"""Prime order of finite field underlying secp256k1 (2^256 - 2^32 - 977)""" P = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F """Finite field underlying secp256k1""" F = FiniteField(P) """Elliptic curve secp256k1: y^2 = x^3 + 7""" C = EllipticCurve([F(0), F(7)]) """Base point of secp256k1""" G = C.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798) """Prime order of secp256k1""" N = C.order() """Finite field of scalars of secp256k1""" Z = FiniteField(N) """ Beta value of secp256k1 non-trivial endomorphism: lambda * (x, y) = (beta * x, y)""" BETA = F(2)^((P-1)/3) """ Lambda value of secp256k1 non-trivial endomorphism: lambda * (x, y) = (beta * x, y)""" LAMBDA = Z(3)^((N-1)/3) assert is_prime(P) assert is_prime(N) assert BETA != F(1) assert BETA^3 == F(1) assert LAMBDA != Z(1) assert LAMBDA^3 == Z(1)