a set of independent generators for that order.
|
|
curve_gens = {}
|
|
|
|
for g in E.gens():
|
|
# Find what prime subgroups of group generated by g exist.
|
|
g_order = g.order()
|
|
for f, _ in g.order().factor():
|
|
# Skip subgroups that have bad size.
|
|
if f < 4:
|
|
print(f" - Subgroup of size {f}: too small")
|
|
continue
|
|
if f > MAX_ORDER:
|
|
print(f" - Subgroup of size {f}: too large")
|
|
continue
|
|
|
|
# Construct a generator for that subgroup.
|
|
gen = g * (g_order // f)
|
|
assert(gen.order() == f)
|
|
|
|
# Add to set the minimal multiple of gen.
|
|
curve_gens.setdefault(f, set()).add(min([j*gen for j in range(1, f)]))
|
|
print(f" - Subgroup of size {f}: ok")
|
|
|
|
for f in sorted(curve_gens.keys()):
|
|
print(f"- Constructing group of order {f}")
|
|
cbrts = sorted([int(c) for c in Integers(f)(1).nth_root(3, all=true) if c != 1])
|
|
gens = list(curve_gens[f])
|
|
sol_count = 0
|
|
no_endo_count = 0
|
|
|
|
# Consider all non-zero linear combinations of the independent generators.
|
|
for j in range(1, f**len(gens)):
|
|
gen = sum(gens[k] * ((j // f**k) % f) for k in range(len(gens)))
|
|
assert not gen.is_zero()
|
|
assert (f*gen).is_zero()
|
|
|
|
# Find lambda for endomorphism. Skip if none can be found.
|
|
lam = None
|
|
for l in cbrts:
|
|
if l*gen == E(BETA*gen[0], gen[1]):
|
|
lam = l
|
|
break
|
|
|
|
if lam is None:
|
|
no_endo_count += 1
|
|
else:
|
|
sol_count += 1
|
|
solutions.setdefault(f, []).append((b, int(gen[0]), int(gen[1]), gen, lam))
|
|
|
|
print(f" - Found {sol_count} generators (plus {no_endo_count} without endomorphism)")
|
|
|
|
print()
|
|
|
|
def output_generator(g, name):
|
|
print(f"#define {name} SECP256K1_GE_CONST(\\")
|
|
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
|
|
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
|
|
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
|
|
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x\\" % tuple((int(g[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
|
|
print(")")
|
|
|
|
def output_b(b):
|
|
print(f"#define SECP256K1_B {int(b)}")
|
|
|
|
print()
|
|
print("To be put in src/group_impl.h:")
|
|
print()
|
|
print("/* Begin of section generated by sage/gen_exhaustive_groups.sage. */")
|
|
for f in sorted(solutions.keys()):
|
|
# Use as generator/2 the one with lowest b, and lowest (x, y) generator (interpreted as non-negative integers).
|
|
b, _, _, HALF_G, lam = min(solutions[f])
|
|
output_generator(2 * HALF_G, f"SECP256K1_G_ORDER_{f}")
|
|
print("/** Generator for secp256k1, value 'g' defined in")
|
|
print(" * \"Standards for Efficient Cryptography\" (SEC2) 2.7.1.")
|
|
print(" */")
|
|
output_generator(G, "SECP256K1_G")
|
|
print("/* These exhaustive group test orders and generators are chosen such that:")
|
|
print(" * - The field size is equal to that of secp256k1, so field code is the same.")
|
|
print(" * - The curve equation is of the form y^2=x^3+B for some small constant B.")
|
|
print(" * - The subgroup has a generator 2*P, where P.x is as small as possible.")
|
|
print(f" * - The subgroup has size less than {MAX_ORDER} to permit exhaustive testing.")
|
|
print(" * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).")
|
|
print(" */")
|
|
print("#if defined(EXHAUSTIVE_TEST_ORDER)")
|
|
first = True
|
|
for f in sorted(solutions.keys()):
|
|
b, _, _, _, lam = min(solutions[f])
|
|
print(f"# {'if' if first else 'elif'} EXHAUSTIVE_TEST_ORDER == {f}")
|
|
first = False
|
|
print()
|
|
print(f"static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_{f};")
|
|
output_b(b)
|
|
print()
|
|
print("# else")
|
|
print("# error No known generator for the specified exhaustive test group order.")
|
|
print("# endif")
|
|
print("#else")
|
|
print()
|
|
print("static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G;")
|
|
output_b(7)
|
|
print()
|
|
print("#endif")
|
|
print("/* End of section generated by sage/gen_exhaustive_groups.sage. */")
|
|
|
|
|
|
print()
|
|
print()
|
|
print("To be put in src/scalar_impl.h:")
|
|
print()
|
|
print("/* Begin of section generated by sage/gen_exhaustive_groups.sage. */")
|
|
first = True
|
|
for f in sorted(solutions.keys()):
|
|
_, _, _, _, lam = min(solutions[f])
|
|
print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
|
|
first = False
|
|
print("# define EXHAUSTIVE_TEST_LAMBDA %i" % lam)
|
|
print("# else")
|
|
print("# error No known lambda for the specified exhaustive test group order.")
|
|
print("# endif")
|
|
print("/* End of section generated by sage/gen_exhaustive_groups.sage. */")
|