Merge #402: Add support for testing quadratic residues
e6e9805
Add function for testing quadratic residue field/group elements. (Pieter Wuille)efd953a
Add Jacobi symbol test via GMP (Peter Dettman)
This commit is contained in:
commit
b3401237be
|
@ -227,6 +227,15 @@ void bench_group_add_affine_var(void* arg) {
|
|||
}
|
||||
}
|
||||
|
||||
void bench_group_jacobi_var(void* arg) {
|
||||
int i;
|
||||
bench_inv_t *data = (bench_inv_t*)arg;
|
||||
|
||||
for (i = 0; i < 20000; i++) {
|
||||
secp256k1_gej_has_quad_y_var(&data->gej_x);
|
||||
}
|
||||
}
|
||||
|
||||
void bench_ecmult_wnaf(void* arg) {
|
||||
int i;
|
||||
bench_inv_t *data = (bench_inv_t*)arg;
|
||||
|
@ -299,6 +308,21 @@ void bench_context_sign(void* arg) {
|
|||
}
|
||||
}
|
||||
|
||||
#ifndef USE_NUM_NONE
|
||||
void bench_num_jacobi(void* arg) {
|
||||
int i;
|
||||
bench_inv_t *data = (bench_inv_t*)arg;
|
||||
secp256k1_num nx, norder;
|
||||
|
||||
secp256k1_scalar_get_num(&nx, &data->scalar_x);
|
||||
secp256k1_scalar_order_get_num(&norder);
|
||||
secp256k1_scalar_get_num(&norder, &data->scalar_y);
|
||||
|
||||
for (i = 0; i < 200000; i++) {
|
||||
secp256k1_num_jacobi(&nx, &norder);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int have_flag(int argc, char** argv, char *flag) {
|
||||
char** argm = argv + argc;
|
||||
|
@ -339,6 +363,7 @@ int main(int argc, char **argv) {
|
|||
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000);
|
||||
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000);
|
||||
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000);
|
||||
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, 20000);
|
||||
|
||||
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000);
|
||||
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000);
|
||||
|
@ -350,5 +375,8 @@ int main(int argc, char **argv) {
|
|||
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20);
|
||||
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200);
|
||||
|
||||
#ifndef USE_NUM_NONE
|
||||
if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, 200000);
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -94,6 +94,9 @@ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
|
|||
* itself. */
|
||||
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Checks whether a field element is a quadratic residue. */
|
||||
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a);
|
||||
|
||||
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
|
||||
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
|
|
@ -280,4 +280,29 @@ static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k
|
|||
r[0] = u;
|
||||
}
|
||||
|
||||
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
|
||||
#ifndef USE_NUM_NONE
|
||||
unsigned char b[32];
|
||||
secp256k1_num n;
|
||||
secp256k1_num m;
|
||||
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
|
||||
static const unsigned char prime[32] = {
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
|
||||
};
|
||||
|
||||
secp256k1_fe c = *a;
|
||||
secp256k1_fe_normalize_var(&c);
|
||||
secp256k1_fe_get_b32(b, &c);
|
||||
secp256k1_num_set_bin(&n, b, 32);
|
||||
secp256k1_num_set_bin(&m, prime, 32);
|
||||
return secp256k1_num_jacobi(&n, &m) >= 0;
|
||||
#else
|
||||
secp256k1_fe r;
|
||||
return secp256k1_fe_sqrt_var(&r, a) == 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -94,6 +94,9 @@ static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
|
|||
/** Check whether a group element is the point at infinity. */
|
||||
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
|
||||
|
||||
/** Check whether a group element's y coordinate is a quadratic residue. */
|
||||
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
|
||||
|
||||
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
|
||||
* a may not be zero. Constant time. */
|
||||
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
|
||||
|
|
|
@ -629,4 +629,18 @@ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
|
|||
}
|
||||
#endif
|
||||
|
||||
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
|
||||
secp256k1_fe yz;
|
||||
|
||||
if (a->infinity) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
|
||||
* that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
|
||||
is */
|
||||
secp256k1_fe_mul(&yz, &a->y, &a->z);
|
||||
return secp256k1_fe_is_quad_var(&yz);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -32,6 +32,9 @@ static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsi
|
|||
/** Compute a modular inverse. The input must be less than the modulus. */
|
||||
static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m);
|
||||
|
||||
/** Compute the jacobi symbol (a|b). b must be positive and odd. */
|
||||
static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
/** Compare the absolute value of two numbers. */
|
||||
static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b);
|
||||
|
||||
|
@ -57,6 +60,9 @@ static void secp256k1_num_shift(secp256k1_num *r, int bits);
|
|||
/** Check whether a number is zero. */
|
||||
static int secp256k1_num_is_zero(const secp256k1_num *a);
|
||||
|
||||
/** Check whether a number is one. */
|
||||
static int secp256k1_num_is_one(const secp256k1_num *a);
|
||||
|
||||
/** Check whether a number is strictly negative. */
|
||||
static int secp256k1_num_is_neg(const secp256k1_num *a);
|
||||
|
||||
|
|
|
@ -144,6 +144,32 @@ static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a,
|
|||
memset(v, 0, sizeof(v));
|
||||
}
|
||||
|
||||
static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b) {
|
||||
int ret;
|
||||
mpz_t ga, gb;
|
||||
secp256k1_num_sanity(a);
|
||||
secp256k1_num_sanity(b);
|
||||
VERIFY_CHECK(!b->neg && (b->limbs > 0) && (b->data[0] & 1));
|
||||
|
||||
mpz_inits(ga, gb, NULL);
|
||||
|
||||
mpz_import(gb, b->limbs, -1, sizeof(mp_limb_t), 0, 0, b->data);
|
||||
mpz_import(ga, a->limbs, -1, sizeof(mp_limb_t), 0, 0, a->data);
|
||||
if (a->neg) {
|
||||
mpz_neg(ga, ga);
|
||||
}
|
||||
|
||||
ret = mpz_jacobi(ga, gb);
|
||||
|
||||
mpz_clears(ga, gb, NULL);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int secp256k1_num_is_one(const secp256k1_num *a) {
|
||||
return (a->limbs == 1 && a->data[0] == 1);
|
||||
}
|
||||
|
||||
static int secp256k1_num_is_zero(const secp256k1_num *a) {
|
||||
return (a->limbs == 1 && a->data[0] == 0);
|
||||
}
|
||||
|
|
137
src/tests.c
137
src/tests.c
|
@ -473,6 +473,8 @@ void test_num_negate(void) {
|
|||
}
|
||||
|
||||
void test_num_add_sub(void) {
|
||||
int i;
|
||||
secp256k1_scalar s;
|
||||
secp256k1_num n1;
|
||||
secp256k1_num n2;
|
||||
secp256k1_num n1p2, n2p1, n1m2, n2m1;
|
||||
|
@ -498,6 +500,110 @@ void test_num_add_sub(void) {
|
|||
CHECK(!secp256k1_num_eq(&n2p1, &n1));
|
||||
secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */
|
||||
CHECK(secp256k1_num_eq(&n2p1, &n1));
|
||||
|
||||
/* check is_one */
|
||||
secp256k1_scalar_set_int(&s, 1);
|
||||
secp256k1_scalar_get_num(&n1, &s);
|
||||
CHECK(secp256k1_num_is_one(&n1));
|
||||
/* check that 2^n + 1 is never 1 */
|
||||
secp256k1_scalar_get_num(&n2, &s);
|
||||
for (i = 0; i < 250; ++i) {
|
||||
secp256k1_num_add(&n1, &n1, &n1); /* n1 *= 2 */
|
||||
secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = n1 + 1 */
|
||||
CHECK(!secp256k1_num_is_one(&n1p2));
|
||||
}
|
||||
}
|
||||
|
||||
void test_num_mod(void) {
|
||||
int i;
|
||||
secp256k1_scalar s;
|
||||
secp256k1_num order, n;
|
||||
|
||||
/* check that 0 mod anything is 0 */
|
||||
random_scalar_order_test(&s);
|
||||
secp256k1_scalar_get_num(&order, &s);
|
||||
secp256k1_scalar_set_int(&s, 0);
|
||||
secp256k1_scalar_get_num(&n, &s);
|
||||
secp256k1_num_mod(&n, &order);
|
||||
CHECK(secp256k1_num_is_zero(&n));
|
||||
|
||||
/* check that anything mod 1 is 0 */
|
||||
secp256k1_scalar_set_int(&s, 1);
|
||||
secp256k1_scalar_get_num(&order, &s);
|
||||
secp256k1_scalar_get_num(&n, &s);
|
||||
secp256k1_num_mod(&n, &order);
|
||||
CHECK(secp256k1_num_is_zero(&n));
|
||||
|
||||
/* check that increasing the number past 2^256 does not break this */
|
||||
random_scalar_order_test(&s);
|
||||
secp256k1_scalar_get_num(&n, &s);
|
||||
/* multiply by 2^8, which'll test this case with high probability */
|
||||
for (i = 0; i < 8; ++i) {
|
||||
secp256k1_num_add(&n, &n, &n);
|
||||
}
|
||||
secp256k1_num_mod(&n, &order);
|
||||
CHECK(secp256k1_num_is_zero(&n));
|
||||
}
|
||||
|
||||
void test_num_jacobi(void) {
|
||||
secp256k1_scalar sqr;
|
||||
secp256k1_scalar small;
|
||||
secp256k1_scalar five; /* five is not a quadratic residue */
|
||||
secp256k1_num order, n;
|
||||
int i;
|
||||
/* squares mod 5 are 1, 4 */
|
||||
const int jacobi5[10] = { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1 };
|
||||
|
||||
/* check some small values with 5 as the order */
|
||||
secp256k1_scalar_set_int(&five, 5);
|
||||
secp256k1_scalar_get_num(&order, &five);
|
||||
for (i = 0; i < 10; ++i) {
|
||||
secp256k1_scalar_set_int(&small, i);
|
||||
secp256k1_scalar_get_num(&n, &small);
|
||||
CHECK(secp256k1_num_jacobi(&n, &order) == jacobi5[i]);
|
||||
}
|
||||
|
||||
/** test large values with 5 as group order */
|
||||
secp256k1_scalar_get_num(&order, &five);
|
||||
/* we first need a scalar which is not a multiple of 5 */
|
||||
do {
|
||||
secp256k1_num fiven;
|
||||
random_scalar_order_test(&sqr);
|
||||
secp256k1_scalar_get_num(&fiven, &five);
|
||||
secp256k1_scalar_get_num(&n, &sqr);
|
||||
secp256k1_num_mod(&n, &fiven);
|
||||
} while (secp256k1_num_is_zero(&n));
|
||||
/* next force it to be a residue. 2 is a nonresidue mod 5 so we can
|
||||
* just multiply by two, i.e. add the number to itself */
|
||||
if (secp256k1_num_jacobi(&n, &order) == -1) {
|
||||
secp256k1_num_add(&n, &n, &n);
|
||||
}
|
||||
|
||||
/* test residue */
|
||||
CHECK(secp256k1_num_jacobi(&n, &order) == 1);
|
||||
/* test nonresidue */
|
||||
secp256k1_num_add(&n, &n, &n);
|
||||
CHECK(secp256k1_num_jacobi(&n, &order) == -1);
|
||||
|
||||
/** test with secp group order as order */
|
||||
secp256k1_scalar_order_get_num(&order);
|
||||
random_scalar_order_test(&sqr);
|
||||
secp256k1_scalar_sqr(&sqr, &sqr);
|
||||
/* test residue */
|
||||
secp256k1_scalar_get_num(&n, &sqr);
|
||||
CHECK(secp256k1_num_jacobi(&n, &order) == 1);
|
||||
/* test nonresidue */
|
||||
secp256k1_scalar_mul(&sqr, &sqr, &five);
|
||||
secp256k1_scalar_get_num(&n, &sqr);
|
||||
CHECK(secp256k1_num_jacobi(&n, &order) == -1);
|
||||
/* test multiple of the order*/
|
||||
CHECK(secp256k1_num_jacobi(&order, &order) == 0);
|
||||
|
||||
/* check one less than the order */
|
||||
secp256k1_scalar_set_int(&small, 1);
|
||||
secp256k1_scalar_get_num(&n, &small);
|
||||
secp256k1_num_sub(&n, &order, &n);
|
||||
CHECK(secp256k1_num_jacobi(&n, &order) == 1); /* sage confirms this is 1 */
|
||||
}
|
||||
|
||||
void run_num_smalltests(void) {
|
||||
|
@ -505,6 +611,8 @@ void run_num_smalltests(void) {
|
|||
for (i = 0; i < 100*count; i++) {
|
||||
test_num_negate();
|
||||
test_num_add_sub();
|
||||
test_num_mod();
|
||||
test_num_jacobi();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -689,6 +797,10 @@ void scalar_test(void) {
|
|||
secp256k1_scalar_inverse(&inv, &inv);
|
||||
/* Inverting one must result in one. */
|
||||
CHECK(secp256k1_scalar_is_one(&inv));
|
||||
#ifndef USE_NUM_NONE
|
||||
secp256k1_scalar_get_num(&invnum, &inv);
|
||||
CHECK(secp256k1_num_is_one(&invnum));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2067,9 +2179,10 @@ void run_ec_combine(void) {
|
|||
void test_group_decompress(const secp256k1_fe* x) {
|
||||
/* The input itself, normalized. */
|
||||
secp256k1_fe fex = *x;
|
||||
secp256k1_fe tmp;
|
||||
secp256k1_fe fez;
|
||||
/* Results of set_xquad_var, set_xo_var(..., 0), set_xo_var(..., 1). */
|
||||
secp256k1_ge ge_quad, ge_even, ge_odd;
|
||||
secp256k1_gej gej_quad;
|
||||
/* Return values of the above calls. */
|
||||
int res_quad, res_even, res_odd;
|
||||
|
||||
|
@ -2101,13 +2214,29 @@ void test_group_decompress(const secp256k1_fe* x) {
|
|||
CHECK(secp256k1_fe_equal_var(&ge_odd.x, x));
|
||||
|
||||
/* Check that the Y coordinate result in ge_quad is a square. */
|
||||
CHECK(secp256k1_fe_sqrt_var(&tmp, &ge_quad.y));
|
||||
secp256k1_fe_sqr(&tmp, &tmp);
|
||||
CHECK(secp256k1_fe_equal_var(&tmp, &ge_quad.y));
|
||||
CHECK(secp256k1_fe_is_quad_var(&ge_quad.y));
|
||||
|
||||
/* Check odd/even Y in ge_odd, ge_even. */
|
||||
CHECK(secp256k1_fe_is_odd(&ge_odd.y));
|
||||
CHECK(!secp256k1_fe_is_odd(&ge_even.y));
|
||||
|
||||
/* Check secp256k1_gej_has_quad_y_var. */
|
||||
secp256k1_gej_set_ge(&gej_quad, &ge_quad);
|
||||
CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
|
||||
do {
|
||||
random_fe_test(&fez);
|
||||
} while (secp256k1_fe_is_zero(&fez));
|
||||
secp256k1_gej_rescale(&gej_quad, &fez);
|
||||
CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
|
||||
secp256k1_gej_neg(&gej_quad, &gej_quad);
|
||||
CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad));
|
||||
do {
|
||||
random_fe_test(&fez);
|
||||
} while (secp256k1_fe_is_zero(&fez));
|
||||
secp256k1_gej_rescale(&gej_quad, &fez);
|
||||
CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad));
|
||||
secp256k1_gej_neg(&gej_quad, &gej_quad);
|
||||
CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue