Add an ECDSA signing and verifying example
Co-authored-by: Jonas Nick <jonasd.nick@gmail.com>
This commit is contained in:
parent
a1102b1219
commit
fee7d4bf9e
|
@ -0,0 +1,137 @@
|
|||
/*************************************************************************
|
||||
* Written in 2020-2022 by Elichai Turkel *
|
||||
* To the extent possible under law, the author(s) have dedicated all *
|
||||
* copyright and related and neighboring rights to the software in this *
|
||||
* file to the public domain worldwide. This software is distributed *
|
||||
* without any warranty. For the CC0 Public Domain Dedication, see *
|
||||
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
||||
*************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <secp256k1.h>
|
||||
|
||||
#include "random.h"
|
||||
|
||||
|
||||
|
||||
int main(void) {
|
||||
/* Instead of signing the message directly, we must sign a 32-byte hash.
|
||||
* Here the message is "Hello, world!" and the hash function was SHA-256.
|
||||
* An actual implementation should just call SHA-256, but this example
|
||||
* hardcodes the output to avoid depending on an additional library.
|
||||
* See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */
|
||||
unsigned char msg_hash[32] = {
|
||||
0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4,
|
||||
0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64,
|
||||
0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34,
|
||||
0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3,
|
||||
};
|
||||
unsigned char seckey[32];
|
||||
unsigned char randomize[32];
|
||||
unsigned char compressed_pubkey[33];
|
||||
unsigned char serialized_signature[64];
|
||||
size_t len;
|
||||
int is_signature_valid;
|
||||
int return_val;
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
/* The specification in secp256k1.h states that `secp256k1_ec_pubkey_create` needs
|
||||
* a context object initialized for signing and `secp256k1_ecdsa_verify` needs
|
||||
* a context initialized for verification, which is why we create a context
|
||||
* for both signing and verification with the SECP256K1_CONTEXT_SIGN and
|
||||
* SECP256K1_CONTEXT_VERIFY flags. */
|
||||
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
||||
if (!fill_random(randomize, sizeof(randomize))) {
|
||||
printf("Failed to generate randomness\n");
|
||||
return 1;
|
||||
}
|
||||
/* Randomizing the context is recommended to protect against side-channel
|
||||
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
|
||||
* information about it. This should never fail. */
|
||||
return_val = secp256k1_context_randomize(ctx, randomize);
|
||||
assert(return_val);
|
||||
|
||||
/*** Key Generation ***/
|
||||
|
||||
/* If the secret key is zero or out of range (bigger than secp256k1's
|
||||
* order), we try to sample a new key. Note that the probability of this
|
||||
* happening is negligible. */
|
||||
while (1) {
|
||||
if (!fill_random(seckey, sizeof(seckey))) {
|
||||
printf("Failed to generate randomness\n");
|
||||
return 1;
|
||||
}
|
||||
if (secp256k1_ec_seckey_verify(ctx, seckey)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Public key creation using a valid context with a verified secret key should never fail */
|
||||
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey, seckey);
|
||||
assert(return_val);
|
||||
|
||||
/* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */
|
||||
len = sizeof(compressed_pubkey);
|
||||
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED);
|
||||
assert(return_val);
|
||||
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
|
||||
assert(len == sizeof(compressed_pubkey));
|
||||
|
||||
/*** Signing ***/
|
||||
|
||||
/* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a
|
||||
* custom nonce function, passing `NULL` will use the RFC-6979 safe default.
|
||||
* Signing with a valid context, verified secret key
|
||||
* and the default nonce function should never fail. */
|
||||
return_val = secp256k1_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL);
|
||||
assert(return_val);
|
||||
|
||||
/* Serialize the signature in a compact form. Should always return 1
|
||||
* according to the documentation in secp256k1.h. */
|
||||
return_val = secp256k1_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig);
|
||||
assert(return_val);
|
||||
|
||||
|
||||
/*** Verification ***/
|
||||
|
||||
/* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */
|
||||
if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) {
|
||||
printf("Failed parsing the signature\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */
|
||||
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) {
|
||||
printf("Failed parsing the public key\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
|
||||
is_signature_valid = secp256k1_ecdsa_verify(ctx, &sig, msg_hash, &pubkey);
|
||||
|
||||
printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
|
||||
printf("Secret Key: ");
|
||||
print_hex(seckey, sizeof(seckey));
|
||||
printf("Public Key: ");
|
||||
print_hex(compressed_pubkey, sizeof(compressed_pubkey));
|
||||
printf("Signature: ");
|
||||
print_hex(serialized_signature, sizeof(serialized_signature));
|
||||
|
||||
|
||||
/* This will clear everything from the context and free the memory */
|
||||
secp256k1_context_destroy(ctx);
|
||||
|
||||
/* It's best practice to try to clear secrets from memory after using them.
|
||||
* This is done because some bugs can allow an attacker to leak memory, for
|
||||
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
||||
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
||||
*
|
||||
* TODO: Prevent these writes from being optimized out, as any good compiler
|
||||
* will remove any writes that aren't used. */
|
||||
memset(seckey, 0, sizeof(seckey));
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,73 @@
|
|||
/*************************************************************************
|
||||
* Copyright (c) 2020-2021 Elichai Turkel *
|
||||
* Distributed under the CC0 software license, see the accompanying file *
|
||||
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
||||
*************************************************************************/
|
||||
|
||||
/*
|
||||
* This file is an attempt at collecting best practice methods for obtaining randomness with different operating systems.
|
||||
* It may be out-of-date. Consult the documentation of the operating system before considering to use the methods below.
|
||||
*
|
||||
* Platform randomness sources:
|
||||
* Linux -> `getrandom(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. http://man7.org/linux/man-pages/man2/getrandom.2.html, https://linux.die.net/man/4/urandom
|
||||
* macOS -> `getentropy(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. https://www.unix.com/man-page/mojave/2/getentropy, https://opensource.apple.com/source/xnu/xnu-517.12.7/bsd/man/man4/random.4.auto.html
|
||||
* FreeBSD -> `getrandom(2)`(`sys/random.h`), if not available `kern.arandom` should be used. https://www.freebsd.org/cgi/man.cgi?query=getrandom, https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4
|
||||
* OpenBSD -> `getentropy(2)`(`unistd.h`), if not available `/dev/urandom` should be used. https://man.openbsd.org/getentropy, https://man.openbsd.org/urandom
|
||||
* Windows -> `BCryptGenRandom`(`bcrypt.h`). https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
|
||||
*/
|
||||
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#include <ntstatus.h>
|
||||
#include <bcrypt.h>
|
||||
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__)
|
||||
#include <sys/random.h>
|
||||
#elif defined(__OpenBSD__)
|
||||
#include <unistd.h>
|
||||
#else
|
||||
#error "Couldn't identify the OS"
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include <limits.h>
|
||||
#include <stdio.h>
|
||||
|
||||
|
||||
/* Returns 1 on success, and 0 on failure. */
|
||||
static int fill_random(unsigned char* data, size_t size) {
|
||||
#if defined(_WIN32)
|
||||
NTSTATUS res = BCryptGenRandom(NULL, data, size, BCRYPT_USE_SYSTEM_PREFERRED_RNG);
|
||||
if (res != STATUS_SUCCESS || size > ULONG_MAX) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
#elif defined(__linux__) || defined(__FreeBSD__)
|
||||
/* If `getrandom(2)` is not available you should fallback to /dev/urandom */
|
||||
ssize_t res = getrandom(data, size, 0);
|
||||
if (res < 0 || (size_t)res != size ) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
#elif defined(__APPLE__) || defined(__OpenBSD__)
|
||||
/* If `getentropy(2)` is not available you should fallback to either
|
||||
* `SecRandomCopyBytes` or /dev/urandom */
|
||||
int res = getentropy(data, size);
|
||||
if (res == 0) {
|
||||
return 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void print_hex(unsigned char* data, size_t size) {
|
||||
size_t i;
|
||||
printf("0x");
|
||||
for (i = 0; i < size; i++) {
|
||||
printf("%02x", data[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
Loading…
Reference in New Issue