/************************************************************************* * Written in 2020-2022 by Elichai Turkel * * To the extent possible under law, the author(s) have dedicated all * * copyright and related and neighboring rights to the software in this * * file to the public domain worldwide. This software is distributed * * without any warranty. For the CC0 Public Domain Dedication, see * * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * *************************************************************************/ #include #include #include #include #include #include #include "random.h" int main(void) { /* Instead of signing the message directly, we must sign a 32-byte hash. * Here the message is "Hello, world!" and the hash function was SHA-256. * An actual implementation should just call SHA-256, but this example * hardcodes the output to avoid depending on an additional library. */ unsigned char msg_hash[32] = { 0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4, 0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64, 0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34, 0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3, }; unsigned char seckey[32]; unsigned char randomize[32]; unsigned char auxiliary_rand[32]; unsigned char serialized_pubkey[32]; unsigned char signature[64]; int is_signature_valid; int return_val; secp256k1_xonly_pubkey pubkey; secp256k1_keypair keypair; /* The specification in secp256k1_extrakeys.h states that `secp256k1_keypair_create` * needs a context object initialized for signing. And in secp256k1_schnorrsig.h * they state that `secp256k1_schnorrsig_verify` needs a context initialized for * verification, which is why we create a context for both signing and verification * with the SECP256K1_CONTEXT_SIGN and SECP256K1_CONTEXT_VERIFY flags. */ secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); if (!fill_random(randomize, sizeof(randomize))) { printf("Failed to generate randomness\n"); return 1; } /* Randomizing the context is recommended to protect against side-channel * leakage See `secp256k1_context_randomize` in secp256k1.h for more * information about it. This should never fail. */ return_val = secp256k1_context_randomize(ctx, randomize); assert(return_val); /*** Key Generation ***/ /* If the secret key is zero or out of range (bigger than secp256k1's * order), we try to sample a new key. Note that the probability of this * happening is negligible. */ while (1) { if (!fill_random(seckey, sizeof(seckey))) { printf("Failed to generate randomness\n"); return 1; } /* Try to create a keypair with a valid context, it should only fail if * the secret key is zero or out of range. */ if (secp256k1_keypair_create(ctx, &keypair, seckey)) { break; } } /* Extract the X-only public key from the keypair. We pass NULL for * `pk_parity` as the parity isn't needed for signing or verification. * `secp256k1_keypair_xonly_pub` supports returning the parity for * other use cases such as tests or verifying Taproot tweaks. * This should never fail with a valid context and public key. */ return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair); assert(return_val); /* Serialize the public key. Should always return 1 for a valid public key. */ return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey); assert(return_val); /*** Signing ***/ /* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */ if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) { printf("Failed to generate randomness\n"); return 1; } /* Generate a Schnorr signature `noncefp` and `ndata` allows you to pass a * custom nonce function, passing `NULL` will use the BIP-340 safe default. * BIP-340 recommends passing 32 bytes of randomness to the nonce function to * improve security against side-channel attacks. Signing with a valid * context, verified keypair and the default nonce function should never * fail. */ return_val = secp256k1_schnorrsig_sign(ctx, signature, msg_hash, &keypair, auxiliary_rand); assert(return_val); /*** Verification ***/ /* Deserialize the public key. This will return 0 if the public key can't * be parsed correctly */ if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) { printf("Failed parsing the public key\n"); return 1; } /* Verify a signature. This will return 1 if it's valid and 0 if it's not. */ is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey); printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false"); printf("Secret Key: "); print_hex(seckey, sizeof(seckey)); printf("Public Key: "); print_hex(serialized_pubkey, sizeof(serialized_pubkey)); printf("Signature: "); print_hex(signature, sizeof(signature)); /* This will clear everything from the context and free the memory */ secp256k1_context_destroy(ctx); /* It's best practice to try to clear secrets from memory after using them. * This is done because some bugs can allow an attacker to leak memory, for * example through "out of bounds" array access (see Heartbleed), Or the OS * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. * * TODO: Prevent these writes from being optimized out, as any good compiler * will remove any writes that aren't used. */ memset(seckey, 0, sizeof(seckey)); return 0; }