Eliminate the prej array from ecmult_strauss_wnaf.

This commit is contained in:
Russell O'Connor 2021-02-26 15:18:50 -05:00
parent c9da1baad1
commit e5c18892db
4 changed files with 80 additions and 49 deletions

View File

@ -19,13 +19,10 @@
* It only operates on tables sized for WINDOW_A wnaf multiples.
*/
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
/* Bring them to the same Z denominator. */
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), pre, zr, globalz, a);
secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A), pre, zr);
}
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */

View File

@ -56,14 +56,23 @@
#define ECMULT_MAX_POINTS_PER_BATCH 5000000
/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
* the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
* contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
* Prej's Z values are undefined, except for the last value.
/** Fill a table 'pre_a' with precomputed odd multiples of a.
* pre_a will contain [1*a,3*a,...,(2*n-1)*a], so it needs space for n group elements.
* zr needs space for n field elements.
*
* Although pre_a is an array of _ge rather than _gej, it actually represents elements
* in Jacobian coordinates with their z coordinates omitted. The omitted z-coordinates
* can be recovered using z and zr. Using the notation z(b) to represent the omitted
* z coordinate of b:
* - z(pre_a[n-1]) = 'z'
* - z(pre_a[i-1]) = z(pre_a[i]) / zr[i] for n > i > 0
*
* Lastly the zr[0] value, which isn't used above, is set so that:
* - a.z = z(pre_a[0]) / zr[0]
*/
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
secp256k1_gej d;
secp256k1_ge a_ge, d_ge;
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_ge *pre_a, secp256k1_fe *zr, secp256k1_fe *z, const secp256k1_gej *a) {
secp256k1_gej d, ai;
secp256k1_ge d_ge;
int i;
VERIFY_CHECK(!a->infinity);
@ -71,29 +80,38 @@ static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, sec
secp256k1_gej_double_var(&d, a, NULL);
/*
* Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
* of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
* Perform the additions using an isomorphic curve Y^2 = X^3 + 7*C^6 where C := d.z.
* The isomorphism, phi, maps a secp256k1 point (x, y) to the point (x*C^2, y*C^3) on the other curve.
* In Jacobian coordinates phi maps (x, y, z) to (x*C^2, y*C^3, z) or, equivalently to (x, y, z/C).
*
* phi(x, y, z) = (x*C^2, y*C^3, z) = (x, y, z/C)
* d_ge := phi(d) = (d.x, d.y, 1)
* ai := phi(a) = (a.x*C^2, a.y*C^3, a.z)
*
* The group addition functions work correctly on these isomorphic curves.
* In particular phi(d) is easy to represent in affine coordinates under this isomorphism.
* This lets us use the faster secp256k1_gej_add_ge_var group addition function that we wouldn't be able to use otherwise.
*/
d_ge.x = d.x;
d_ge.y = d.y;
d_ge.infinity = 0;
secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
prej[0].x = a_ge.x;
prej[0].y = a_ge.y;
prej[0].z = a->z;
prej[0].infinity = 0;
secp256k1_ge_set_xy(&d_ge, &d.x, &d.y);
secp256k1_ge_set_gej_zinv(&pre_a[0], a, &d.z);
secp256k1_gej_set_ge(&ai, &pre_a[0]);
ai.z = a->z;
/* pre_a[0] is the point (a.x*C^2, a.y*C^3, a.z*C) which is equvalent to a.
* Set zr[0] to C, which is the ratio between the omitted z(pre_a[0]) value and a.z.
*/
zr[0] = d.z;
for (i = 1; i < n; i++) {
secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
secp256k1_gej_add_ge_var(&ai, &ai, &d_ge, &zr[i]);
secp256k1_ge_set_xy(&pre_a[i], &ai.x, &ai.y);
}
/*
* Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
* the final point's z coordinate is actually used though, so just update that.
/* Multiply the last z-coordinate by C to undo the isomorphism.
* Since the z-coordinates of the pre_a values are implied by the zr array of z-coordinate ratios,
* undoing the isomorphism here undoes the isomorphism for all pre_a values.
*/
secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
secp256k1_fe_mul(z, &ai.z, &d.z);
}
/** The following two macro retrieves a particular odd multiple from a table
@ -246,18 +264,18 @@ static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *
*/
if (no > 0) {
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej, state->zr, &a[state->ps[0].input_pos]);
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->pre_a, state->zr, &Z, &a[state->ps[0].input_pos]);
for (np = 1; np < no; ++np) {
secp256k1_gej tmp = a[state->ps[np].input_pos];
#ifdef VERIFY
secp256k1_fe_normalize_var(&(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z));
secp256k1_fe_normalize_var(&Z);
#endif
secp256k1_gej_rescale(&tmp, &(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z));
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &tmp);
secp256k1_gej_rescale(&tmp, &Z);
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &Z, &tmp);
secp256k1_fe_mul(state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &(a[state->ps[np].input_pos].z));
}
/* Bring them to the same Z denominator. */
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, &Z, state->prej, state->zr);
secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, state->zr);
} else {
secp256k1_fe_set_int(&Z, 1);
}

View File

@ -9,7 +9,10 @@
#include "field.h"
/** A group element of the secp256k1 curve, in affine coordinates. */
/** A group element in affine coordinates on the secp256k1 curve,
* or occasionally on an isomorphic curve of the form y^2 = x^3 + 7*t^6.
* Note: For exhaustive test mode, secp256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x;
secp256k1_fe y;
@ -19,7 +22,9 @@ typedef struct {
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates. */
/** A group element of the secp256k1 curve, in jacobian coordinates.
* Note: For exhastive test mode, sepc256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x; /* actual X: x/z^2 */
secp256k1_fe y; /* actual Y: y/z^3 */
@ -64,12 +69,24 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a);
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
* the same global z "denominator". zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y
* coordinates of the result are stored in r, the common z coordinate is
* stored in globalz. */
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
/** Bring a batch of inputs to the same global z "denominator", based on ratios between
* (omitted) z coordinates of adjacent elements.
*
* Although the elements a[i] are _ge rather than _gej, they actually represent elements
* in Jacobian coordinates with their z coordinates omitted.
*
* Using the notation z(b) to represent the omitted z coordinate of b, the array zr of
* z coordinate ratios must satisfy zr[i] == z(a[i]) / z(a[i-1]) for 0 < 'i' < len.
* The zr[0] value is unused.
*
* This function adjusts the coordinates of 'a' in place so that for all 'i', z(a[i]) == z(a[len-1]).
* In other words, the initial value of z(a[len-1]) becomes the global z "denominator". Only the
* a[i].x and a[i].y coordinates are explicitly modified; the adjustment of the omitted z coordinate is
* implicit.
*
* The coordinates of the final element a[len-1] are not changed.
*/
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr);
/** Set a group element (affine) equal to the point at infinity. */
static void secp256k1_ge_set_infinity(secp256k1_ge *r);

View File

@ -161,27 +161,26 @@ static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a
}
}
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr) {
size_t i = len - 1;
secp256k1_fe zs;
if (len > 0) {
/* The z of the final point gives us the "global Z" for the table. */
r[i].x = a[i].x;
r[i].y = a[i].y;
/* Ensure all y values are in weak normal form for fast negation of points */
secp256k1_fe_normalize_weak(&r[i].y);
*globalz = a[i].z;
r[i].infinity = 0;
secp256k1_fe_normalize_weak(&a[i].y);
zs = zr[i];
/* Work our way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
secp256k1_gej tmpa;
if (i != len - 1) {
secp256k1_fe_mul(&zs, &zs, &zr[i]);
}
i--;
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
tmpa.x = a[i].x;
tmpa.y = a[i].y;
tmpa.infinity = 0;
secp256k1_ge_set_gej_zinv(&a[i], &tmpa, &zs);
}
}
}