secp256k1/sage/gen_exhaustive_groups.sage

157 lines
5.8 KiB
Python

load("secp256k1_params.sage")
MAX_ORDER = 1000
# Set of (curve) orders we have encountered so far.
orders_done = set()
# Map from (subgroup) orders to [b, int(gen.x), int(gen.y), gen, lambda] for those subgroups.
solutions = {}
# Iterate over curves of the form y^2 = x^3 + B.
for b in range(1, P):
# There are only 6 curves (up to isomorphism) of the form y^2 = x^3 + B. Stop once we have tried all.
if len(orders_done) == 6:
break
E = EllipticCurve(F, [0, b])
print("Analyzing curve y^2 = x^3 + %i" % b)
n = E.order()
# Skip curves with an order we've already tried
if n in orders_done:
print("- Isomorphic to earlier curve")
print()
continue
orders_done.add(n)
# Skip curves isomorphic to the real secp256k1
if n.is_pseudoprime():
assert E.is_isomorphic(C)
print("- Isomorphic to secp256k1")
print()
continue
print("- Finding prime subgroups")
# Map from group_order to a set of independent generators for that order.
curve_gens = {}
for g in E.gens():
# Find what prime subgroups of group generated by g exist.
g_order = g.order()
for f, _ in g.order().factor():
# Skip subgroups that have bad size.
if f < 4:
print(f" - Subgroup of size {f}: too small")
continue
if f > MAX_ORDER:
print(f" - Subgroup of size {f}: too large")
continue
# Construct a generator for that subgroup.
gen = g * (g_order // f)
assert(gen.order() == f)
# Add to set the minimal multiple of gen.
curve_gens.setdefault(f, set()).add(min([j*gen for j in range(1, f)]))
print(f" - Subgroup of size {f}: ok")
for f in sorted(curve_gens.keys()):
print(f"- Constructing group of order {f}")
cbrts = sorted([int(c) for c in Integers(f)(1).nth_root(3, all=true) if c != 1])
gens = list(curve_gens[f])
sol_count = 0
no_endo_count = 0
# Consider all non-zero linear combinations of the independent generators.
for j in range(1, f**len(gens)):
gen = sum(gens[k] * ((j // f**k) % f) for k in range(len(gens)))
assert not gen.is_zero()
assert (f*gen).is_zero()
# Find lambda for endomorphism. Skip if none can be found.
lam = None
for l in cbrts:
if l*gen == E(BETA*gen[0], gen[1]):
lam = l
break
if lam is None:
no_endo_count += 1
else:
sol_count += 1
solutions.setdefault(f, []).append((b, int(gen[0]), int(gen[1]), gen, lam))
print(f" - Found {sol_count} generators (plus {no_endo_count} without endomorphism)")
print()
def output_generator(g, name):
print(f"#define {name} SECP256K1_GE_CONST(\\")
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x,\\" % tuple((int(g[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x\\" % tuple((int(g[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
print(")")
def output_b(b):
print(f"#define SECP256K1_B {int(b)}")
print()
print("To be put in src/group_impl.h:")
print()
print("/* Begin of section generated by sage/gen_exhaustive_groups.sage. */")
for f in sorted(solutions.keys()):
# Use as generator/2 the one with lowest b, and lowest (x, y) generator (interpreted as non-negative integers).
b, _, _, HALF_G, lam = min(solutions[f])
output_generator(2 * HALF_G, f"SECP256K1_G_ORDER_{f}")
print("/** Generator for secp256k1, value 'g' defined in")
print(" * \"Standards for Efficient Cryptography\" (SEC2) 2.7.1.")
print(" */")
output_generator(G, "SECP256K1_G")
print("/* These exhaustive group test orders and generators are chosen such that:")
print(" * - The field size is equal to that of secp256k1, so field code is the same.")
print(" * - The curve equation is of the form y^2=x^3+B for some small constant B.")
print(" * - The subgroup has a generator 2*P, where P.x is as small as possible.")
print(f" * - The subgroup has size less than {MAX_ORDER} to permit exhaustive testing.")
print(" * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).")
print(" */")
print("#if defined(EXHAUSTIVE_TEST_ORDER)")
first = True
for f in sorted(solutions.keys()):
b, _, _, _, lam = min(solutions[f])
print(f"# {'if' if first else 'elif'} EXHAUSTIVE_TEST_ORDER == {f}")
first = False
print()
print(f"static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G_ORDER_{f};")
output_b(b)
print()
print("# else")
print("# error No known generator for the specified exhaustive test group order.")
print("# endif")
print("#else")
print()
print("static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G;")
output_b(7)
print()
print("#endif")
print("/* End of section generated by sage/gen_exhaustive_groups.sage. */")
print()
print()
print("To be put in src/scalar_impl.h:")
print()
print("/* Begin of section generated by sage/gen_exhaustive_groups.sage. */")
first = True
for f in sorted(solutions.keys()):
_, _, _, _, lam = min(solutions[f])
print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
first = False
print("# define EXHAUSTIVE_TEST_LAMBDA %i" % lam)
print("# else")
print("# error No known lambda for the specified exhaustive test group order.")
print("# endif")
print("/* End of section generated by sage/gen_exhaustive_groups.sage. */")