Merge #558: Add schnorrsig module which implements BIP-340 compliant signatures

f431b3f28a valgrind_ctime_test: Add schnorrsig_sign (Jonas Nick)
16ffa9d97c schnorrsig: Add taproot test case (Jonas Nick)
8dfd53ee3f schnorrsig: Add benchmark for sign and verify (Jonas Nick)
4e43520026 schnorrsig: Add BIP-340 compatible signing and verification (Jonas Nick)
7332d2db6b schnorrsig: Add BIP-340 nonce function (Jonas Nick)
7a703fd97d schnorrsig: Init empty experimental module (Jonas Nick)
eabd9bc46a Allow initializing tagged sha256 (Jonas Nick)
6fcb5b845d extrakeys: Add keypair_xonly_tweak_add (Jonas Nick)
58254463f9 extrakeys: Add keypair struct with create, pub and pub_xonly (Jonas Nick)
f0010349b8 Separate helper functions for pubkey_create and seckey_tweak_add (Jonas Nick)
910d9c284c extrakeys: Add xonly_pubkey_tweak_add & xonly_pubkey_tweak_add_test (Jonas Nick)
176bfb1110 Separate helper function for ec_pubkey_tweak_add (Jonas Nick)
4cd2ee474d extrakeys: Add xonly_pubkey with serialize, parse and from_pubkey (Jonas Nick)
47e6618e11 extrakeys: Init empty experimental module (Jonas Nick)
3e08b02e2a Make the secp256k1_declassify argument constant (Jonas Nick)

Pull request description:

  This PR implements signing, verification and batch verification as described in [BIP-340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki) in an experimental module named `schnorrsig`. It includes the test vectors and a benchmarking tool.
  This PR also adds a module `extrakeys` that allows [BIP-341](https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki)-style key tweaking.

  (Adding ChaCha20 as a CSPRNG and batch verification was moved to PR #760).

  In order to enable the module run `./configure` with `--enable-experimental --enable-module-schnorrsig`.

  Based on apoelstra's work.

ACKs for top commit:
  gmaxwell:
    ACK f431b3f28a  (exactly matches the previous post-fixup version which I have already reviewed and tested)
  sipa:
    ACK f431b3f28a
  real-or-random:
    ACK f431b3f28a careful code review

Tree-SHA512: e15e849c7bb65cdc5d7b1d6874678e275a71e4514de9d5432ec1700de3ba92aa9f381915813f4729057af152d90eea26aabb976ed297019c5767e59cf0bbc693
This commit is contained in:
Tim Ruffing 2020-09-11 21:22:51 +02:00
commit 8ab24e8dad
No known key found for this signature in database
GPG Key ID: 8C461CCD293F6011
20 changed files with 2445 additions and 31 deletions

2
.gitignore vendored
View File

@ -1,9 +1,9 @@
bench_inv
bench_ecdh
bench_ecmult
bench_schnorrsig
bench_sign
bench_verify
bench_schnorr_verify
bench_recover
bench_internal
tests

View File

@ -17,19 +17,19 @@ compiler:
- gcc
env:
global:
- WIDEMUL=auto BIGNUM=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ECMULTGENPRECISION=auto ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no EXPERIMENTAL=no CTIMETEST=yes BENCH=yes ITERS=2
- WIDEMUL=auto BIGNUM=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ECMULTGENPRECISION=auto ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no SCHNORRSIG=no EXPERIMENTAL=no CTIMETEST=yes BENCH=yes ITERS=2
matrix:
- WIDEMUL=int64 RECOVERY=yes
- WIDEMUL=int64 ECDH=yes EXPERIMENTAL=yes
- WIDEMUL=int64 ECDH=yes EXPERIMENTAL=yes SCHNORRSIG=yes
- WIDEMUL=int64 ENDOMORPHISM=yes
- WIDEMUL=int128
- WIDEMUL=int128 RECOVERY=yes
- WIDEMUL=int128 RECOVERY=yes EXPERIMENTAL=yes SCHNORRSIG=yes
- WIDEMUL=int128 ENDOMORPHISM=yes
- WIDEMUL=int128 ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes
- WIDEMUL=int128 ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes SCHNORRSIG=yes
- WIDEMUL=int128 ASM=x86_64
- WIDEMUL=int128 ENDOMORPHISM=yes ASM=x86_64
- BIGNUM=no
- BIGNUM=no ENDOMORPHISM=yes RECOVERY=yes EXPERIMENTAL=yes
- BIGNUM=no ENDOMORPHISM=yes RECOVERY=yes EXPERIMENTAL=yes SCHNORRSIG=yes
- BIGNUM=no STATICPRECOMPUTATION=no
- BUILD=distcheck CTIMETEST= BENCH=
- CPPFLAGS=-DDETERMINISTIC

View File

@ -154,3 +154,11 @@ endif
if ENABLE_MODULE_RECOVERY
include src/modules/recovery/Makefile.am.include
endif
if ENABLE_MODULE_EXTRAKEYS
include src/modules/extrakeys/Makefile.am.include
endif
if ENABLE_MODULE_SCHNORRSIG
include src/modules/schnorrsig/Makefile.am.include
endif

View File

@ -136,6 +136,16 @@ AC_ARG_ENABLE(module_recovery,
[enable_module_recovery=$enableval],
[enable_module_recovery=no])
AC_ARG_ENABLE(module_extrakeys,
AS_HELP_STRING([--enable-module-extrakeys],[enable extrakeys module (experimental)]),
[enable_module_extrakeys=$enableval],
[enable_module_extrakeys=no])
AC_ARG_ENABLE(module_schnorrsig,
AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module (experimental)]),
[enable_module_schnorrsig=$enableval],
[enable_module_schnorrsig=no])
AC_ARG_ENABLE(external_default_callbacks,
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]),
[use_external_default_callbacks=$enableval],
@ -421,6 +431,17 @@ if test x"$enable_module_recovery" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module])
fi
if test x"$enable_module_schnorrsig" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_SCHNORRSIG, 1, [Define this symbol to enable the schnorrsig module])
enable_module_extrakeys=yes
fi
# Test if extrakeys is set after the schnorrsig module to allow the schnorrsig
# module to set enable_module_extrakeys=yes
if test x"$enable_module_extrakeys" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_EXTRAKEYS, 1, [Define this symbol to enable the extrakeys module])
fi
if test x"$use_external_asm" = x"yes"; then
AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used])
fi
@ -434,11 +455,19 @@ if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([WARNING: experimental build])
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building extrakeys module: $enable_module_extrakeys])
AC_MSG_NOTICE([Building schnorrsig module: $enable_module_schnorrsig])
AC_MSG_NOTICE([******])
else
if test x"$enable_module_ecdh" = x"yes"; then
AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_extrakeys" = x"yes"; then
AC_MSG_ERROR([extrakeys module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_schnorrsig" = x"yes"; then
AC_MSG_ERROR([schnorrsig module is experimental. Use --enable-experimental to allow.])
fi
if test x"$set_asm" = x"arm"; then
AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.])
fi
@ -457,6 +486,8 @@ AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
@ -476,6 +507,8 @@ echo " with benchmarks = $use_benchmark"
echo " with coverage = $enable_coverage"
echo " module ecdh = $enable_module_ecdh"
echo " module recovery = $enable_module_recovery"
echo " module extrakeys = $enable_module_extrakeys"
echo " module schnorrsig = $enable_module_schnorrsig"
echo
echo " asm = $set_asm"
echo " bignum = $set_bignum"

View File

@ -17,6 +17,7 @@ fi
--with-test-override-wide-multiply="$WIDEMUL" --with-bignum="$BIGNUM" --with-asm="$ASM" \
--enable-ecmult-static-precomputation="$STATICPRECOMPUTATION" --with-ecmult-gen-precision="$ECMULTGENPRECISION" \
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
--enable-module-schnorrsig="$SCHNORRSIG" \
--host="$HOST" $EXTRAFLAGS
if [ -n "$BUILD" ]

View File

@ -0,0 +1,236 @@
#ifndef SECP256K1_EXTRAKEYS_H
#define SECP256K1_EXTRAKEYS_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Opaque data structure that holds a parsed and valid "x-only" public key.
* An x-only pubkey encodes a point whose Y coordinate is even. It is
* serialized using only its X coordinate (32 bytes). See BIP-340 for more
* information about x-only pubkeys.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use secp256k1_xonly_pubkey_serialize and
* secp256k1_xonly_pubkey_parse.
*/
typedef struct {
unsigned char data[64];
} secp256k1_xonly_pubkey;
/** Opaque data structure that holds a keypair consisting of a secret and a
* public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 96 bytes in size, and can be safely copied/moved.
*/
typedef struct {
unsigned char data[96];
} secp256k1_keypair;
/** Parse a 32-byte sequence into a xonly_pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
*
* Args: ctx: a secp256k1 context object (cannot be NULL).
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, it's set to an invalid value.
* (cannot be NULL).
* In: input32: pointer to a serialized xonly_pubkey (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_parse(
const secp256k1_context* ctx,
secp256k1_xonly_pubkey* pubkey,
const unsigned char *input32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an xonly_pubkey object into a 32-byte sequence.
*
* Returns: 1 always.
*
* Args: ctx: a secp256k1 context object (cannot be NULL).
* Out: output32: a pointer to a 32-byte array to place the serialized key in
* (cannot be NULL).
* In: pubkey: a pointer to a secp256k1_xonly_pubkey containing an
* initialized public key (cannot be NULL).
*/
SECP256K1_API int secp256k1_xonly_pubkey_serialize(
const secp256k1_context* ctx,
unsigned char *output32,
const secp256k1_xonly_pubkey* pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Converts a secp256k1_pubkey into a secp256k1_xonly_pubkey.
*
* Returns: 1 if the public key was successfully converted
* 0 otherwise
*
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: xonly_pubkey: pointer to an x-only public key object for placing the
* converted public key (cannot be NULL)
* pk_parity: pointer to an integer that will be set to 1 if the point
* encoded by xonly_pubkey is the negation of the pubkey and
* set to 0 otherwise. (can be NULL)
* In: pubkey: pointer to a public key that is converted (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_from_pubkey(
const secp256k1_context* ctx,
secp256k1_xonly_pubkey *xonly_pubkey,
int *pk_parity,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Tweak an x-only public key by adding the generator multiplied with tweak32
* to it.
*
* Note that the resulting point can not in general be represented by an x-only
* pubkey because it may have an odd Y coordinate. Instead, the output_pubkey
* is a normal secp256k1_pubkey.
*
* Returns: 0 if the arguments are invalid or the resulting public key would be
* invalid (only when the tweak is the negation of the corresponding
* secret key). 1 otherwise.
*
* Args: ctx: pointer to a context object initialized for verification
* (cannot be NULL)
* Out: output_pubkey: pointer to a public key to store the result. Will be set
* to an invalid value if this function returns 0 (cannot
* be NULL)
* In: internal_pubkey: pointer to an x-only pubkey to apply the tweak to.
* (cannot be NULL).
* tweak32: pointer to a 32-byte tweak. If the tweak is invalid
* according to secp256k1_ec_seckey_verify, this function
* returns 0. For uniformly random 32-byte arrays the
* chance of being invalid is negligible (around 1 in
* 2^128) (cannot be NULL).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add(
const secp256k1_context* ctx,
secp256k1_pubkey *output_pubkey,
const secp256k1_xonly_pubkey *internal_pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Checks that a tweaked pubkey is the result of calling
* secp256k1_xonly_pubkey_tweak_add with internal_pubkey and tweak32.
*
* The tweaked pubkey is represented by its 32-byte x-only serialization and
* its pk_parity, which can both be obtained by converting the result of
* tweak_add to a secp256k1_xonly_pubkey.
*
* Note that this alone does _not_ verify that the tweaked pubkey is a
* commitment. If the tweak is not chosen in a specific way, the tweaked pubkey
* can easily be the result of a different internal_pubkey and tweak.
*
* Returns: 0 if the arguments are invalid or the tweaked pubkey is not the
* result of tweaking the internal_pubkey with tweak32. 1 otherwise.
* Args: ctx: pointer to a context object initialized for verification
* (cannot be NULL)
* In: tweaked_pubkey32: pointer to a serialized xonly_pubkey (cannot be NULL)
* tweaked_pk_parity: the parity of the tweaked pubkey (whose serialization
* is passed in as tweaked_pubkey32). This must match the
* pk_parity value that is returned when calling
* secp256k1_xonly_pubkey with the tweaked pubkey, or
* this function will fail.
* internal_pubkey: pointer to an x-only public key object to apply the
* tweak to (cannot be NULL)
* tweak32: pointer to a 32-byte tweak (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add_check(
const secp256k1_context* ctx,
const unsigned char *tweaked_pubkey32,
int tweaked_pk_parity,
const secp256k1_xonly_pubkey *internal_pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Compute the keypair for a secret key.
*
* Returns: 1: secret was valid, keypair is ready to use
* 0: secret was invalid, try again with a different secret
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: keypair: pointer to the created keypair (cannot be NULL)
* In: seckey: pointer to a 32-byte secret key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_create(
const secp256k1_context* ctx,
secp256k1_keypair *keypair,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Get the public key from a keypair.
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to
* the keypair public key. If not, it's set to an invalid value.
* (cannot be NULL)
* In: keypair: pointer to a keypair (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_pub(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Get the x-only public key from a keypair.
*
* This is the same as calling secp256k1_keypair_pub and then
* secp256k1_xonly_pubkey_from_pubkey.
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: pubkey: pointer to an xonly_pubkey object. If 1 is returned, it is set
* to the keypair public key after converting it to an
* xonly_pubkey. If not, it's set to an invalid value (cannot be
* NULL).
* pk_parity: pointer to an integer that will be set to the pk_parity
* argument of secp256k1_xonly_pubkey_from_pubkey (can be NULL).
* In: keypair: pointer to a keypair (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_pub(
const secp256k1_context* ctx,
secp256k1_xonly_pubkey *pubkey,
int *pk_parity,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Tweak a keypair by adding tweak32 to the secret key and updating the public
* key accordingly.
*
* Calling this function and then secp256k1_keypair_pub results in the same
* public key as calling secp256k1_keypair_xonly_pub and then
* secp256k1_xonly_pubkey_tweak_add.
*
* Returns: 0 if the arguments are invalid or the resulting keypair would be
* invalid (only when the tweak is the negation of the keypair's
* secret key). 1 otherwise.
*
* Args: ctx: pointer to a context object initialized for verification
* (cannot be NULL)
* In/Out: keypair: pointer to a keypair to apply the tweak to. Will be set to
* an invalid value if this function returns 0 (cannot be
* NULL).
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according
* to secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128) (cannot be NULL).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_tweak_add(
const secp256k1_context* ctx,
secp256k1_keypair *keypair,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_EXTRAKEYS_H */

View File

@ -0,0 +1,111 @@
#ifndef SECP256K1_SCHNORRSIG_H
#define SECP256K1_SCHNORRSIG_H
#include "secp256k1.h"
#include "secp256k1_extrakeys.h"
#ifdef __cplusplus
extern "C" {
#endif
/** This module implements a variant of Schnorr signatures compliant with
* Bitcoin Improvement Proposal 340 "Schnorr Signatures for secp256k1"
* (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
*/
/** A pointer to a function to deterministically generate a nonce.
*
* Same as secp256k1_nonce function with the exception of accepting an
* additional pubkey argument and not requiring an attempt argument. The pubkey
* argument can protect signature schemes with key-prefixed challenge hash
* inputs against reusing the nonce when signing with the wrong precomputed
* pubkey.
*
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to
* return an error.
* Out: nonce32: pointer to a 32-byte array to be filled by the function.
* In: msg32: the 32-byte message hash being verified (will not be NULL)
* key32: pointer to a 32-byte secret key (will not be NULL)
* xonly_pk32: the 32-byte serialized xonly pubkey corresponding to key32
* (will not be NULL)
* algo16: pointer to a 16-byte array describing the signature
* algorithm (will not be NULL).
* data: Arbitrary data pointer that is passed through.
*
* Except for test cases, this function should compute some cryptographic hash of
* the message, the key, the pubkey, the algorithm description, and data.
*/
typedef int (*secp256k1_nonce_function_hardened)(
unsigned char *nonce32,
const unsigned char *msg32,
const unsigned char *key32,
const unsigned char *xonly_pk32,
const unsigned char *algo16,
void *data
);
/** An implementation of the nonce generation function as defined in Bitcoin
* Improvement Proposal 340 "Schnorr Signatures for secp256k1"
* (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
*
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* auxiliary random data as defined in BIP-340. If the data pointer is NULL,
* schnorrsig_sign does not produce BIP-340 compliant signatures. The algo16
* argument must be non-NULL, otherwise the function will fail and return 0.
* The hash will be tagged with algo16 after removing all terminating null
* bytes. Therefore, to create BIP-340 compliant signatures, algo16 must be set
* to "BIP0340/nonce\0\0\0"
*/
SECP256K1_API extern const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340;
/** Create a Schnorr signature.
*
* Does _not_ strictly follow BIP-340 because it does not verify the resulting
* signature. Instead, you can manually use secp256k1_schnorrsig_verify and
* abort if it fails.
*
* Otherwise BIP-340 compliant if the noncefp argument is NULL or
* secp256k1_nonce_function_bip340 and the ndata argument is 32-byte auxiliary
* randomness.
*
* Returns 1 on success, 0 on failure.
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: sig64: pointer to a 64-byte array to store the serialized signature (cannot be NULL)
* In: msg32: the 32-byte message being signed (cannot be NULL)
* keypair: pointer to an initialized keypair (cannot be NULL)
* noncefp: pointer to a nonce generation function. If NULL, secp256k1_nonce_function_bip340 is used
* ndata: pointer to arbitrary data used by the nonce generation
* function (can be NULL). If it is non-NULL and
* secp256k1_nonce_function_bip340 is used, then ndata must be a
* pointer to 32-byte auxiliary randomness as per BIP-340.
*/
SECP256K1_API int secp256k1_schnorrsig_sign(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char *msg32,
const secp256k1_keypair *keypair,
secp256k1_nonce_function_hardened noncefp,
void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify a Schnorr signature.
*
* Returns: 1: correct signature
* 0: incorrect signature
* Args: ctx: a secp256k1 context object, initialized for verification.
* In: sig64: pointer to the 64-byte signature to verify (cannot be NULL)
* msg32: the 32-byte message being verified (cannot be NULL)
* pubkey: pointer to an x-only public key to verify with (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify(
const secp256k1_context* ctx,
const unsigned char *sig64,
const unsigned char *msg32,
const secp256k1_xonly_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_SCHNORRSIG_H */

102
src/bench_schnorrsig.c Normal file
View File

@ -0,0 +1,102 @@
/**********************************************************************
* Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <string.h>
#include <stdlib.h>
#include "include/secp256k1.h"
#include "include/secp256k1_schnorrsig.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context *ctx;
int n;
const secp256k1_keypair **keypairs;
const unsigned char **pk;
const unsigned char **sigs;
const unsigned char **msgs;
} bench_schnorrsig_data;
void bench_schnorrsig_sign(void* arg, int iters) {
bench_schnorrsig_data *data = (bench_schnorrsig_data *)arg;
int i;
unsigned char msg[32] = "benchmarkexamplemessagetemplate";
unsigned char sig[64];
for (i = 0; i < iters; i++) {
msg[0] = i;
msg[1] = i >> 8;
CHECK(secp256k1_schnorrsig_sign(data->ctx, sig, msg, data->keypairs[i], NULL, NULL));
}
}
void bench_schnorrsig_verify(void* arg, int iters) {
bench_schnorrsig_data *data = (bench_schnorrsig_data *)arg;
int i;
for (i = 0; i < iters; i++) {
secp256k1_xonly_pubkey pk;
CHECK(secp256k1_xonly_pubkey_parse(data->ctx, &pk, data->pk[i]) == 1);
CHECK(secp256k1_schnorrsig_verify(data->ctx, data->sigs[i], data->msgs[i], &pk));
}
}
int main(void) {
int i;
bench_schnorrsig_data data;
int iters = get_iters(10000);
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY | SECP256K1_CONTEXT_SIGN);
data.keypairs = (const secp256k1_keypair **)malloc(iters * sizeof(secp256k1_keypair *));
data.pk = (const unsigned char **)malloc(iters * sizeof(unsigned char *));
data.msgs = (const unsigned char **)malloc(iters * sizeof(unsigned char *));
data.sigs = (const unsigned char **)malloc(iters * sizeof(unsigned char *));
for (i = 0; i < iters; i++) {
unsigned char sk[32];
unsigned char *msg = (unsigned char *)malloc(32);
unsigned char *sig = (unsigned char *)malloc(64);
secp256k1_keypair *keypair = (secp256k1_keypair *)malloc(sizeof(*keypair));
unsigned char *pk_char = (unsigned char *)malloc(32);
secp256k1_xonly_pubkey pk;
msg[0] = sk[0] = i;
msg[1] = sk[1] = i >> 8;
msg[2] = sk[2] = i >> 16;
msg[3] = sk[3] = i >> 24;
memset(&msg[4], 'm', 28);
memset(&sk[4], 's', 28);
data.keypairs[i] = keypair;
data.pk[i] = pk_char;
data.msgs[i] = msg;
data.sigs[i] = sig;
CHECK(secp256k1_keypair_create(data.ctx, keypair, sk));
CHECK(secp256k1_schnorrsig_sign(data.ctx, sig, msg, keypair, NULL, NULL));
CHECK(secp256k1_keypair_xonly_pub(data.ctx, &pk, NULL, keypair));
CHECK(secp256k1_xonly_pubkey_serialize(data.ctx, pk_char, &pk) == 1);
}
run_benchmark("schnorrsig_sign", bench_schnorrsig_sign, NULL, NULL, (void *) &data, 10, iters);
run_benchmark("schnorrsig_verify", bench_schnorrsig_verify, NULL, NULL, (void *) &data, 10, iters);
for (i = 0; i < iters; i++) {
free((void *)data.keypairs[i]);
free((void *)data.pk[i]);
free((void *)data.msgs[i]);
free((void *)data.sigs[i]);
}
free(data.keypairs);
free(data.pk);
free(data.msgs);
free(data.sigs);
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@ -164,6 +164,19 @@ static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out
memcpy(out32, (const unsigned char*)out, 32);
}
/* Initializes a sha256 struct and writes the 64 byte string
* SHA256(tag)||SHA256(tag) into it. */
static void secp256k1_sha256_initialize_tagged(secp256k1_sha256 *hash, const unsigned char *tag, size_t taglen) {
unsigned char buf[32];
secp256k1_sha256_initialize(hash);
secp256k1_sha256_write(hash, tag, taglen);
secp256k1_sha256_finalize(hash, buf);
secp256k1_sha256_initialize(hash);
secp256k1_sha256_write(hash, buf, 32);
secp256k1_sha256_write(hash, buf, 32);
}
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t keylen) {
size_t n;
unsigned char rkey[64];

View File

@ -0,0 +1,3 @@
include_HEADERS += include/secp256k1_extrakeys.h
noinst_HEADERS += src/modules/extrakeys/tests_impl.h
noinst_HEADERS += src/modules/extrakeys/main_impl.h

View File

@ -0,0 +1,248 @@
/**********************************************************************
* Copyright (c) 2020 Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_EXTRAKEYS_MAIN_
#define _SECP256K1_MODULE_EXTRAKEYS_MAIN_
#include "include/secp256k1.h"
#include "include/secp256k1_extrakeys.h"
static SECP256K1_INLINE int secp256k1_xonly_pubkey_load(const secp256k1_context* ctx, secp256k1_ge *ge, const secp256k1_xonly_pubkey *pubkey) {
return secp256k1_pubkey_load(ctx, ge, (const secp256k1_pubkey *) pubkey);
}
static SECP256K1_INLINE void secp256k1_xonly_pubkey_save(secp256k1_xonly_pubkey *pubkey, secp256k1_ge *ge) {
secp256k1_pubkey_save((secp256k1_pubkey *) pubkey, ge);
}
int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, const unsigned char *input32) {
secp256k1_ge pk;
secp256k1_fe x;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(input32 != NULL);
if (!secp256k1_fe_set_b32(&x, input32)) {
return 0;
}
if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) {
return 0;
}
secp256k1_xonly_pubkey_save(pubkey, &pk);
return 1;
}
int secp256k1_xonly_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output32, const secp256k1_xonly_pubkey *pubkey) {
secp256k1_ge pk;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output32 != NULL);
memset(output32, 0, 32);
ARG_CHECK(pubkey != NULL);
if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) {
return 0;
}
secp256k1_fe_get_b32(output32, &pk.x);
return 1;
}
/** Keeps a group element as is if it has an even Y and otherwise negates it.
* y_parity is set to 0 in the former case and to 1 in the latter case.
* Requires that the coordinates of r are normalized. */
static int secp256k1_extrakeys_ge_even_y(secp256k1_ge *r) {
int y_parity = 0;
VERIFY_CHECK(!secp256k1_ge_is_infinity(r));
if (secp256k1_fe_is_odd(&r->y)) {
secp256k1_fe_negate(&r->y, &r->y, 1);
y_parity = 1;
}
return y_parity;
}
int secp256k1_xonly_pubkey_from_pubkey(const secp256k1_context* ctx, secp256k1_xonly_pubkey *xonly_pubkey, int *pk_parity, const secp256k1_pubkey *pubkey) {
secp256k1_ge pk;
int tmp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(xonly_pubkey != NULL);
ARG_CHECK(pubkey != NULL);
if (!secp256k1_pubkey_load(ctx, &pk, pubkey)) {
return 0;
}
tmp = secp256k1_extrakeys_ge_even_y(&pk);
if (pk_parity != NULL) {
*pk_parity = tmp;
}
secp256k1_xonly_pubkey_save(xonly_pubkey, &pk);
return 1;
}
int secp256k1_xonly_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *output_pubkey, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) {
secp256k1_ge pk;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output_pubkey != NULL);
memset(output_pubkey, 0, sizeof(*output_pubkey));
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(internal_pubkey != NULL);
ARG_CHECK(tweak32 != NULL);
if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey)
|| !secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32)) {
return 0;
}
secp256k1_pubkey_save(output_pubkey, &pk);
return 1;
}
int secp256k1_xonly_pubkey_tweak_add_check(const secp256k1_context* ctx, const unsigned char *tweaked_pubkey32, int tweaked_pk_parity, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) {
secp256k1_ge pk;
unsigned char pk_expected32[32];
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(internal_pubkey != NULL);
ARG_CHECK(tweaked_pubkey32 != NULL);
ARG_CHECK(tweak32 != NULL);
if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey)
|| !secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32)) {
return 0;
}
secp256k1_fe_normalize_var(&pk.x);
secp256k1_fe_normalize_var(&pk.y);
secp256k1_fe_get_b32(pk_expected32, &pk.x);
return memcmp(&pk_expected32, tweaked_pubkey32, 32) == 0
&& secp256k1_fe_is_odd(&pk.y) == tweaked_pk_parity;
}
static void secp256k1_keypair_save(secp256k1_keypair *keypair, const secp256k1_scalar *sk, secp256k1_ge *pk) {
secp256k1_scalar_get_b32(&keypair->data[0], sk);
secp256k1_pubkey_save((secp256k1_pubkey *)&keypair->data[32], pk);
}
static int secp256k1_keypair_seckey_load(const secp256k1_context* ctx, secp256k1_scalar *sk, const secp256k1_keypair *keypair) {
int ret;
ret = secp256k1_scalar_set_b32_seckey(sk, &keypair->data[0]);
/* We can declassify ret here because sk is only zero if a keypair function
* failed (which zeroes the keypair) and its return value is ignored. */
secp256k1_declassify(ctx, &ret, sizeof(ret));
ARG_CHECK(ret);
return ret;
}
/* Load a keypair into pk and sk (if non-NULL). This function declassifies pk
* and ARG_CHECKs that the keypair is not invalid. It always initializes sk and
* pk with dummy values. */
static int secp256k1_keypair_load(const secp256k1_context* ctx, secp256k1_scalar *sk, secp256k1_ge *pk, const secp256k1_keypair *keypair) {
int ret;
const secp256k1_pubkey *pubkey = (const secp256k1_pubkey *)&keypair->data[32];
/* Need to declassify the pubkey because pubkey_load ARG_CHECKs if it's
* invalid. */
secp256k1_declassify(ctx, pubkey, sizeof(*pubkey));
ret = secp256k1_pubkey_load(ctx, pk, pubkey);
if (sk != NULL) {
ret = ret && secp256k1_keypair_seckey_load(ctx, sk, keypair);
}
if (!ret) {
*pk = secp256k1_ge_const_g;
if (sk != NULL) {
*sk = secp256k1_scalar_one;
}
}
return ret;
}
int secp256k1_keypair_create(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *seckey32) {
secp256k1_scalar sk;
secp256k1_ge pk;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(keypair != NULL);
memset(keypair, 0, sizeof(*keypair));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey32 != NULL);
ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &sk, &pk, seckey32);
secp256k1_keypair_save(keypair, &sk, &pk);
memczero(keypair, sizeof(*keypair), !ret);
secp256k1_scalar_clear(&sk);
return ret;
}
int secp256k1_keypair_pub(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_keypair *keypair) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(keypair != NULL);
memcpy(pubkey->data, &keypair->data[32], sizeof(*pubkey));
return 1;
}
int secp256k1_keypair_xonly_pub(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, int *pk_parity, const secp256k1_keypair *keypair) {
secp256k1_ge pk;
int tmp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(keypair != NULL);
if (!secp256k1_keypair_load(ctx, NULL, &pk, keypair)) {
return 0;
}
tmp = secp256k1_extrakeys_ge_even_y(&pk);
if (pk_parity != NULL) {
*pk_parity = tmp;
}
secp256k1_xonly_pubkey_save(pubkey, &pk);
return 1;
}
int secp256k1_keypair_xonly_tweak_add(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *tweak32) {
secp256k1_ge pk;
secp256k1_scalar sk;
int y_parity;
int ret;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(keypair != NULL);
ARG_CHECK(tweak32 != NULL);
ret = secp256k1_keypair_load(ctx, &sk, &pk, keypair);
memset(keypair, 0, sizeof(*keypair));
y_parity = secp256k1_extrakeys_ge_even_y(&pk);
if (y_parity == 1) {
secp256k1_scalar_negate(&sk, &sk);
}
ret &= secp256k1_ec_seckey_tweak_add_helper(&sk, tweak32);
ret &= secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32);
secp256k1_declassify(ctx, &ret, sizeof(ret));
if (ret) {
secp256k1_keypair_save(keypair, &sk, &pk);
}
secp256k1_scalar_clear(&sk);
return ret;
}
#endif

View File

@ -0,0 +1,524 @@
/**********************************************************************
* Copyright (c) 2020 Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_EXTRAKEYS_TESTS_
#define _SECP256K1_MODULE_EXTRAKEYS_TESTS_
#include "secp256k1_extrakeys.h"
static secp256k1_context* api_test_context(int flags, int *ecount) {
secp256k1_context *ctx0 = secp256k1_context_create(flags);
secp256k1_context_set_error_callback(ctx0, counting_illegal_callback_fn, ecount);
secp256k1_context_set_illegal_callback(ctx0, counting_illegal_callback_fn, ecount);
return ctx0;
}
void test_xonly_pubkey(void) {
secp256k1_pubkey pk;
secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
secp256k1_ge pk1;
secp256k1_ge pk2;
secp256k1_fe y;
unsigned char sk[32];
unsigned char xy_sk[32];
unsigned char buf32[32];
unsigned char ones32[32];
unsigned char zeros64[64] = { 0 };
int pk_parity;
int i;
int ecount;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
secp256k1_rand256(sk);
memset(ones32, 0xFF, 32);
secp256k1_rand256(xy_sk);
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
/* Test xonly_pubkey_from_pubkey */
ecount = 0;
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(sign, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, NULL, &pk_parity, &pk) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, NULL) == 0);
CHECK(ecount == 2);
memset(&pk, 0, sizeof(pk));
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 0);
CHECK(ecount == 3);
/* Choose a secret key such that the resulting pubkey and xonly_pubkey match. */
memset(sk, 0, sizeof(sk));
sk[0] = 1;
CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(memcmp(&pk, &xonly_pk, sizeof(pk)) == 0);
CHECK(pk_parity == 0);
/* Choose a secret key such that pubkey and xonly_pubkey are each others
* negation. */
sk[0] = 2;
CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(memcmp(&xonly_pk, &pk, sizeof(xonly_pk)) != 0);
CHECK(pk_parity == 1);
secp256k1_pubkey_load(ctx, &pk1, &pk);
secp256k1_pubkey_load(ctx, &pk2, (secp256k1_pubkey *) &xonly_pk);
CHECK(secp256k1_fe_equal(&pk1.x, &pk2.x) == 1);
secp256k1_fe_negate(&y, &pk2.y, 1);
CHECK(secp256k1_fe_equal(&pk1.y, &y) == 1);
/* Test xonly_pubkey_serialize and xonly_pubkey_parse */
ecount = 0;
CHECK(secp256k1_xonly_pubkey_serialize(none, NULL, &xonly_pk) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, NULL) == 0);
CHECK(memcmp(buf32, zeros64, 32) == 0);
CHECK(ecount == 2);
{
/* A pubkey filled with 0s will fail to serialize due to pubkey_load
* special casing. */
secp256k1_xonly_pubkey pk_tmp;
memset(&pk_tmp, 0, sizeof(pk_tmp));
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &pk_tmp) == 0);
}
/* pubkey_load called illegal callback */
CHECK(ecount == 3);
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &xonly_pk) == 1);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_parse(none, NULL, buf32) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, NULL) == 0);
CHECK(ecount == 2);
/* Serialization and parse roundtrip */
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk_tmp, buf32) == 1);
CHECK(memcmp(&xonly_pk, &xonly_pk_tmp, sizeof(xonly_pk)) == 0);
/* Test parsing invalid field elements */
memset(&xonly_pk, 1, sizeof(xonly_pk));
/* Overflowing field element */
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, ones32) == 0);
CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
memset(&xonly_pk, 1, sizeof(xonly_pk));
/* There's no point with x-coordinate 0 on secp256k1 */
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, zeros64) == 0);
CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
/* If a random 32-byte string can not be parsed with ec_pubkey_parse
* (because interpreted as X coordinate it does not correspond to a point on
* the curve) then xonly_pubkey_parse should fail as well. */
for (i = 0; i < count; i++) {
unsigned char rand33[33];
secp256k1_rand256(&rand33[1]);
rand33[0] = SECP256K1_TAG_PUBKEY_EVEN;
if (!secp256k1_ec_pubkey_parse(ctx, &pk, rand33, 33)) {
memset(&xonly_pk, 1, sizeof(xonly_pk));
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 0);
CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
} else {
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 1);
}
}
CHECK(ecount == 2);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
void test_xonly_pubkey_tweak(void) {
unsigned char zeros64[64] = { 0 };
unsigned char overflows[32];
unsigned char sk[32];
secp256k1_pubkey internal_pk;
secp256k1_xonly_pubkey internal_xonly_pk;
secp256k1_pubkey output_pk;
int pk_parity;
unsigned char tweak[32];
int i;
int ecount;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
memset(overflows, 0xff, sizeof(overflows));
secp256k1_rand256(tweak);
secp256k1_rand256(sk);
CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_tweak_add(none, &output_pk, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(sign, &output_pk, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, NULL, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, NULL, tweak) == 0);
CHECK(ecount == 4);
/* NULL internal_xonly_pk zeroes the output_pk */
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, NULL) == 0);
CHECK(ecount == 5);
/* NULL tweak zeroes the output_pk */
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
/* Invalid tweak zeroes the output_pk */
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, overflows) == 0);
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
/* A zero tweak is fine */
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, zeros64) == 1);
/* Fails if the resulting key was infinity */
for (i = 0; i < count; i++) {
secp256k1_scalar scalar_tweak;
/* Because sk may be negated before adding, we need to try with tweak =
* sk as well as tweak = -sk. */
secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL);
secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak);
secp256k1_scalar_get_b32(tweak, &scalar_tweak);
CHECK((secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, sk) == 0)
|| (secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0));
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
}
/* Invalid pk with a valid tweak */
memset(&internal_xonly_pk, 0, sizeof(internal_xonly_pk));
secp256k1_rand256(tweak);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
void test_xonly_pubkey_tweak_check(void) {
unsigned char zeros64[64] = { 0 };
unsigned char overflows[32];
unsigned char sk[32];
secp256k1_pubkey internal_pk;
secp256k1_xonly_pubkey internal_xonly_pk;
secp256k1_pubkey output_pk;
secp256k1_xonly_pubkey output_xonly_pk;
unsigned char output_pk32[32];
unsigned char buf32[32];
int pk_parity;
unsigned char tweak[32];
int ecount;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
memset(overflows, 0xff, sizeof(overflows));
secp256k1_rand256(tweak);
secp256k1_rand256(sk);
CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &output_xonly_pk, &pk_parity, &output_pk) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &output_xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(none, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(sign, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, NULL, pk_parity, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 3);
/* invalid pk_parity value */
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, 2, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, NULL, tweak) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, NULL) == 0);
CHECK(ecount == 5);
memset(tweak, 1, sizeof(tweak));
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &internal_xonly_pk, NULL, &internal_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &output_xonly_pk, &pk_parity, &output_pk) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk32, &output_xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, tweak) == 1);
/* Wrong pk_parity */
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, !pk_parity, &internal_xonly_pk, tweak) == 0);
/* Wrong public key */
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &internal_xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
/* Overflowing tweak not allowed */
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, overflows) == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, overflows) == 0);
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
CHECK(ecount == 5);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
/* Starts with an initial pubkey and recursively creates N_PUBKEYS - 1
* additional pubkeys by calling tweak_add. Then verifies every tweak starting
* from the last pubkey. */
#define N_PUBKEYS 32
void test_xonly_pubkey_tweak_recursive(void) {
unsigned char sk[32];
secp256k1_pubkey pk[N_PUBKEYS];
unsigned char pk_serialized[32];
unsigned char tweak[N_PUBKEYS - 1][32];
int i;
secp256k1_rand256(sk);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk) == 1);
/* Add tweaks */
for (i = 0; i < N_PUBKEYS - 1; i++) {
secp256k1_xonly_pubkey xonly_pk;
memset(tweak[i], i + 1, sizeof(tweak[i]));
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i]) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &pk[i + 1], &xonly_pk, tweak[i]) == 1);
}
/* Verify tweaks */
for (i = N_PUBKEYS - 1; i > 0; i--) {
secp256k1_xonly_pubkey xonly_pk;
int pk_parity;
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk[i]) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk_serialized, &xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i - 1]) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk_serialized, pk_parity, &xonly_pk, tweak[i - 1]) == 1);
}
}
#undef N_PUBKEYS
void test_keypair(void) {
unsigned char sk[32];
unsigned char zeros96[96] = { 0 };
unsigned char overflows[32];
secp256k1_keypair keypair;
secp256k1_pubkey pk, pk_tmp;
secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
int pk_parity, pk_parity_tmp;
int ecount;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
CHECK(sizeof(zeros96) == sizeof(keypair));
memset(overflows, 0xFF, sizeof(overflows));
/* Test keypair_create */
ecount = 0;
secp256k1_rand256(sk);
CHECK(secp256k1_keypair_create(none, &keypair, sk) == 0);
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_create(verify, &keypair, sk) == 0);
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
CHECK(secp256k1_keypair_create(sign, NULL, sk) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_keypair_create(sign, &keypair, NULL) == 0);
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(ecount == 4);
/* Invalid secret key */
CHECK(secp256k1_keypair_create(sign, &keypair, zeros96) == 0);
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(secp256k1_keypair_create(sign, &keypair, overflows) == 0);
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
/* Test keypair_pub */
ecount = 0;
secp256k1_rand256(sk);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
CHECK(secp256k1_keypair_pub(none, NULL, &keypair) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_pub(none, &pk, NULL) == 0);
CHECK(ecount == 2);
CHECK(memcmp(zeros96, &pk, sizeof(pk)) == 0);
/* Using an invalid keypair is fine for keypair_pub */
memset(&keypair, 0, sizeof(keypair));
CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
CHECK(memcmp(zeros96, &pk, sizeof(pk)) == 0);
/* keypair holds the same pubkey as pubkey_create */
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
CHECK(secp256k1_keypair_pub(none, &pk_tmp, &keypair) == 1);
CHECK(memcmp(&pk, &pk_tmp, sizeof(pk)) == 0);
/** Test keypair_xonly_pub **/
ecount = 0;
secp256k1_rand256(sk);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
CHECK(secp256k1_keypair_xonly_pub(none, NULL, &pk_parity, &keypair) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, NULL, &keypair) == 1);
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, NULL) == 0);
CHECK(ecount == 2);
CHECK(memcmp(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
/* Using an invalid keypair will set the xonly_pk to 0 (first reset
* xonly_pk). */
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
memset(&keypair, 0, sizeof(keypair));
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 0);
CHECK(memcmp(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
CHECK(ecount == 3);
/** keypair holds the same xonly pubkey as pubkey_create **/
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk_tmp, &pk_parity_tmp, &keypair) == 1);
CHECK(memcmp(&xonly_pk, &xonly_pk_tmp, sizeof(pk)) == 0);
CHECK(pk_parity == pk_parity_tmp);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
void test_keypair_add(void) {
unsigned char sk[32];
secp256k1_keypair keypair;
unsigned char overflows[32];
unsigned char zeros96[96] = { 0 };
unsigned char tweak[32];
int i;
int ecount = 0;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
CHECK(sizeof(zeros96) == sizeof(keypair));
secp256k1_rand256(sk);
secp256k1_rand256(tweak);
memset(overflows, 0xFF, 32);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(none, &keypair, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(sign, &keypair, tweak) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, NULL, tweak) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, NULL) == 0);
CHECK(ecount == 4);
/* This does not set the keypair to zeroes */
CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) != 0);
/* Invalid tweak zeroes the keypair */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, overflows) == 0);
CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0);
/* A zero tweak is fine */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, zeros96) == 1);
/* Fails if the resulting keypair was (sk=0, pk=infinity) */
for (i = 0; i < count; i++) {
secp256k1_scalar scalar_tweak;
secp256k1_keypair keypair_tmp;
secp256k1_rand256(sk);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
memcpy(&keypair_tmp, &keypair, sizeof(keypair));
/* Because sk may be negated before adding, we need to try with tweak =
* sk as well as tweak = -sk. */
secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL);
secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak);
secp256k1_scalar_get_b32(tweak, &scalar_tweak);
CHECK((secp256k1_keypair_xonly_tweak_add(ctx, &keypair, sk) == 0)
|| (secp256k1_keypair_xonly_tweak_add(ctx, &keypair_tmp, tweak) == 0));
CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0
|| memcmp(&keypair_tmp, zeros96, sizeof(keypair_tmp)) == 0);
}
/* Invalid keypair with a valid tweak */
memset(&keypair, 0, sizeof(keypair));
secp256k1_rand256(tweak);
ecount = 0;
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
CHECK(ecount == 1);
CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0);
/* Only seckey part of keypair invalid */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
memset(&keypair, 0, 32);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
CHECK(ecount == 2);
/* Only pubkey part of keypair invalid */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
memset(&keypair.data[32], 0, 64);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
CHECK(ecount == 3);
/* Check that the keypair_tweak_add implementation is correct */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
for (i = 0; i < count; i++) {
secp256k1_xonly_pubkey internal_pk;
secp256k1_xonly_pubkey output_pk;
secp256k1_pubkey output_pk_xy;
secp256k1_pubkey output_pk_expected;
unsigned char pk32[32];
int pk_parity;
secp256k1_rand256(tweak);
CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1);
CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1);
/* Check that it passes xonly_pubkey_tweak_add_check */
CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk32, &output_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk32, pk_parity, &internal_pk, tweak) == 1);
/* Check that the resulting pubkey matches xonly_pubkey_tweak_add */
CHECK(secp256k1_keypair_pub(ctx, &output_pk_xy, &keypair) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk_expected, &internal_pk, tweak) == 1);
CHECK(memcmp(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
/* Check that the secret key in the keypair is tweaked correctly */
CHECK(secp256k1_ec_pubkey_create(ctx, &output_pk_expected, &keypair.data[0]) == 1);
CHECK(memcmp(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
}
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
void run_extrakeys_tests(void) {
/* xonly key test cases */
test_xonly_pubkey();
test_xonly_pubkey_tweak();
test_xonly_pubkey_tweak_check();
test_xonly_pubkey_tweak_recursive();
/* keypair tests */
test_keypair();
test_keypair_add();
}
#endif

View File

@ -0,0 +1,8 @@
include_HEADERS += include/secp256k1_schnorrsig.h
noinst_HEADERS += src/modules/schnorrsig/main_impl.h
noinst_HEADERS += src/modules/schnorrsig/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_schnorrsig
bench_schnorrsig_SOURCES = src/bench_schnorrsig.c
bench_schnorrsig_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif

View File

@ -0,0 +1,238 @@
/**********************************************************************
* Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_SCHNORRSIG_MAIN_
#define _SECP256K1_MODULE_SCHNORRSIG_MAIN_
#include "include/secp256k1.h"
#include "include/secp256k1_schnorrsig.h"
#include "hash.h"
/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
* SHA256 to SHA256("BIP0340/nonce")||SHA256("BIP0340/nonce"). */
static void secp256k1_nonce_function_bip340_sha256_tagged(secp256k1_sha256 *sha) {
secp256k1_sha256_initialize(sha);
sha->s[0] = 0x46615b35ul;
sha->s[1] = 0xf4bfbff7ul;
sha->s[2] = 0x9f8dc671ul;
sha->s[3] = 0x83627ab3ul;
sha->s[4] = 0x60217180ul;
sha->s[5] = 0x57358661ul;
sha->s[6] = 0x21a29e54ul;
sha->s[7] = 0x68b07b4cul;
sha->bytes = 64;
}
/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
* SHA256 to SHA256("BIP0340/aux")||SHA256("BIP0340/aux"). */
static void secp256k1_nonce_function_bip340_sha256_tagged_aux(secp256k1_sha256 *sha) {
secp256k1_sha256_initialize(sha);
sha->s[0] = 0x24dd3219ul;
sha->s[1] = 0x4eba7e70ul;
sha->s[2] = 0xca0fabb9ul;
sha->s[3] = 0x0fa3166dul;
sha->s[4] = 0x3afbe4b1ul;
sha->s[5] = 0x4c44df97ul;
sha->s[6] = 0x4aac2739ul;
sha->s[7] = 0x249e850aul;
sha->bytes = 64;
}
/* algo16 argument for nonce_function_bip340 to derive the nonce exactly as stated in BIP-340
* by using the correct tagged hash function. */
static const unsigned char bip340_algo16[16] = "BIP0340/nonce\0\0\0";
static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo16, void *data) {
secp256k1_sha256 sha;
unsigned char masked_key[32];
int i;
if (algo16 == NULL) {
return 0;
}
if (data != NULL) {
secp256k1_nonce_function_bip340_sha256_tagged_aux(&sha);
secp256k1_sha256_write(&sha, data, 32);
secp256k1_sha256_finalize(&sha, masked_key);
for (i = 0; i < 32; i++) {
masked_key[i] ^= key32[i];
}
}
/* Tag the hash with algo16 which is important to avoid nonce reuse across
* algorithms. If this nonce function is used in BIP-340 signing as defined
* in the spec, an optimized tagging implementation is used. */
if (memcmp(algo16, bip340_algo16, 16) == 0) {
secp256k1_nonce_function_bip340_sha256_tagged(&sha);
} else {
int algo16_len = 16;
/* Remove terminating null bytes */
while (algo16_len > 0 && !algo16[algo16_len - 1]) {
algo16_len--;
}
secp256k1_sha256_initialize_tagged(&sha, algo16, algo16_len);
}
/* Hash (masked-)key||pk||msg using the tagged hash as per the spec */
if (data != NULL) {
secp256k1_sha256_write(&sha, masked_key, 32);
} else {
secp256k1_sha256_write(&sha, key32, 32);
}
secp256k1_sha256_write(&sha, xonly_pk32, 32);
secp256k1_sha256_write(&sha, msg32, 32);
secp256k1_sha256_finalize(&sha, nonce32);
return 1;
}
const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340 = nonce_function_bip340;
/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
* SHA256 to SHA256("BIP0340/challenge")||SHA256("BIP0340/challenge"). */
static void secp256k1_schnorrsig_sha256_tagged(secp256k1_sha256 *sha) {
secp256k1_sha256_initialize(sha);
sha->s[0] = 0x9cecba11ul;
sha->s[1] = 0x23925381ul;
sha->s[2] = 0x11679112ul;
sha->s[3] = 0xd1627e0ful;
sha->s[4] = 0x97c87550ul;
sha->s[5] = 0x003cc765ul;
sha->s[6] = 0x90f61164ul;
sha->s[7] = 0x33e9b66aul;
sha->bytes = 64;
}
int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata) {
secp256k1_scalar sk;
secp256k1_scalar e;
secp256k1_scalar k;
secp256k1_gej rj;
secp256k1_ge pk;
secp256k1_ge r;
secp256k1_sha256 sha;
unsigned char buf[32] = { 0 };
unsigned char pk_buf[32];
unsigned char seckey[32];
int ret = 1;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(sig64 != NULL);
ARG_CHECK(msg32 != NULL);
ARG_CHECK(keypair != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_bip340;
}
ret &= secp256k1_keypair_load(ctx, &sk, &pk, keypair);
/* Because we are signing for a x-only pubkey, the secret key is negated
* before signing if the point corresponding to the secret key does not
* have an even Y. */
if (secp256k1_fe_is_odd(&pk.y)) {
secp256k1_scalar_negate(&sk, &sk);
}
secp256k1_scalar_get_b32(seckey, &sk);
secp256k1_fe_get_b32(pk_buf, &pk.x);
ret &= !!noncefp(buf, msg32, seckey, pk_buf, bip340_algo16, ndata);
secp256k1_scalar_set_b32(&k, buf, NULL);
ret &= !secp256k1_scalar_is_zero(&k);
secp256k1_scalar_cmov(&k, &secp256k1_scalar_one, !ret);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &rj, &k);
secp256k1_ge_set_gej(&r, &rj);
/* We declassify r to allow using it as a branch point. This is fine
* because r is not a secret. */
secp256k1_declassify(ctx, &r, sizeof(r));
secp256k1_fe_normalize_var(&r.y);
if (secp256k1_fe_is_odd(&r.y)) {
secp256k1_scalar_negate(&k, &k);
}
secp256k1_fe_normalize_var(&r.x);
secp256k1_fe_get_b32(&sig64[0], &r.x);
/* tagged hash(r.x, pk.x, msg32) */
secp256k1_schnorrsig_sha256_tagged(&sha);
secp256k1_sha256_write(&sha, &sig64[0], 32);
secp256k1_sha256_write(&sha, pk_buf, sizeof(pk_buf));
secp256k1_sha256_write(&sha, msg32, 32);
secp256k1_sha256_finalize(&sha, buf);
/* Set scalar e to the challenge hash modulo the curve order as per
* BIP340. */
secp256k1_scalar_set_b32(&e, buf, NULL);
secp256k1_scalar_mul(&e, &e, &sk);
secp256k1_scalar_add(&e, &e, &k);
secp256k1_scalar_get_b32(&sig64[32], &e);
memczero(sig64, 64, !ret);
secp256k1_scalar_clear(&k);
secp256k1_scalar_clear(&sk);
memset(seckey, 0, sizeof(seckey));
return ret;
}
int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg32, const secp256k1_xonly_pubkey *pubkey) {
secp256k1_scalar s;
secp256k1_scalar e;
secp256k1_gej rj;
secp256k1_ge pk;
secp256k1_gej pkj;
secp256k1_fe rx;
secp256k1_ge r;
secp256k1_sha256 sha;
unsigned char buf[32];
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(sig64 != NULL);
ARG_CHECK(msg32 != NULL);
ARG_CHECK(pubkey != NULL);
if (!secp256k1_fe_set_b32(&rx, &sig64[0])) {
return 0;
}
secp256k1_scalar_set_b32(&s, &sig64[32], &overflow);
if (overflow) {
return 0;
}
if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) {
return 0;
}
secp256k1_schnorrsig_sha256_tagged(&sha);
secp256k1_sha256_write(&sha, &sig64[0], 32);
secp256k1_fe_get_b32(buf, &pk.x);
secp256k1_sha256_write(&sha, buf, sizeof(buf));
secp256k1_sha256_write(&sha, msg32, 32);
secp256k1_sha256_finalize(&sha, buf);
secp256k1_scalar_set_b32(&e, buf, NULL);
/* Compute rj = s*G + (-e)*pkj */
secp256k1_scalar_negate(&e, &e);
secp256k1_gej_set_ge(&pkj, &pk);
secp256k1_ecmult(&ctx->ecmult_ctx, &rj, &pkj, &e, &s);
secp256k1_ge_set_gej_var(&r, &rj);
if (secp256k1_ge_is_infinity(&r)) {
return 0;
}
secp256k1_fe_normalize_var(&r.y);
return !secp256k1_fe_is_odd(&r.y) &&
secp256k1_fe_equal_var(&rx, &r.x);
}
#endif

View File

@ -0,0 +1,806 @@
/**********************************************************************
* Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_SCHNORRSIG_TESTS_
#define _SECP256K1_MODULE_SCHNORRSIG_TESTS_
#include "secp256k1_schnorrsig.h"
/* Checks that a bit flip in the n_flip-th argument (that has n_bytes many
* bytes) changes the hash function
*/
void nonce_function_bip340_bitflip(unsigned char **args, size_t n_flip, size_t n_bytes) {
unsigned char nonces[2][32];
CHECK(nonce_function_bip340(nonces[0], args[0], args[1], args[2], args[3], args[4]) == 1);
secp256k1_rand_flip(args[n_flip], n_bytes);
CHECK(nonce_function_bip340(nonces[1], args[0], args[1], args[2], args[3], args[4]) == 1);
CHECK(memcmp(nonces[0], nonces[1], 32) != 0);
}
/* Tests for the equality of two sha256 structs. This function only produces a
* correct result if an integer multiple of 64 many bytes have been written
* into the hash functions. */
void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) {
/* Is buffer fully consumed? */
CHECK((sha1->bytes & 0x3F) == 0);
CHECK(sha1->bytes == sha2->bytes);
CHECK(memcmp(sha1->s, sha2->s, sizeof(sha1->s)) == 0);
}
void run_nonce_function_bip340_tests(void) {
unsigned char tag[13] = "BIP0340/nonce";
unsigned char aux_tag[11] = "BIP0340/aux";
unsigned char algo16[16] = "BIP0340/nonce\0\0\0";
secp256k1_sha256 sha;
secp256k1_sha256 sha_optimized;
unsigned char nonce[32];
unsigned char msg[32];
unsigned char key[32];
unsigned char pk[32];
unsigned char aux_rand[32];
unsigned char *args[5];
int i;
/* Check that hash initialized by
* secp256k1_nonce_function_bip340_sha256_tagged has the expected
* state. */
secp256k1_sha256_initialize_tagged(&sha, tag, sizeof(tag));
secp256k1_nonce_function_bip340_sha256_tagged(&sha_optimized);
test_sha256_eq(&sha, &sha_optimized);
/* Check that hash initialized by
* secp256k1_nonce_function_bip340_sha256_tagged_aux has the expected
* state. */
secp256k1_sha256_initialize_tagged(&sha, aux_tag, sizeof(aux_tag));
secp256k1_nonce_function_bip340_sha256_tagged_aux(&sha_optimized);
test_sha256_eq(&sha, &sha_optimized);
secp256k1_rand256(msg);
secp256k1_rand256(key);
secp256k1_rand256(pk);
secp256k1_rand256(aux_rand);
/* Check that a bitflip in an argument results in different nonces. */
args[0] = msg;
args[1] = key;
args[2] = pk;
args[3] = algo16;
args[4] = aux_rand;
for (i = 0; i < count; i++) {
nonce_function_bip340_bitflip(args, 0, 32);
nonce_function_bip340_bitflip(args, 1, 32);
nonce_function_bip340_bitflip(args, 2, 32);
/* Flip algo16 special case "BIP0340/nonce" */
nonce_function_bip340_bitflip(args, 3, 16);
/* Flip algo16 again */
nonce_function_bip340_bitflip(args, 3, 16);
nonce_function_bip340_bitflip(args, 4, 32);
}
/* NULL algo16 is disallowed */
CHECK(nonce_function_bip340(nonce, msg, key, pk, NULL, NULL) == 0);
/* Empty algo16 is fine */
memset(algo16, 0x00, 16);
CHECK(nonce_function_bip340(nonce, msg, key, pk, algo16, NULL) == 1);
/* algo16 with terminating null bytes is fine */
algo16[1] = 65;
CHECK(nonce_function_bip340(nonce, msg, key, pk, algo16, NULL) == 1);
/* Other algo16 is fine */
memset(algo16, 0xFF, 16);
CHECK(nonce_function_bip340(nonce, msg, key, pk, algo16, NULL) == 1);
/* NULL aux_rand argument is allowed. */
CHECK(nonce_function_bip340(nonce, msg, key, pk, algo16, NULL) == 1);
}
void test_schnorrsig_api(void) {
unsigned char sk1[32];
unsigned char sk2[32];
unsigned char sk3[32];
unsigned char msg[32];
secp256k1_keypair keypairs[3];
secp256k1_keypair invalid_keypair = { 0 };
secp256k1_xonly_pubkey pk[3];
secp256k1_xonly_pubkey zero_pk;
unsigned char sig[64];
/** setup **/
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
int ecount;
secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount);
secp256k1_rand256(sk1);
secp256k1_rand256(sk2);
secp256k1_rand256(sk3);
secp256k1_rand256(msg);
CHECK(secp256k1_keypair_create(ctx, &keypairs[0], sk1) == 1);
CHECK(secp256k1_keypair_create(ctx, &keypairs[1], sk2) == 1);
CHECK(secp256k1_keypair_create(ctx, &keypairs[2], sk3) == 1);
CHECK(secp256k1_keypair_xonly_pub(ctx, &pk[0], NULL, &keypairs[0]) == 1);
CHECK(secp256k1_keypair_xonly_pub(ctx, &pk[1], NULL, &keypairs[1]) == 1);
CHECK(secp256k1_keypair_xonly_pub(ctx, &pk[2], NULL, &keypairs[2]) == 1);
memset(&zero_pk, 0, sizeof(zero_pk));
/** main test body **/
ecount = 0;
CHECK(secp256k1_schnorrsig_sign(none, sig, msg, &keypairs[0], NULL, NULL) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_schnorrsig_sign(vrfy, sig, msg, &keypairs[0], NULL, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, &keypairs[0], NULL, NULL) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_sign(sign, NULL, msg, &keypairs[0], NULL, NULL) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_sign(sign, sig, NULL, &keypairs[0], NULL, NULL) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, NULL, NULL, NULL) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, &invalid_keypair, NULL, NULL) == 0);
CHECK(ecount == 6);
ecount = 0;
CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, &keypairs[0], NULL, NULL) == 1);
CHECK(secp256k1_schnorrsig_verify(none, sig, msg, &pk[0]) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_schnorrsig_verify(sign, sig, msg, &pk[0]) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_verify(vrfy, sig, msg, &pk[0]) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_verify(vrfy, NULL, msg, &pk[0]) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_verify(vrfy, sig, NULL, &pk[0]) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_schnorrsig_verify(vrfy, sig, msg, NULL) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_schnorrsig_verify(vrfy, sig, msg, &zero_pk) == 0);
CHECK(ecount == 6);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(vrfy);
secp256k1_context_destroy(both);
}
/* Checks that hash initialized by secp256k1_schnorrsig_sha256_tagged has the
* expected state. */
void test_schnorrsig_sha256_tagged(void) {
char tag[17] = "BIP0340/challenge";
secp256k1_sha256 sha;
secp256k1_sha256 sha_optimized;
secp256k1_sha256_initialize_tagged(&sha, (unsigned char *) tag, sizeof(tag));
secp256k1_schnorrsig_sha256_tagged(&sha_optimized);
test_sha256_eq(&sha, &sha_optimized);
}
/* Helper function for schnorrsig_bip_vectors
* Signs the message and checks that it's the same as expected_sig. */
void test_schnorrsig_bip_vectors_check_signing(const unsigned char *sk, const unsigned char *pk_serialized, unsigned char *aux_rand, const unsigned char *msg, const unsigned char *expected_sig) {
unsigned char sig[64];
secp256k1_keypair keypair;
secp256k1_xonly_pubkey pk, pk_expected;
CHECK(secp256k1_keypair_create(ctx, &keypair, sk));
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, aux_rand));
CHECK(memcmp(sig, expected_sig, 64) == 0);
CHECK(secp256k1_xonly_pubkey_parse(ctx, &pk_expected, pk_serialized));
CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair));
CHECK(memcmp(&pk, &pk_expected, sizeof(pk)) == 0);
CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, &pk));
}
/* Helper function for schnorrsig_bip_vectors
* Checks that both verify and verify_batch (TODO) return the same value as expected. */
void test_schnorrsig_bip_vectors_check_verify(const unsigned char *pk_serialized, const unsigned char *msg32, const unsigned char *sig, int expected) {
secp256k1_xonly_pubkey pk;
CHECK(secp256k1_xonly_pubkey_parse(ctx, &pk, pk_serialized));
CHECK(expected == secp256k1_schnorrsig_verify(ctx, sig, msg32, &pk));
}
/* Test vectors according to BIP-340 ("Schnorr Signatures for secp256k1"). See
* https://github.com/bitcoin/bips/blob/master/bip-0340/test-vectors.csv. */
void test_schnorrsig_bip_vectors(void) {
{
/* Test vector 0 */
const unsigned char sk[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03
};
const unsigned char pk[32] = {
0xF9, 0x30, 0x8A, 0x01, 0x92, 0x58, 0xC3, 0x10,
0x49, 0x34, 0x4F, 0x85, 0xF8, 0x9D, 0x52, 0x29,
0xB5, 0x31, 0xC8, 0x45, 0x83, 0x6F, 0x99, 0xB0,
0x86, 0x01, 0xF1, 0x13, 0xBC, 0xE0, 0x36, 0xF9
};
unsigned char aux_rand[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const unsigned char msg[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const unsigned char sig[64] = {
0xE9, 0x07, 0x83, 0x1F, 0x80, 0x84, 0x8D, 0x10,
0x69, 0xA5, 0x37, 0x1B, 0x40, 0x24, 0x10, 0x36,
0x4B, 0xDF, 0x1C, 0x5F, 0x83, 0x07, 0xB0, 0x08,
0x4C, 0x55, 0xF1, 0xCE, 0x2D, 0xCA, 0x82, 0x15,
0x25, 0xF6, 0x6A, 0x4A, 0x85, 0xEA, 0x8B, 0x71,
0xE4, 0x82, 0xA7, 0x4F, 0x38, 0x2D, 0x2C, 0xE5,
0xEB, 0xEE, 0xE8, 0xFD, 0xB2, 0x17, 0x2F, 0x47,
0x7D, 0xF4, 0x90, 0x0D, 0x31, 0x05, 0x36, 0xC0
};
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
}
{
/* Test vector 1 */
const unsigned char sk[32] = {
0xB7, 0xE1, 0x51, 0x62, 0x8A, 0xED, 0x2A, 0x6A,
0xBF, 0x71, 0x58, 0x80, 0x9C, 0xF4, 0xF3, 0xC7,
0x62, 0xE7, 0x16, 0x0F, 0x38, 0xB4, 0xDA, 0x56,
0xA7, 0x84, 0xD9, 0x04, 0x51, 0x90, 0xCF, 0xEF
};
const unsigned char pk[32] = {
0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
};
unsigned char aux_rand[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
};
const unsigned char msg[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig[64] = {
0x68, 0x96, 0xBD, 0x60, 0xEE, 0xAE, 0x29, 0x6D,
0xB4, 0x8A, 0x22, 0x9F, 0xF7, 0x1D, 0xFE, 0x07,
0x1B, 0xDE, 0x41, 0x3E, 0x6D, 0x43, 0xF9, 0x17,
0xDC, 0x8D, 0xCF, 0x8C, 0x78, 0xDE, 0x33, 0x41,
0x89, 0x06, 0xD1, 0x1A, 0xC9, 0x76, 0xAB, 0xCC,
0xB2, 0x0B, 0x09, 0x12, 0x92, 0xBF, 0xF4, 0xEA,
0x89, 0x7E, 0xFC, 0xB6, 0x39, 0xEA, 0x87, 0x1C,
0xFA, 0x95, 0xF6, 0xDE, 0x33, 0x9E, 0x4B, 0x0A
};
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
}
{
/* Test vector 2 */
const unsigned char sk[32] = {
0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34,
0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74,
0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x14, 0xE5, 0xC9
};
const unsigned char pk[32] = {
0xDD, 0x30, 0x8A, 0xFE, 0xC5, 0x77, 0x7E, 0x13,
0x12, 0x1F, 0xA7, 0x2B, 0x9C, 0xC1, 0xB7, 0xCC,
0x01, 0x39, 0x71, 0x53, 0x09, 0xB0, 0x86, 0xC9,
0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xB8
};
unsigned char aux_rand[32] = {
0xC8, 0x7A, 0xA5, 0x38, 0x24, 0xB4, 0xD7, 0xAE,
0x2E, 0xB0, 0x35, 0xA2, 0xB5, 0xBB, 0xBC, 0xCC,
0x08, 0x0E, 0x76, 0xCD, 0xC6, 0xD1, 0x69, 0x2C,
0x4B, 0x0B, 0x62, 0xD7, 0x98, 0xE6, 0xD9, 0x06
};
const unsigned char msg[32] = {
0x7E, 0x2D, 0x58, 0xD8, 0xB3, 0xBC, 0xDF, 0x1A,
0xBA, 0xDE, 0xC7, 0x82, 0x90, 0x54, 0xF9, 0x0D,
0xDA, 0x98, 0x05, 0xAA, 0xB5, 0x6C, 0x77, 0x33,
0x30, 0x24, 0xB9, 0xD0, 0xA5, 0x08, 0xB7, 0x5C
};
const unsigned char sig[64] = {
0x58, 0x31, 0xAA, 0xEE, 0xD7, 0xB4, 0x4B, 0xB7,
0x4E, 0x5E, 0xAB, 0x94, 0xBA, 0x9D, 0x42, 0x94,
0xC4, 0x9B, 0xCF, 0x2A, 0x60, 0x72, 0x8D, 0x8B,
0x4C, 0x20, 0x0F, 0x50, 0xDD, 0x31, 0x3C, 0x1B,
0xAB, 0x74, 0x58, 0x79, 0xA5, 0xAD, 0x95, 0x4A,
0x72, 0xC4, 0x5A, 0x91, 0xC3, 0xA5, 0x1D, 0x3C,
0x7A, 0xDE, 0xA9, 0x8D, 0x82, 0xF8, 0x48, 0x1E,
0x0E, 0x1E, 0x03, 0x67, 0x4A, 0x6F, 0x3F, 0xB7
};
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
}
{
/* Test vector 3 */
const unsigned char sk[32] = {
0x0B, 0x43, 0x2B, 0x26, 0x77, 0x93, 0x73, 0x81,
0xAE, 0xF0, 0x5B, 0xB0, 0x2A, 0x66, 0xEC, 0xD0,
0x12, 0x77, 0x30, 0x62, 0xCF, 0x3F, 0xA2, 0x54,
0x9E, 0x44, 0xF5, 0x8E, 0xD2, 0x40, 0x17, 0x10
};
const unsigned char pk[32] = {
0x25, 0xD1, 0xDF, 0xF9, 0x51, 0x05, 0xF5, 0x25,
0x3C, 0x40, 0x22, 0xF6, 0x28, 0xA9, 0x96, 0xAD,
0x3A, 0x0D, 0x95, 0xFB, 0xF2, 0x1D, 0x46, 0x8A,
0x1B, 0x33, 0xF8, 0xC1, 0x60, 0xD8, 0xF5, 0x17
};
unsigned char aux_rand[32] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
const unsigned char msg[32] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
const unsigned char sig[64] = {
0x7E, 0xB0, 0x50, 0x97, 0x57, 0xE2, 0x46, 0xF1,
0x94, 0x49, 0x88, 0x56, 0x51, 0x61, 0x1C, 0xB9,
0x65, 0xEC, 0xC1, 0xA1, 0x87, 0xDD, 0x51, 0xB6,
0x4F, 0xDA, 0x1E, 0xDC, 0x96, 0x37, 0xD5, 0xEC,
0x97, 0x58, 0x2B, 0x9C, 0xB1, 0x3D, 0xB3, 0x93,
0x37, 0x05, 0xB3, 0x2B, 0xA9, 0x82, 0xAF, 0x5A,
0xF2, 0x5F, 0xD7, 0x88, 0x81, 0xEB, 0xB3, 0x27,
0x71, 0xFC, 0x59, 0x22, 0xEF, 0xC6, 0x6E, 0xA3
};
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
}
{
/* Test vector 4 */
const unsigned char pk[32] = {
0xD6, 0x9C, 0x35, 0x09, 0xBB, 0x99, 0xE4, 0x12,
0xE6, 0x8B, 0x0F, 0xE8, 0x54, 0x4E, 0x72, 0x83,
0x7D, 0xFA, 0x30, 0x74, 0x6D, 0x8B, 0xE2, 0xAA,
0x65, 0x97, 0x5F, 0x29, 0xD2, 0x2D, 0xC7, 0xB9
};
const unsigned char msg[32] = {
0x4D, 0xF3, 0xC3, 0xF6, 0x8F, 0xCC, 0x83, 0xB2,
0x7E, 0x9D, 0x42, 0xC9, 0x04, 0x31, 0xA7, 0x24,
0x99, 0xF1, 0x78, 0x75, 0xC8, 0x1A, 0x59, 0x9B,
0x56, 0x6C, 0x98, 0x89, 0xB9, 0x69, 0x67, 0x03
};
const unsigned char sig[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x3B, 0x78, 0xCE, 0x56, 0x3F,
0x89, 0xA0, 0xED, 0x94, 0x14, 0xF5, 0xAA, 0x28,
0xAD, 0x0D, 0x96, 0xD6, 0x79, 0x5F, 0x9C, 0x63,
0x76, 0xAF, 0xB1, 0x54, 0x8A, 0xF6, 0x03, 0xB3,
0xEB, 0x45, 0xC9, 0xF8, 0x20, 0x7D, 0xEE, 0x10,
0x60, 0xCB, 0x71, 0xC0, 0x4E, 0x80, 0xF5, 0x93,
0x06, 0x0B, 0x07, 0xD2, 0x83, 0x08, 0xD7, 0xF4
};
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
}
{
/* Test vector 5 */
const unsigned char pk[32] = {
0xEE, 0xFD, 0xEA, 0x4C, 0xDB, 0x67, 0x77, 0x50,
0xA4, 0x20, 0xFE, 0xE8, 0x07, 0xEA, 0xCF, 0x21,
0xEB, 0x98, 0x98, 0xAE, 0x79, 0xB9, 0x76, 0x87,
0x66, 0xE4, 0xFA, 0xA0, 0x4A, 0x2D, 0x4A, 0x34
};
secp256k1_xonly_pubkey pk_parsed;
/* No need to check the signature of the test vector as parsing the pubkey already fails */
CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk_parsed, pk));
}
{
/* Test vector 6 */
const unsigned char pk[32] = {
0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
};
const unsigned char msg[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig[64] = {
0xFF, 0xF9, 0x7B, 0xD5, 0x75, 0x5E, 0xEE, 0xA4,
0x20, 0x45, 0x3A, 0x14, 0x35, 0x52, 0x35, 0xD3,
0x82, 0xF6, 0x47, 0x2F, 0x85, 0x68, 0xA1, 0x8B,
0x2F, 0x05, 0x7A, 0x14, 0x60, 0x29, 0x75, 0x56,
0x3C, 0xC2, 0x79, 0x44, 0x64, 0x0A, 0xC6, 0x07,
0xCD, 0x10, 0x7A, 0xE1, 0x09, 0x23, 0xD9, 0xEF,
0x7A, 0x73, 0xC6, 0x43, 0xE1, 0x66, 0xBE, 0x5E,
0xBE, 0xAF, 0xA3, 0x4B, 0x1A, 0xC5, 0x53, 0xE2
};
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
}
{
/* Test vector 7 */
const unsigned char pk[32] = {
0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
};
const unsigned char msg[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig[64] = {
0x1F, 0xA6, 0x2E, 0x33, 0x1E, 0xDB, 0xC2, 0x1C,
0x39, 0x47, 0x92, 0xD2, 0xAB, 0x11, 0x00, 0xA7,
0xB4, 0x32, 0xB0, 0x13, 0xDF, 0x3F, 0x6F, 0xF4,
0xF9, 0x9F, 0xCB, 0x33, 0xE0, 0xE1, 0x51, 0x5F,
0x28, 0x89, 0x0B, 0x3E, 0xDB, 0x6E, 0x71, 0x89,
0xB6, 0x30, 0x44, 0x8B, 0x51, 0x5C, 0xE4, 0xF8,
0x62, 0x2A, 0x95, 0x4C, 0xFE, 0x54, 0x57, 0x35,
0xAA, 0xEA, 0x51, 0x34, 0xFC, 0xCD, 0xB2, 0xBD
};
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
}
{
/* Test vector 8 */
const unsigned char pk[32] = {
0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
};
const unsigned char msg[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig[64] = {
0x6C, 0xFF, 0x5C, 0x3B, 0xA8, 0x6C, 0x69, 0xEA,
0x4B, 0x73, 0x76, 0xF3, 0x1A, 0x9B, 0xCB, 0x4F,
0x74, 0xC1, 0x97, 0x60, 0x89, 0xB2, 0xD9, 0x96,
0x3D, 0xA2, 0xE5, 0x54, 0x3E, 0x17, 0x77, 0x69,
0x96, 0x17, 0x64, 0xB3, 0xAA, 0x9B, 0x2F, 0xFC,
0xB6, 0xEF, 0x94, 0x7B, 0x68, 0x87, 0xA2, 0x26,
0xE8, 0xD7, 0xC9, 0x3E, 0x00, 0xC5, 0xED, 0x0C,
0x18, 0x34, 0xFF, 0x0D, 0x0C, 0x2E, 0x6D, 0xA6
};
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
}
{
/* Test vector 9 */
const unsigned char pk[32] = {
0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
};
const unsigned char msg[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x12, 0x3D, 0xDA, 0x83, 0x28, 0xAF, 0x9C, 0x23,
0xA9, 0x4C, 0x1F, 0xEE, 0xCF, 0xD1, 0x23, 0xBA,
0x4F, 0xB7, 0x34, 0x76, 0xF0, 0xD5, 0x94, 0xDC,
0xB6, 0x5C, 0x64, 0x25, 0xBD, 0x18, 0x60, 0x51
};
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
}
{
/* Test vector 10 */
const unsigned char pk[32] = {
0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
};
const unsigned char msg[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x76, 0x15, 0xFB, 0xAF, 0x5A, 0xE2, 0x88, 0x64,
0x01, 0x3C, 0x09, 0x97, 0x42, 0xDE, 0xAD, 0xB4,
0xDB, 0xA8, 0x7F, 0x11, 0xAC, 0x67, 0x54, 0xF9,
0x37, 0x80, 0xD5, 0xA1, 0x83, 0x7C, 0xF1, 0x97
};
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
}
{
/* Test vector 11 */
const unsigned char pk[32] = {
0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
};
const unsigned char msg[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig[64] = {
0x4A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A,
0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB,
0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7,
0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D,
0x69, 0xE8, 0x9B, 0x4C, 0x55, 0x64, 0xD0, 0x03,
0x49, 0x10, 0x6B, 0x84, 0x97, 0x78, 0x5D, 0xD7,
0xD1, 0xD7, 0x13, 0xA8, 0xAE, 0x82, 0xB3, 0x2F,
0xA7, 0x9D, 0x5F, 0x7F, 0xC4, 0x07, 0xD3, 0x9B
};
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
}
{
/* Test vector 12 */
const unsigned char pk[32] = {
0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
};
const unsigned char msg[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig[64] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F,
0x69, 0xE8, 0x9B, 0x4C, 0x55, 0x64, 0xD0, 0x03,
0x49, 0x10, 0x6B, 0x84, 0x97, 0x78, 0x5D, 0xD7,
0xD1, 0xD7, 0x13, 0xA8, 0xAE, 0x82, 0xB3, 0x2F,
0xA7, 0x9D, 0x5F, 0x7F, 0xC4, 0x07, 0xD3, 0x9B
};
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
}
{
/* Test vector 13 */
const unsigned char pk[32] = {
0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F,
0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE,
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
};
const unsigned char msg[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig[64] = {
0x6C, 0xFF, 0x5C, 0x3B, 0xA8, 0x6C, 0x69, 0xEA,
0x4B, 0x73, 0x76, 0xF3, 0x1A, 0x9B, 0xCB, 0x4F,
0x74, 0xC1, 0x97, 0x60, 0x89, 0xB2, 0xD9, 0x96,
0x3D, 0xA2, 0xE5, 0x54, 0x3E, 0x17, 0x77, 0x69,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41
};
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
}
{
/* Test vector 14 */
const unsigned char pk[32] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30
};
secp256k1_xonly_pubkey pk_parsed;
/* No need to check the signature of the test vector as parsing the pubkey already fails */
CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk_parsed, pk));
}
}
/* Nonce function that returns constant 0 */
static int nonce_function_failing(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo16, void *data) {
(void) msg32;
(void) key32;
(void) xonly_pk32;
(void) algo16;
(void) data;
(void) nonce32;
return 0;
}
/* Nonce function that sets nonce to 0 */
static int nonce_function_0(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo16, void *data) {
(void) msg32;
(void) key32;
(void) xonly_pk32;
(void) algo16;
(void) data;
memset(nonce32, 0, 32);
return 1;
}
/* Nonce function that sets nonce to 0xFF...0xFF */
static int nonce_function_overflowing(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo16, void *data) {
(void) msg32;
(void) key32;
(void) xonly_pk32;
(void) algo16;
(void) data;
memset(nonce32, 0xFF, 32);
return 1;
}
void test_schnorrsig_sign(void) {
unsigned char sk[32];
secp256k1_keypair keypair;
const unsigned char msg[32] = "this is a msg for a schnorrsig..";
unsigned char sig[64];
unsigned char zeros64[64] = { 0 };
secp256k1_rand256(sk);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk));
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL) == 1);
/* Test different nonce functions */
memset(sig, 1, sizeof(sig));
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_failing, NULL) == 0);
CHECK(memcmp(sig, zeros64, sizeof(sig)) == 0);
memset(&sig, 1, sizeof(sig));
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_0, NULL) == 0);
CHECK(memcmp(sig, zeros64, sizeof(sig)) == 0);
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_overflowing, NULL) == 1);
CHECK(memcmp(sig, zeros64, sizeof(sig)) != 0);
}
#define N_SIGS 3
/* Creates N_SIGS valid signatures and verifies them with verify and
* verify_batch (TODO). Then flips some bits and checks that verification now
* fails. */
void test_schnorrsig_sign_verify(void) {
unsigned char sk[32];
unsigned char msg[N_SIGS][32];
unsigned char sig[N_SIGS][64];
size_t i;
secp256k1_keypair keypair;
secp256k1_xonly_pubkey pk;
secp256k1_scalar s;
secp256k1_rand256(sk);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk));
CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair));
for (i = 0; i < N_SIGS; i++) {
secp256k1_rand256(msg[i]);
CHECK(secp256k1_schnorrsig_sign(ctx, sig[i], msg[i], &keypair, NULL, NULL));
CHECK(secp256k1_schnorrsig_verify(ctx, sig[i], msg[i], &pk));
}
{
/* Flip a few bits in the signature and in the message and check that
* verify and verify_batch (TODO) fail */
size_t sig_idx = secp256k1_rand_int(N_SIGS);
size_t byte_idx = secp256k1_rand_int(32);
unsigned char xorbyte = secp256k1_rand_int(254)+1;
sig[sig_idx][byte_idx] ^= xorbyte;
CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
sig[sig_idx][byte_idx] ^= xorbyte;
byte_idx = secp256k1_rand_int(32);
sig[sig_idx][32+byte_idx] ^= xorbyte;
CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
sig[sig_idx][32+byte_idx] ^= xorbyte;
byte_idx = secp256k1_rand_int(32);
msg[sig_idx][byte_idx] ^= xorbyte;
CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
msg[sig_idx][byte_idx] ^= xorbyte;
/* Check that above bitflips have been reversed correctly */
CHECK(secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
}
/* Test overflowing s */
CHECK(secp256k1_schnorrsig_sign(ctx, sig[0], msg[0], &keypair, NULL, NULL));
CHECK(secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], &pk));
memset(&sig[0][32], 0xFF, 32);
CHECK(!secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], &pk));
/* Test negative s */
CHECK(secp256k1_schnorrsig_sign(ctx, sig[0], msg[0], &keypair, NULL, NULL));
CHECK(secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], &pk));
secp256k1_scalar_set_b32(&s, &sig[0][32], NULL);
secp256k1_scalar_negate(&s, &s);
secp256k1_scalar_get_b32(&sig[0][32], &s);
CHECK(!secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], &pk));
}
#undef N_SIGS
void test_schnorrsig_taproot(void) {
unsigned char sk[32];
secp256k1_keypair keypair;
secp256k1_xonly_pubkey internal_pk;
unsigned char internal_pk_bytes[32];
secp256k1_xonly_pubkey output_pk;
unsigned char output_pk_bytes[32];
unsigned char tweak[32];
int pk_parity;
unsigned char msg[32];
unsigned char sig[64];
/* Create output key */
secp256k1_rand256(sk);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1);
/* In actual taproot the tweak would be hash of internal_pk */
CHECK(secp256k1_xonly_pubkey_serialize(ctx, tweak, &internal_pk) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1);
CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk_bytes, &output_pk) == 1);
/* Key spend */
secp256k1_rand256(msg);
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL) == 1);
/* Verify key spend */
CHECK(secp256k1_xonly_pubkey_parse(ctx, &output_pk, output_pk_bytes) == 1);
CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, &output_pk) == 1);
/* Script spend */
CHECK(secp256k1_xonly_pubkey_serialize(ctx, internal_pk_bytes, &internal_pk) == 1);
/* Verify script spend */
CHECK(secp256k1_xonly_pubkey_parse(ctx, &internal_pk, internal_pk_bytes) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk_bytes, pk_parity, &internal_pk, tweak) == 1);
}
void run_schnorrsig_tests(void) {
int i;
run_nonce_function_bip340_tests();
test_schnorrsig_api();
test_schnorrsig_sha256_tagged();
test_schnorrsig_bip_vectors();
for (i = 0; i < count; i++) {
test_schnorrsig_sign();
test_schnorrsig_sign_verify();
}
test_schnorrsig_taproot();
}
#endif

View File

@ -231,7 +231,7 @@ void secp256k1_scratch_space_destroy(const secp256k1_context *ctx, secp256k1_scr
* of the software. This is setup for use with valgrind but could be substituted with
* the appropriate instrumentation for other analysis tools.
*/
static SECP256K1_INLINE void secp256k1_declassify(const secp256k1_context* ctx, void *p, size_t len) {
static SECP256K1_INLINE void secp256k1_declassify(const secp256k1_context* ctx, const void *p, size_t len) {
#if defined(VALGRIND)
if (EXPECT(ctx->declassify,0)) VALGRIND_MAKE_MEM_DEFINED(p, len);
#else
@ -553,10 +553,21 @@ int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char
return ret;
}
int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
static int secp256k1_ec_pubkey_create_helper(const secp256k1_ecmult_gen_context *ecmult_gen_ctx, secp256k1_scalar *seckey_scalar, secp256k1_ge *p, const unsigned char *seckey) {
secp256k1_gej pj;
int ret;
ret = secp256k1_scalar_set_b32_seckey(seckey_scalar, seckey);
secp256k1_scalar_cmov(seckey_scalar, &secp256k1_scalar_one, !ret);
secp256k1_ecmult_gen(ecmult_gen_ctx, &pj, seckey_scalar);
secp256k1_ge_set_gej(p, &pj);
return ret;
}
int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
secp256k1_ge p;
secp256k1_scalar sec;
secp256k1_scalar seckey_scalar;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
@ -564,15 +575,11 @@ int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *p
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey != NULL);
ret = secp256k1_scalar_set_b32_seckey(&sec, seckey);
secp256k1_scalar_cmov(&sec, &secp256k1_scalar_one, !ret);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
secp256k1_ge_set_gej(&p, &pj);
ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey);
secp256k1_pubkey_save(pubkey, &p);
memczero(pubkey, sizeof(*pubkey), !ret);
secp256k1_scalar_clear(&sec);
secp256k1_scalar_clear(&seckey_scalar);
return ret;
}
@ -610,24 +617,31 @@ int secp256k1_ec_pubkey_negate(const secp256k1_context* ctx, secp256k1_pubkey *p
return ret;
}
int secp256k1_ec_seckey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
static int secp256k1_ec_seckey_tweak_add_helper(secp256k1_scalar *sec, const unsigned char *tweak) {
secp256k1_scalar term;
int overflow = 0;
int ret = 0;
secp256k1_scalar_set_b32(&term, tweak, &overflow);
ret = (!overflow) & secp256k1_eckey_privkey_tweak_add(sec, &term);
secp256k1_scalar_clear(&term);
return ret;
}
int secp256k1_ec_seckey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
secp256k1_scalar sec;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&term, tweak, &overflow);
ret = secp256k1_scalar_set_b32_seckey(&sec, seckey);
ret &= (!overflow) & secp256k1_eckey_privkey_tweak_add(&sec, &term);
ret &= secp256k1_ec_seckey_tweak_add_helper(&sec, tweak);
secp256k1_scalar_cmov(&sec, &secp256k1_scalar_zero, !ret);
secp256k1_scalar_get_b32(seckey, &sec);
secp256k1_scalar_clear(&sec);
secp256k1_scalar_clear(&term);
return ret;
}
@ -635,25 +649,26 @@ int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *
return secp256k1_ec_seckey_tweak_add(ctx, seckey, tweak);
}
static int secp256k1_ec_pubkey_tweak_add_helper(const secp256k1_ecmult_context* ecmult_ctx, secp256k1_ge *p, const unsigned char *tweak) {
secp256k1_scalar term;
int overflow = 0;
secp256k1_scalar_set_b32(&term, tweak, &overflow);
return !overflow && secp256k1_eckey_pubkey_tweak_add(ecmult_ctx, p, &term);
}
int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
secp256k1_ge p;
secp256k1_scalar term;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(pubkey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&term, tweak, &overflow);
ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
ret = secp256k1_pubkey_load(ctx, &p, pubkey);
memset(pubkey, 0, sizeof(*pubkey));
ret = ret && secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &p, tweak);
if (ret) {
if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) {
secp256k1_pubkey_save(pubkey, &p);
} else {
ret = 0;
}
secp256k1_pubkey_save(pubkey, &p);
}
return ret;
@ -746,3 +761,11 @@ int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *
#ifdef ENABLE_MODULE_RECOVERY
# include "modules/recovery/main_impl.h"
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
# include "modules/extrakeys/main_impl.h"
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
# include "modules/schnorrsig/main_impl.h"
#endif

View File

@ -35,4 +35,7 @@ static void secp256k1_rand256_test(unsigned char *b32);
/** Generate pseudorandom bytes with long sequences of zero and one bits. */
static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len);
/** Flip a single random bit in a byte array */
static void secp256k1_rand_flip(unsigned char *b, size_t len);
#endif /* SECP256K1_TESTRAND_H */

View File

@ -107,4 +107,8 @@ static void secp256k1_rand256_test(unsigned char *b32) {
secp256k1_rand_bytes_test(b32, 32);
}
static void secp256k1_rand_flip(unsigned char *b, size_t len) {
b[secp256k1_rand_int(len)] ^= (1 << secp256k1_rand_int(8));
}
#endif /* SECP256K1_TESTRAND_IMPL_H */

View File

@ -5352,6 +5352,14 @@ void run_ecdsa_openssl(void) {
# include "modules/recovery/tests_impl.h"
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
# include "modules/extrakeys/tests_impl.h"
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
# include "modules/schnorrsig/tests_impl.h"
#endif
void run_memczero_test(void) {
unsigned char buf1[6] = {1, 2, 3, 4, 5, 6};
unsigned char buf2[sizeof(buf1)];
@ -5658,6 +5666,14 @@ int main(int argc, char **argv) {
run_recovery_tests();
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
run_extrakeys_tests();
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
run_schnorrsig_tests();
#endif
/* util tests */
run_memczero_test();

View File

@ -17,6 +17,14 @@
# include "include/secp256k1_recovery.h"
#endif
#if ENABLE_MODULE_EXTRAKEYS
# include "include/secp256k1_extrakeys.h"
#endif
#if ENABLE_MODULE_SCHNORRSIG
#include "include/secp256k1_schnorrsig.h"
#endif
int main(void) {
secp256k1_context* ctx;
secp256k1_ecdsa_signature signature;
@ -33,6 +41,9 @@ int main(void) {
secp256k1_ecdsa_recoverable_signature recoverable_signature;
int recid;
#endif
#if ENABLE_MODULE_EXTRAKEYS
secp256k1_keypair keypair;
#endif
if (!RUNNING_ON_VALGRIND) {
fprintf(stderr, "This test can only usefully be run inside valgrind.\n");
@ -50,7 +61,9 @@ int main(void) {
msg[i] = i + 1;
}
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_DECLASSIFY);
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN
| SECP256K1_CONTEXT_VERIFY
| SECP256K1_CONTEXT_DECLASSIFY);
/* Test keygen. */
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
@ -115,6 +128,30 @@ int main(void) {
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret);
/* Test keypair_create and keypair_xonly_tweak_add. */
#if ENABLE_MODULE_EXTRAKEYS
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_keypair_create(ctx, &keypair, key);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
/* The tweak is not treated as a secret in keypair_tweak_add */
VALGRIND_MAKE_MEM_DEFINED(msg, 32);
ret = secp256k1_keypair_xonly_tweak_add(ctx, &keypair, msg);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
#if ENABLE_MODULE_SCHNORRSIG
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_keypair_create(ctx, &keypair, key);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
ret = secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
secp256k1_context_destroy(ctx);
return 0;
}