mirror of
https://github.com/status-im/secp256k1.git
synced 2025-02-23 11:18:15 +00:00
ECDH skews by 0 or 1
This commit is contained in:
parent
1515099433
commit
8c13a9bfe1
@ -56,7 +56,6 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p
|
||||
secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
|
||||
} while(0)
|
||||
|
||||
|
||||
/** Convert a number to WNAF notation.
|
||||
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
|
||||
* It has the following guarantees:
|
||||
@ -72,7 +71,7 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p
|
||||
*/
|
||||
static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w, int size) {
|
||||
int global_sign;
|
||||
int skew = 0;
|
||||
int skew;
|
||||
int word = 0;
|
||||
|
||||
/* 1 2 3 */
|
||||
@ -80,9 +79,7 @@ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w
|
||||
int u;
|
||||
|
||||
int flip;
|
||||
int bit;
|
||||
secp256k1_scalar s;
|
||||
int not_neg_one;
|
||||
secp256k1_scalar s = *scalar;
|
||||
|
||||
VERIFY_CHECK(w > 0);
|
||||
VERIFY_CHECK(size > 0);
|
||||
@ -90,33 +87,19 @@ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w
|
||||
/* Note that we cannot handle even numbers by negating them to be odd, as is
|
||||
* done in other implementations, since if our scalars were specified to have
|
||||
* width < 256 for performance reasons, their negations would have width 256
|
||||
* and we'd lose any performance benefit. Instead, we use a technique from
|
||||
* Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
|
||||
* or 2 (for odd) to the number we are encoding, returning a skew value indicating
|
||||
* and we'd lose any performance benefit. Instead, we use a variation of a
|
||||
* technique from Section 4.2 of the Okeya/Tagaki paper, which is to add 1 to the
|
||||
* number we are encoding when it is even, returning a skew value indicating
|
||||
* this, and having the caller compensate after doing the multiplication.
|
||||
*
|
||||
* In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in
|
||||
* particular, to ensure that the outputs from the endomorphism-split fit into
|
||||
* 128 bits). If we negate, the parity of our number flips, inverting which of
|
||||
* {1, 2} we want to add to the scalar when ensuring that it's odd. Further
|
||||
* complicating things, -1 interacts badly with `secp256k1_scalar_cadd_bit` and
|
||||
* we need to special-case it in this logic. */
|
||||
flip = secp256k1_scalar_is_high(scalar);
|
||||
/* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
|
||||
bit = flip ^ !secp256k1_scalar_is_even(scalar);
|
||||
/* We check for negative one, since adding 2 to it will cause an overflow */
|
||||
secp256k1_scalar_negate(&s, scalar);
|
||||
not_neg_one = !secp256k1_scalar_is_one(&s);
|
||||
s = *scalar;
|
||||
secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
|
||||
/* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
|
||||
* that we added two to it and flipped it. In fact for -1 these operations are
|
||||
* identical. We only flipped, but since skewing is required (in the sense that
|
||||
* the skew must be 1 or 2, never zero) and flipping is not, we need to change
|
||||
* our flags to claim that we only skewed. */
|
||||
* 128 bits). If we negate, the parity of our number flips, affecting whether
|
||||
* we want to add to the scalar to ensure that it's odd. */
|
||||
flip = secp256k1_scalar_is_high(&s);
|
||||
skew = flip ^ secp256k1_scalar_is_even(&s);
|
||||
secp256k1_scalar_cadd_bit(&s, 0, skew);
|
||||
global_sign = secp256k1_scalar_cond_negate(&s, flip);
|
||||
global_sign *= not_neg_one * 2 - 1;
|
||||
skew = 1 << bit;
|
||||
|
||||
/* 4 */
|
||||
u_last = secp256k1_scalar_shr_int(&s, w);
|
||||
@ -236,19 +219,17 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
||||
/* Correct for wNAF skew */
|
||||
secp256k1_gej tmp;
|
||||
secp256k1_ge a_1;
|
||||
|
||||
secp256k1_ge_neg(&a_1, a);
|
||||
secp256k1_gej_add_ge(r, r, &a_1);
|
||||
|
||||
secp256k1_gej_add_ge(&tmp, r, &a_1);
|
||||
secp256k1_gej_cmov(r, &tmp, skew_1 == 2);
|
||||
secp256k1_gej_cmov(r, &tmp, skew_1);
|
||||
|
||||
if (size > 128) {
|
||||
secp256k1_ge a_lam;
|
||||
secp256k1_ge_mul_lambda(&a_lam, &a_1);
|
||||
|
||||
secp256k1_gej_add_ge(r, r, &a_lam);
|
||||
secp256k1_gej_add_ge(&tmp, r, &a_lam);
|
||||
secp256k1_gej_cmov(r, &tmp, skew_lam == 2);
|
||||
secp256k1_gej_cmov(r, &tmp, skew_lam);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -4522,7 +4522,7 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
|
||||
secp256k1_scalar_add(&x, &x, &t);
|
||||
}
|
||||
/* Skew num because when encoding numbers as odd we use an offset */
|
||||
secp256k1_scalar_set_int(&scalar_skew, 1 << (skew == 2));
|
||||
secp256k1_scalar_set_int(&scalar_skew, skew);
|
||||
secp256k1_scalar_add(&num, &num, &scalar_skew);
|
||||
CHECK(secp256k1_scalar_eq(&x, &num));
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user