mirror of
https://github.com/status-im/secp256k1.git
synced 2025-02-24 03:38:12 +00:00
Merge #557: Eliminate scratch memory used when generating contexts
b3bf5f9 ecmult_impl: expand comment to explain how effective affine interacts with everything (Andrew Poelstra) efa783f Store z-ratios in the 'x' coord they'll recover (Peter Dettman) ffd3b34 add `secp256k1_ge_set_all_gej_var` test which deals with many infinite points (Andrew Poelstra) 84740ac ecmult_impl: save one fe_inv_var (Andrew Poelstra) 4704527 ecmult_impl: eliminate scratch memory used when generating context (Andrew Poelstra) 7f7a2ed ecmult_gen_impl: eliminate scratch memory used when generating context (Andrew Poelstra) Pull request description: Builds on #553 Tree-SHA512: 6031a601a4a476c1d21fc8db219383e7930434d2f199543c61aca0118412322dd814a0109c385ff1f83d16897170dd0c25051697b0f88f15234b0059b661af41
This commit is contained in:
commit
e34ceb333b
@ -172,7 +172,7 @@ int main(int argc, char **argv) {
|
||||
secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]);
|
||||
}
|
||||
}
|
||||
secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS, &data.ctx->error_callback);
|
||||
secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS);
|
||||
free(pubkeys_gej);
|
||||
|
||||
for (i = 1; i <= 8; ++i) {
|
||||
|
@ -77,7 +77,7 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx
|
||||
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
|
||||
}
|
||||
}
|
||||
secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb);
|
||||
secp256k1_ge_set_all_gej_var(prec, precj, 1024);
|
||||
}
|
||||
for (j = 0; j < 64; j++) {
|
||||
for (i = 0; i < 16; i++) {
|
||||
|
@ -137,24 +137,135 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p
|
||||
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
|
||||
secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
|
||||
secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
|
||||
secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
|
||||
static void secp256k1_ecmult_odd_multiples_table_storage_var(const int n, secp256k1_ge_storage *pre, const secp256k1_gej *a) {
|
||||
secp256k1_gej d;
|
||||
secp256k1_ge d_ge, p_ge;
|
||||
secp256k1_gej pj;
|
||||
secp256k1_fe zi;
|
||||
secp256k1_fe zr;
|
||||
secp256k1_fe dx_over_dz_squared;
|
||||
int i;
|
||||
|
||||
/* Compute the odd multiples in Jacobian form. */
|
||||
secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
|
||||
/* Convert them in batch to affine coordinates. */
|
||||
secp256k1_ge_set_table_gej_var(prea, prej, zr, n);
|
||||
/* Convert them to compact storage form. */
|
||||
for (i = 0; i < n; i++) {
|
||||
secp256k1_ge_to_storage(&pre[i], &prea[i]);
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
|
||||
secp256k1_gej_double_var(&d, a, NULL);
|
||||
|
||||
/* First, we perform all the additions in an isomorphic curve obtained by multiplying
|
||||
* all `z` coordinates by 1/`d.z`. In these coordinates `d` is affine so we can use
|
||||
* `secp256k1_gej_add_ge_var` to perform the additions. For each addition, we store
|
||||
* the resulting y-coordinate and the z-ratio, since we only have enough memory to
|
||||
* store two field elements. These are sufficient to efficiently undo the isomorphism
|
||||
* and recompute all the `x`s.
|
||||
*/
|
||||
d_ge.x = d.x;
|
||||
d_ge.y = d.y;
|
||||
d_ge.infinity = 0;
|
||||
|
||||
secp256k1_ge_set_gej_zinv(&p_ge, a, &d.z);
|
||||
pj.x = p_ge.x;
|
||||
pj.y = p_ge.y;
|
||||
pj.z = a->z;
|
||||
pj.infinity = 0;
|
||||
|
||||
for (i = 0; i < (n - 1); i++) {
|
||||
secp256k1_fe_normalize_var(&pj.y);
|
||||
secp256k1_fe_to_storage(&pre[i].y, &pj.y);
|
||||
secp256k1_gej_add_ge_var(&pj, &pj, &d_ge, &zr);
|
||||
secp256k1_fe_normalize_var(&zr);
|
||||
secp256k1_fe_to_storage(&pre[i].x, &zr);
|
||||
}
|
||||
|
||||
free(prea);
|
||||
free(prej);
|
||||
free(zr);
|
||||
/* Invert d.z in the same batch, preserving pj.z so we can extract 1/d.z */
|
||||
secp256k1_fe_mul(&zi, &pj.z, &d.z);
|
||||
secp256k1_fe_inv_var(&zi, &zi);
|
||||
|
||||
/* Directly set `pre[n - 1]` to `pj`, saving the inverted z-coordinate so
|
||||
* that we can combine it with the saved z-ratios to compute the other zs
|
||||
* without any more inversions. */
|
||||
secp256k1_ge_set_gej_zinv(&p_ge, &pj, &zi);
|
||||
secp256k1_ge_to_storage(&pre[n - 1], &p_ge);
|
||||
|
||||
/* Compute the actual x-coordinate of D, which will be needed below. */
|
||||
secp256k1_fe_mul(&d.z, &zi, &pj.z); /* d.z = 1/d.z */
|
||||
secp256k1_fe_sqr(&dx_over_dz_squared, &d.z);
|
||||
secp256k1_fe_mul(&dx_over_dz_squared, &dx_over_dz_squared, &d.x);
|
||||
|
||||
/* Going into the second loop, we have set `pre[n-1]` to its final affine
|
||||
* form, but still need to set `pre[i]` for `i` in 0 through `n-2`. We
|
||||
* have `zi = (p.z * d.z)^-1`, where
|
||||
*
|
||||
* `p.z` is the z-coordinate of the point on the isomorphic curve
|
||||
* which was ultimately assigned to `pre[n-1]`.
|
||||
* `d.z` is the multiplier that must be applied to all z-coordinates
|
||||
* to move from our isomorphic curve back to secp256k1; so the
|
||||
* product `p.z * d.z` is the z-coordinate of the secp256k1
|
||||
* point assigned to `pre[n-1]`.
|
||||
*
|
||||
* All subsequent inverse-z-coordinates can be obtained by multiplying this
|
||||
* factor by successive z-ratios, which is much more efficient than directly
|
||||
* computing each one.
|
||||
*
|
||||
* Importantly, these inverse-zs will be coordinates of points on secp256k1,
|
||||
* while our other stored values come from computations on the isomorphic
|
||||
* curve. So in the below loop, we will take care not to actually use `zi`
|
||||
* or any derived values until we're back on secp256k1.
|
||||
*/
|
||||
i = n - 1;
|
||||
while (i > 0) {
|
||||
secp256k1_fe zi2, zi3;
|
||||
const secp256k1_fe *rzr;
|
||||
i--;
|
||||
|
||||
secp256k1_ge_from_storage(&p_ge, &pre[i]);
|
||||
|
||||
/* For each remaining point, we extract the z-ratio from the stored
|
||||
* x-coordinate, compute its z^-1 from that, and compute the full
|
||||
* point from that. */
|
||||
rzr = &p_ge.x;
|
||||
secp256k1_fe_mul(&zi, &zi, rzr);
|
||||
secp256k1_fe_sqr(&zi2, &zi);
|
||||
secp256k1_fe_mul(&zi3, &zi2, &zi);
|
||||
/* To compute the actual x-coordinate, we use the stored z ratio and
|
||||
* y-coordinate, which we obtained from `secp256k1_gej_add_ge_var`
|
||||
* in the loop above, as well as the inverse of the square of its
|
||||
* z-coordinate. We store the latter in the `zi2` variable, which is
|
||||
* computed iteratively starting from the overall Z inverse then
|
||||
* multiplying by each z-ratio in turn.
|
||||
*
|
||||
* Denoting the z-ratio as `rzr`, we observe that it is equal to `h`
|
||||
* from the inside of the above `gej_add_ge_var` call. This satisfies
|
||||
*
|
||||
* rzr = d_x * z^2 - x * d_z^2
|
||||
*
|
||||
* where (`d_x`, `d_z`) are Jacobian coordinates of `D` and `(x, z)`
|
||||
* are Jacobian coordinates of our desired point -- except both are on
|
||||
* the isomorphic curve that we were using when we called `gej_add_ge_var`.
|
||||
* To get back to secp256k1, we must multiply both `z`s by `d_z`, or
|
||||
* equivalently divide both `x`s by `d_z^2`. Our equation then becomes
|
||||
*
|
||||
* rzr = d_x * z^2 / d_z^2 - x
|
||||
*
|
||||
* (The left-hand-side, being a ratio of z-coordinates, is unaffected
|
||||
* by the isomorphism.)
|
||||
*
|
||||
* Rearranging to solve for `x`, we have
|
||||
*
|
||||
* x = d_x * z^2 / d_z^2 - rzr
|
||||
*
|
||||
* But what we actually want is the affine coordinate `X = x/z^2`,
|
||||
* which will satisfy
|
||||
*
|
||||
* X = d_x / d_z^2 - rzr / z^2
|
||||
* = dx_over_dz_squared - rzr * zi2
|
||||
*/
|
||||
secp256k1_fe_mul(&p_ge.x, rzr, &zi2);
|
||||
secp256k1_fe_negate(&p_ge.x, &p_ge.x, 1);
|
||||
secp256k1_fe_add(&p_ge.x, &dx_over_dz_squared);
|
||||
/* y is stored_y/z^3, as we expect */
|
||||
secp256k1_fe_mul(&p_ge.y, &p_ge.y, &zi3);
|
||||
/* Store */
|
||||
secp256k1_ge_to_storage(&pre[i], &p_ge);
|
||||
}
|
||||
}
|
||||
|
||||
/** The following two macro retrieves a particular odd multiple from a table
|
||||
@ -202,7 +313,7 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const
|
||||
ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
|
||||
|
||||
/* precompute the tables with odd multiples */
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
{
|
||||
@ -216,7 +327,7 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const
|
||||
for (i = 0; i < 128; i++) {
|
||||
secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
|
||||
}
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@ -65,12 +65,7 @@ static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
|
||||
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
|
||||
|
||||
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
|
||||
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb);
|
||||
|
||||
/** Set a batch of group elements equal to the inputs given in jacobian
|
||||
* coordinates (with known z-ratios). zr must contain the known z-ratios such
|
||||
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
|
||||
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len);
|
||||
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
|
||||
|
||||
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
|
||||
* the same global z "denominator". zr must contain the known z-ratios such
|
||||
|
@ -126,46 +126,43 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
|
||||
r->y = a->y;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) {
|
||||
secp256k1_fe *az;
|
||||
secp256k1_fe *azi;
|
||||
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
|
||||
secp256k1_fe u;
|
||||
size_t i;
|
||||
size_t count = 0;
|
||||
az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
|
||||
size_t last_i = SIZE_MAX;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
if (!a[i].infinity) {
|
||||
az[count++] = a[i].z;
|
||||
/* Use destination's x coordinates as scratch space */
|
||||
if (last_i == SIZE_MAX) {
|
||||
r[i].x = a[i].z;
|
||||
} else {
|
||||
secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z);
|
||||
}
|
||||
last_i = i;
|
||||
}
|
||||
}
|
||||
if (last_i == SIZE_MAX) {
|
||||
return;
|
||||
}
|
||||
secp256k1_fe_inv_var(&u, &r[last_i].x);
|
||||
|
||||
azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
|
||||
secp256k1_fe_inv_all_var(azi, az, count);
|
||||
free(az);
|
||||
i = last_i;
|
||||
while (i > 0) {
|
||||
i--;
|
||||
if (!a[i].infinity) {
|
||||
secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u);
|
||||
secp256k1_fe_mul(&u, &u, &a[last_i].z);
|
||||
last_i = i;
|
||||
}
|
||||
}
|
||||
VERIFY_CHECK(!a[last_i].infinity);
|
||||
r[last_i].x = u;
|
||||
|
||||
count = 0;
|
||||
for (i = 0; i < len; i++) {
|
||||
r[i].infinity = a[i].infinity;
|
||||
if (!a[i].infinity) {
|
||||
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
|
||||
}
|
||||
}
|
||||
free(azi);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) {
|
||||
size_t i = len - 1;
|
||||
secp256k1_fe zi;
|
||||
|
||||
if (len > 0) {
|
||||
/* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
|
||||
secp256k1_fe_inv(&zi, &a[i].z);
|
||||
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
|
||||
|
||||
/* Work out way backwards, using the z-ratios to scale the x/y values. */
|
||||
while (i > 0) {
|
||||
secp256k1_fe_mul(&zi, &zi, &zr[i]);
|
||||
i--;
|
||||
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
|
||||
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
22
src/tests.c
22
src/tests.c
@ -2095,7 +2095,6 @@ void test_ge(void) {
|
||||
/* Test batch gej -> ge conversion with and without known z ratios. */
|
||||
{
|
||||
secp256k1_fe *zr = (secp256k1_fe *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_fe));
|
||||
secp256k1_ge *ge_set_table = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge));
|
||||
secp256k1_ge *ge_set_all = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge));
|
||||
for (i = 0; i < 4 * runs + 1; i++) {
|
||||
/* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */
|
||||
@ -2103,20 +2102,33 @@ void test_ge(void) {
|
||||
secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z);
|
||||
}
|
||||
}
|
||||
secp256k1_ge_set_table_gej_var(ge_set_table, gej, zr, 4 * runs + 1);
|
||||
secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1, &ctx->error_callback);
|
||||
secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1);
|
||||
for (i = 0; i < 4 * runs + 1; i++) {
|
||||
secp256k1_fe s;
|
||||
random_fe_non_zero(&s);
|
||||
secp256k1_gej_rescale(&gej[i], &s);
|
||||
ge_equals_gej(&ge_set_table[i], &gej[i]);
|
||||
ge_equals_gej(&ge_set_all[i], &gej[i]);
|
||||
}
|
||||
free(ge_set_table);
|
||||
free(ge_set_all);
|
||||
free(zr);
|
||||
}
|
||||
|
||||
/* Test batch gej -> ge conversion with many infinities. */
|
||||
for (i = 0; i < 4 * runs + 1; i++) {
|
||||
random_group_element_test(&ge[i]);
|
||||
/* randomly set half the points to infinitiy */
|
||||
if(secp256k1_fe_is_odd(&ge[i].x)) {
|
||||
secp256k1_ge_set_infinity(&ge[i]);
|
||||
}
|
||||
secp256k1_gej_set_ge(&gej[i], &ge[i]);
|
||||
}
|
||||
/* batch invert */
|
||||
secp256k1_ge_set_all_gej_var(ge, gej, 4 * runs + 1);
|
||||
/* check result */
|
||||
for (i = 0; i < 4 * runs + 1; i++) {
|
||||
ge_equals_gej(&ge[i], &gej[i]);
|
||||
}
|
||||
|
||||
free(ge);
|
||||
free(gej);
|
||||
free(zinv);
|
||||
|
Loading…
x
Reference in New Issue
Block a user