Add a secp256k1_ecdsa_signature_t type

This commit is contained in:
Pieter Wuille 2015-07-26 16:00:55 +02:00
parent 23cfa914d2
commit 74a2acdb8a
7 changed files with 353 additions and 259 deletions

View File

@ -123,22 +123,99 @@ int secp256k1_ec_pubkey_serialize(
int compressed
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Data type to hold a parsed ECDSA signature, optionally supporting pubkey
* recovery.
This data type should be considered opaque to the user, and only created
through API functions. It is not guaranteed to be compatible between
different implementations. If you need to convert to a format suitable
for storage or transmission, use secp256k1_ecdsa_signature_serialize_* and
secp256k1_ecdsa_signature_parse_* functions. */
typedef struct {
unsigned char data[65];
} secp256k1_ecdsa_signature_t;
/** Parse a DER ECDSA signature.
* Returns: 1 when the signature could be parsed, 0 otherwise.
* In: ctx: a secp256k1 context object
* input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
* Out: sig: a pointer to a signature object
*
* Note that this function also supports some violations of DER.
*
* The resulting signature object will not support pubkey recovery.
*/
int secp256k1_ecdsa_signature_parse_der(
const secp256k1_context_t* ctx,
secp256k1_ecdsa_signature_t* sig,
const unsigned char *input,
int inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse a compact ECDSA signature (64 bytes + recovery id).
* Returns: 1 when the signature could be parsed, 0 otherwise
* In: ctx: a secp256k1 context object
* input64: a pointer to a 64-byte compact signature
* recid: the recovery id (0, 1, 2 or 3, or -1 for unknown)
* Out: sig: a pointer to a signature object
*
* If recid is not -1, the resulting signature object will support pubkey
* recovery.
*/
int secp256k1_ecdsa_signature_parse_compact(
const secp256k1_context_t* ctx,
secp256k1_ecdsa_signature_t* sig,
const unsigned char *input64,
int recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in DER format.
* Returns: 1 if enough space was available to serialize, 0 otherwise
* In: ctx: a secp256k1 context object
* sig: a pointer to an initialized signature object
* Out: output: a pointer to an array to store the DER serialization
* In/Out: outputlen: a pointer to a length integer. Initially, this integer
* should be set to the length of output. After the call
* it will be set to the length of the serialization (even
* if 0 was returned).
*/
int secp256k1_ecdsa_signature_serialize_der(
const secp256k1_context_t* ctx,
unsigned char *output,
int *outputlen,
const secp256k1_ecdsa_signature_t* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
* Returns: 1
* In: ctx: a secp256k1 context object
* sig: a pointer to an initialized signature object (cannot be NULL)
* Out: output64: a pointer to a 64-byte array of the compact signature (cannot be NULL)
* recid: a pointer to an integer to hold the recovery id (can be NULL).
*
* If recid is not NULL, the signature must support pubkey recovery.
*/
int secp256k1_ecdsa_signature_serialize_compact(
const secp256k1_context_t* ctx,
unsigned char *output64,
int *recid,
const secp256k1_ecdsa_signature_t* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Verify an ECDSA signature.
* Returns: 1: correct signature
* 0: incorrect or unparseable signature
* In: ctx: a secp256k1 context object, initialized for verification.
* msg32: the 32-byte message hash being verified (cannot be NULL)
* sig: the signature being verified (cannot be NULL)
* siglen: the length of the signature
* pubkey: pointer to an initialized public key to verify with (cannot be NULL)
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
const secp256k1_context_t* ctx,
const unsigned char *msg32,
const unsigned char *sig,
int siglen,
const secp256k1_ecdsa_signature_t *sig,
const secp256k1_pubkey_t *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5);
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** A pointer to a function to deterministically generate a nonce.
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
@ -171,16 +248,15 @@ extern const secp256k1_nonce_function_t secp256k1_nonce_function_default;
/** Create an ECDSA signature.
* Returns: 1: signature created
* 0: the nonce generation function failed, the private key was invalid, or there is not
* enough space in the signature (as indicated by siglen).
* 0: the nonce generation function failed, or the private key was invalid.
* In: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In/Out: siglen: pointer to an int with the length of sig, which will be updated
* to contain the actual signature length (<=72).
*
* The resulting signature will support pubkey recovery.
*
* The sig always has an s value in the lower half of the range (From 0x1
* to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
@ -211,50 +287,25 @@ extern const secp256k1_nonce_function_t secp256k1_nonce_function_default;
int secp256k1_ecdsa_sign(
const secp256k1_context_t* ctx,
const unsigned char *msg32,
unsigned char *sig,
int *siglen,
secp256k1_ecdsa_signature_t *sig,
const unsigned char *seckey,
secp256k1_nonce_function_t noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Create a compact ECDSA signature (64 byte + recovery id).
* Returns: 1: signature created
* 0: the nonce generation function failed, or the secret key was invalid.
* In: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
* Out: sig: pointer to a 64-byte array where the signature will be placed (cannot be NULL)
* In case 0 is returned, the returned signature length will be zero.
* recid: pointer to an int, which will be updated to contain the recovery id (can be NULL)
*/
int secp256k1_ecdsa_sign_compact(
const secp256k1_context_t* ctx,
const unsigned char *msg32,
unsigned char *sig64,
const unsigned char *seckey,
secp256k1_nonce_function_t noncefp,
const void *ndata,
int *recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an ECDSA public key from a compact signature.
/** Recover an ECDSA public key from a signature.
* Returns: 1: public key successfully recovered (which guarantees a correct signature).
* 0: otherwise.
* In: ctx: pointer to a context object, initialized for verification (cannot be NULL)
* msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
* sig64: signature as 64 byte array (cannot be NULL)
* recid: the recovery id (0-3, as returned by ecdsa_sign_compact)
* sig64: pointer to initialized signature that supports pubkey recovery (cannot be NULL)
* Out: pubkey: pointer to the recoved public key (cannot be NULL)
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover_compact(
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
const secp256k1_context_t* ctx,
const unsigned char *msg32,
const unsigned char *sig64,
secp256k1_pubkey_t *pubkey,
int recid
const secp256k1_ecdsa_signature_t *sig,
secp256k1_pubkey_t *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify an ECDSA secret key.

View File

@ -23,7 +23,9 @@ void bench_recover(void* arg) {
for (i = 0; i < 20000; i++) {
int j;
int pubkeylen = 33;
CHECK(secp256k1_ecdsa_recover_compact(data->ctx, data->msg, data->sig, &pubkey, i % 2));
secp256k1_ecdsa_signature_t sig;
CHECK(secp256k1_ecdsa_signature_parse_compact(data->ctx, &sig, data->sig, i % 2));
CHECK(secp256k1_ecdsa_recover(data->ctx, data->msg, &sig, &pubkey));
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pubkeyc, &pubkeylen, &pubkey, 1));
for (j = 0; j < 32; j++) {
data->sig[j + 32] = data->msg[j]; /* Move former message to S. */

View File

@ -30,7 +30,9 @@ static void bench_sign(void* arg) {
for (i = 0; i < 20000; i++) {
int j;
int recid = 0;
CHECK(secp256k1_ecdsa_sign_compact(data->ctx, data->msg, sig, data->key, NULL, NULL, &recid));
secp256k1_ecdsa_signature_t signature;
CHECK(secp256k1_ecdsa_sign(data->ctx, data->msg, &signature, data->key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_compact(data->ctx, sig, &recid, &signature));
for (j = 0; j < 32; j++) {
data->msg[j] = sig[j]; /* Move former R to message. */
data->key[j] = sig[j + 32]; /* Move former S to key. */

View File

@ -27,11 +27,13 @@ static void benchmark_verify(void* arg) {
for (i = 0; i < 20000; i++) {
secp256k1_pubkey_t pubkey;
secp256k1_ecdsa_signature_t sig;
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1);
CHECK(secp256k1_ecdsa_verify(data->ctx, data->msg, data->sig, data->siglen, &pubkey) == (i == 0));
CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1);
CHECK(secp256k1_ecdsa_verify(data->ctx, data->msg, &sig, &pubkey) == (i == 0));
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
@ -41,6 +43,7 @@ static void benchmark_verify(void* arg) {
int main(void) {
int i;
secp256k1_pubkey_t pubkey;
secp256k1_ecdsa_signature_t sig;
benchmark_verify_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
@ -48,7 +51,8 @@ int main(void) {
for (i = 0; i < 32; i++) data.msg[i] = 1 + i;
for (i = 0; i < 32; i++) data.key[i] = 33 + i;
data.siglen = 72;
secp256k1_ecdsa_sign(data.ctx, data.msg, data.sig, &data.siglen, data.key, NULL, NULL);
CHECK(secp256k1_ecdsa_sign(data.ctx, data.msg, &sig, data.key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, 1) == 1);

View File

@ -118,6 +118,7 @@ static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const se
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
if (*size < 6+lenS+lenR) {
*size = 6 + lenS + lenR;
return 0;
}
*size = 6 + lenS + lenR;

View File

@ -108,11 +108,105 @@ int secp256k1_ec_pubkey_serialize(const secp256k1_context_t* ctx, unsigned char
return secp256k1_eckey_pubkey_serialize(&Q, output, outputlen, compressed);
}
int secp256k1_ecdsa_verify(const secp256k1_context_t* ctx, const unsigned char *msg32, const unsigned char *sig, int siglen, const secp256k1_pubkey_t *pubkey) {
static void secp256k1_ecdsa_signature_load(secp256k1_ecdsa_sig_t* s, int* recid, const secp256k1_ecdsa_signature_t* sig) {
if (sizeof(secp256k1_scalar_t) == 32) {
/* When the secp256k1_scalar_t type is exactly 32 byte, use its
* representation inside secp256k1_ecdsa_signature_t, as conversion is very fast.
* Note that secp256k1_ecdsa_signature_save must use the same representation. */
memcpy(&s->r, &sig->data[0], 32);
memcpy(&s->s, &sig->data[32], 32);
} else {
secp256k1_scalar_set_b32(&s->r, &sig->data[0], NULL);
secp256k1_scalar_set_b32(&s->s, &sig->data[32], NULL);
}
if (recid) {
*recid = sig->data[64];
}
}
static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature_t* sig, const secp256k1_ecdsa_sig_t* s, int recid) {
if (sizeof(secp256k1_scalar_t) == 32) {
memcpy(&sig->data[0], &s->r, 32);
memcpy(&sig->data[32], &s->s, 32);
} else {
secp256k1_scalar_get_b32(&sig->data[0], &s->r);
secp256k1_scalar_get_b32(&sig->data[32], &s->s);
}
sig->data[64] = recid;
}
int secp256k1_ecdsa_signature_parse_der(const secp256k1_context_t* ctx, secp256k1_ecdsa_signature_t* sig, const unsigned char *input, int inputlen) {
secp256k1_ecdsa_sig_t s;
(void)ctx;
DEBUG_CHECK(sig != NULL);
DEBUG_CHECK(input != NULL);
if (secp256k1_ecdsa_sig_parse(&s, input, inputlen)) {
secp256k1_ecdsa_signature_save(sig, &s, -1);
return 1;
} else {
memset(sig, 0, sizeof(*sig));
return 0;
}
}
int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context_t* ctx, secp256k1_ecdsa_signature_t* sig, const unsigned char *input64, int recid) {
secp256k1_ecdsa_sig_t s;
int ret = 1;
int overflow = 0;
(void)ctx;
DEBUG_CHECK(sig != NULL);
DEBUG_CHECK(input64 != NULL);
secp256k1_scalar_set_b32(&s.r, &input64[0], &overflow);
ret &= !overflow;
secp256k1_scalar_set_b32(&s.s, &input64[32], &overflow);
ret &= !overflow;
ret &= (recid == -1 || (recid >= 0 && recid < 4));
if (ret) {
secp256k1_ecdsa_signature_save(sig, &s, recid);
} else {
memset(sig, 0, sizeof(*sig));
}
return ret;
}
int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context_t* ctx, unsigned char *output, int *outputlen, const secp256k1_ecdsa_signature_t* sig) {
secp256k1_ecdsa_sig_t s;
(void)ctx;
DEBUG_CHECK(output != NULL);
DEBUG_CHECK(outputlen != NULL);
DEBUG_CHECK(sig != NULL);
secp256k1_ecdsa_signature_load(&s, NULL, sig);
return secp256k1_ecdsa_sig_serialize(output, outputlen, &s);
}
int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context_t* ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_signature_t* sig) {
secp256k1_ecdsa_sig_t s;
int rec;
(void)ctx;
DEBUG_CHECK(output64 != NULL);
DEBUG_CHECK(sig != NULL);
secp256k1_ecdsa_signature_load(&s, &rec, sig);
secp256k1_scalar_get_b32(&output64[0], &s.r);
secp256k1_scalar_get_b32(&output64[32], &s.s);
if (recid) {
DEBUG_CHECK(rec >= 0 && rec < 4);
*recid = rec;
}
return 1;
}
int secp256k1_ecdsa_verify(const secp256k1_context_t* ctx, const unsigned char *msg32, const secp256k1_ecdsa_signature_t *sig, const secp256k1_pubkey_t *pubkey) {
secp256k1_ge_t q;
secp256k1_ecdsa_sig_t s;
secp256k1_scalar_t m;
int ret = 0;
DEBUG_CHECK(ctx != NULL);
DEBUG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
DEBUG_CHECK(msg32 != NULL);
@ -120,16 +214,9 @@ int secp256k1_ecdsa_verify(const secp256k1_context_t* ctx, const unsigned char *
DEBUG_CHECK(pubkey != NULL);
secp256k1_scalar_set_b32(&m, msg32, NULL);
secp256k1_pubkey_load(&q, pubkey);
if (secp256k1_ecdsa_sig_parse(&s, sig, siglen)) {
if (secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &s, &q, &m)) {
/* success is 1, all other values are fail */
ret = 1;
}
}
return ret;
secp256k1_ecdsa_signature_load(&s, NULL, sig);
return secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &s, &q, &m);
}
static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) {
@ -157,9 +244,10 @@ static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *m
const secp256k1_nonce_function_t secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
const secp256k1_nonce_function_t secp256k1_nonce_function_default = nonce_function_rfc6979;
int secp256k1_ecdsa_sign(const secp256k1_context_t* ctx, const unsigned char *msg32, unsigned char *signature, int *signaturelen, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata) {
int secp256k1_ecdsa_sign(const secp256k1_context_t* ctx, const unsigned char *msg32, secp256k1_ecdsa_signature_t *signature, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata) {
secp256k1_ecdsa_sig_t sig;
secp256k1_scalar_t sec, non, msg;
int recid;
int ret = 0;
int overflow = 0;
unsigned int count = 0;
@ -167,7 +255,6 @@ int secp256k1_ecdsa_sign(const secp256k1_context_t* ctx, const unsigned char *ms
DEBUG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
DEBUG_CHECK(msg32 != NULL);
DEBUG_CHECK(signature != NULL);
DEBUG_CHECK(signaturelen != NULL);
DEBUG_CHECK(seckey != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_default;
@ -186,101 +273,45 @@ int secp256k1_ecdsa_sign(const secp256k1_context_t* ctx, const unsigned char *ms
secp256k1_scalar_set_b32(&non, nonce32, &overflow);
memset(nonce32, 0, 32);
if (!secp256k1_scalar_is_zero(&non) && !overflow) {
if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &sig, &sec, &msg, &non, NULL)) {
if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &sig, &sec, &msg, &non, &recid)) {
break;
}
}
count++;
}
if (ret) {
ret = secp256k1_ecdsa_sig_serialize(signature, signaturelen, &sig);
}
secp256k1_scalar_clear(&msg);
secp256k1_scalar_clear(&non);
secp256k1_scalar_clear(&sec);
}
if (!ret) {
*signaturelen = 0;
if (ret) {
secp256k1_ecdsa_signature_save(signature, &sig, recid);
} else {
memset(signature, 0, sizeof(*signature));
}
return ret;
}
int secp256k1_ecdsa_sign_compact(const secp256k1_context_t* ctx, const unsigned char *msg32, unsigned char *sig64, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata, int *recid) {
secp256k1_ecdsa_sig_t sig;
secp256k1_scalar_t sec, non, msg;
int ret = 0;
int overflow = 0;
unsigned int count = 0;
DEBUG_CHECK(ctx != NULL);
DEBUG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
DEBUG_CHECK(msg32 != NULL);
DEBUG_CHECK(sig64 != NULL);
DEBUG_CHECK(seckey != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_default;
}
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
/* Fail if the secret key is invalid. */
if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
secp256k1_scalar_set_b32(&msg, msg32, NULL);
while (1) {
unsigned char nonce32[32];
ret = noncefp(nonce32, msg32, seckey, count, noncedata);
if (!ret) {
break;
}
secp256k1_scalar_set_b32(&non, nonce32, &overflow);
memset(nonce32, 0, 32);
if (!secp256k1_scalar_is_zero(&non) && !overflow) {
if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &sig, &sec, &msg, &non, recid)) {
break;
}
}
count++;
}
if (ret) {
secp256k1_scalar_get_b32(sig64, &sig.r);
secp256k1_scalar_get_b32(sig64 + 32, &sig.s);
}
secp256k1_scalar_clear(&msg);
secp256k1_scalar_clear(&non);
secp256k1_scalar_clear(&sec);
}
if (!ret) {
memset(sig64, 0, 64);
}
return ret;
}
int secp256k1_ecdsa_recover_compact(const secp256k1_context_t* ctx, const unsigned char *msg32, const unsigned char *sig64, secp256k1_pubkey_t *pubkey, int recid) {
int secp256k1_ecdsa_recover(const secp256k1_context_t* ctx, const unsigned char *msg32, const secp256k1_ecdsa_signature_t *signature, secp256k1_pubkey_t *pubkey) {
secp256k1_ge_t q;
secp256k1_ecdsa_sig_t sig;
secp256k1_scalar_t m;
int ret = 0;
int overflow = 0;
int recid;
DEBUG_CHECK(ctx != NULL);
DEBUG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
DEBUG_CHECK(msg32 != NULL);
DEBUG_CHECK(sig64 != NULL);
DEBUG_CHECK(signature != NULL);
DEBUG_CHECK(pubkey != NULL);
DEBUG_CHECK(recid >= 0 && recid <= 3);
secp256k1_scalar_set_b32(&sig.r, sig64, &overflow);
if (!overflow) {
secp256k1_scalar_set_b32(&sig.s, sig64 + 32, &overflow);
if (!overflow) {
secp256k1_scalar_set_b32(&m, msg32, NULL);
ret = secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &sig, &q, &m, recid);
if (ret) {
secp256k1_pubkey_save(pubkey, &q);
} else {
memset(pubkey, 0, sizeof(*pubkey));
}
}
secp256k1_ecdsa_signature_load(&sig, &recid, signature);
DEBUG_CHECK(recid >= 0 && recid < 4);
secp256k1_scalar_set_b32(&m, msg32, NULL);
if (secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &sig, &q, &m, recid)) {
secp256k1_pubkey_save(pubkey, &q);
return 1;
} else {
memset(pubkey, 0, sizeof(*pubkey));
return 0;
}
return ret;
}
int secp256k1_ec_seckey_verify(const secp256k1_context_t* ctx, const unsigned char *seckey) {

View File

@ -13,6 +13,7 @@
#include <time.h>
#include "include/secp256k1.h"
#include "secp256k1.c"
#include "testrand_impl.h"
@ -1570,9 +1571,9 @@ static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char
return nonce_function_rfc6979(nonce32, msg32, key32, counter - 5, data);
}
int is_empty_compact_signature(const unsigned char *sig64) {
static const unsigned char res[64] = {0};
return memcmp(sig64, res, 64) == 0;
int is_empty_signature(const secp256k1_ecdsa_signature_t *sig) {
static const unsigned char res[sizeof(secp256k1_ecdsa_signature_t)] = {0};
return memcmp(sig, res, sizeof(secp256k1_ecdsa_signature_t)) == 0;
}
void test_ecdsa_end_to_end(void) {
@ -1580,20 +1581,14 @@ void test_ecdsa_end_to_end(void) {
unsigned char privkey[32];
unsigned char message[32];
unsigned char privkey2[32];
unsigned char csignature[64];
unsigned char signature[72];
unsigned char signature2[72];
unsigned char signature3[72];
unsigned char signature4[72];
secp256k1_ecdsa_signature_t signature[5];
unsigned char sig[74];
int siglen = 74;
unsigned char pubkeyc[65];
int pubkeyclen = 65;
secp256k1_pubkey_t pubkey;
secp256k1_pubkey_t recpubkey;
unsigned char seckey[300];
int signaturelen = 72;
int signaturelen2 = 72;
int signaturelen3 = 72;
int signaturelen4 = 72;
int recid = 0;
int seckeylen = 300;
@ -1655,41 +1650,56 @@ void test_ecdsa_end_to_end(void) {
}
/* Sign. */
CHECK(secp256k1_ecdsa_sign(ctx, message, signature, &signaturelen, privkey, NULL, NULL) == 1);
CHECK(signaturelen > 0);
CHECK(secp256k1_ecdsa_sign(ctx, message, signature2, &signaturelen2, privkey, NULL, extra) == 1);
CHECK(signaturelen2 > 0);
CHECK(secp256k1_ecdsa_sign(ctx, message, &signature[0], privkey, NULL, NULL) == 1);
CHECK(secp256k1_ecdsa_sign(ctx, message, &signature[4], privkey, NULL, NULL) == 1);
CHECK(secp256k1_ecdsa_sign(ctx, message, &signature[1], privkey, NULL, extra) == 1);
extra[31] = 1;
CHECK(secp256k1_ecdsa_sign(ctx, message, signature3, &signaturelen3, privkey, NULL, extra) == 1);
CHECK(signaturelen3 > 0);
CHECK(secp256k1_ecdsa_sign(ctx, message, &signature[2], privkey, NULL, extra) == 1);
extra[31] = 0;
extra[0] = 1;
CHECK(secp256k1_ecdsa_sign(ctx, message, signature4, &signaturelen4, privkey, NULL, extra) == 1);
CHECK(signaturelen4 > 0);
CHECK((signaturelen != signaturelen2) || (memcmp(signature, signature2, signaturelen) != 0));
CHECK((signaturelen != signaturelen3) || (memcmp(signature, signature3, signaturelen) != 0));
CHECK((signaturelen3 != signaturelen2) || (memcmp(signature3, signature2, signaturelen3) != 0));
CHECK((signaturelen4 != signaturelen3) || (memcmp(signature4, signature3, signaturelen4) != 0));
CHECK((signaturelen4 != signaturelen2) || (memcmp(signature4, signature2, signaturelen4) != 0));
CHECK((signaturelen4 != signaturelen) || (memcmp(signature4, signature, signaturelen4) != 0));
CHECK(secp256k1_ecdsa_sign(ctx, message, &signature[3], privkey, NULL, extra) == 1);
CHECK(memcmp(&signature[0], &signature[4], sizeof(signature[0])) == 0);
CHECK(memcmp(&signature[0], &signature[1], sizeof(signature[0])) != 0);
CHECK(memcmp(&signature[0], &signature[2], sizeof(signature[0])) != 0);
CHECK(memcmp(&signature[0], &signature[3], sizeof(signature[0])) != 0);
CHECK(memcmp(&signature[1], &signature[2], sizeof(signature[0])) != 0);
CHECK(memcmp(&signature[1], &signature[3], sizeof(signature[0])) != 0);
CHECK(memcmp(&signature[2], &signature[3], sizeof(signature[0])) != 0);
/* Verify. */
CHECK(secp256k1_ecdsa_verify(ctx, message, signature, signaturelen, &pubkey) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, signature2, signaturelen2, &pubkey) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, signature3, signaturelen3, &pubkey) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, signature4, signaturelen4, &pubkey) == 1);
/* Destroy signature and verify again. */
signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255);
CHECK(secp256k1_ecdsa_verify(ctx, message, signature, signaturelen, &pubkey) != 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, &signature[0], &pubkey) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, &signature[1], &pubkey) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, &signature[2], &pubkey) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, &signature[3], &pubkey) == 1);
/* Compact sign. */
CHECK(secp256k1_ecdsa_sign_compact(ctx, message, csignature, privkey, NULL, NULL, &recid) == 1);
CHECK(!is_empty_compact_signature(csignature));
/* Recover. */
CHECK(secp256k1_ecdsa_recover_compact(ctx, message, csignature, &recpubkey, recid) == 1);
/* Serialize/parse DER and verify again */
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
memset(&signature[0], 0, sizeof(signature[0]));
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, &signature[0], &pubkey) == 1);
/* Serialize/destroy/parse DER and verify again. */
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1);
sig[secp256k1_rand32() % siglen] += 1 + (secp256k1_rand32() % 255);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 0 ||
secp256k1_ecdsa_verify(ctx, message, &signature[0], &pubkey) == 0);
/* Serialize/parse compact (without recovery id) and verify again. */
CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, sig, &recid, &signature[4]) == 1);
CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, sig, NULL, &signature[4]) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, &signature[4], &pubkey) == 1);
memset(&signature[4], 0, sizeof(signature[4]));
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &signature[4], sig, -1) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, &signature[4], &pubkey) == 1);
/* Parse compact (with recovery id) and recover. */
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &signature[4], sig, recid) == 1);
CHECK(secp256k1_ecdsa_recover(ctx, message, &signature[4], &recpubkey) == 1);
CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
/* Destroy signature and verify again. */
csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
CHECK(secp256k1_ecdsa_recover_compact(ctx, message, csignature, &recpubkey, recid) != 1 ||
/* Serialize/destroy/parse signature and verify again. */
CHECK(secp256k1_ecdsa_signature_serialize_compact(ctx, sig, &recid, &signature[4]) == 1);
sig[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &signature[4], sig, recid) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, message, &signature[4], &pubkey) == 0);
/* Recover again */
CHECK(secp256k1_ecdsa_recover(ctx, message, &signature[4], &recpubkey) == 0 ||
memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0);
}
@ -1806,12 +1816,17 @@ void test_ecdsa_edge_cases(void) {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
};
secp256k1_pubkey_t pubkeyb;
secp256k1_ecdsa_signature_t sig;
int recid;
CHECK(!secp256k1_ecdsa_recover_compact(ctx, msg32, sig64, &pubkey, 0));
CHECK(secp256k1_ecdsa_recover_compact(ctx, msg32, sig64, &pubkey, 1));
CHECK(!secp256k1_ecdsa_recover_compact(ctx, msg32, sig64, &pubkey, 2));
CHECK(!secp256k1_ecdsa_recover_compact(ctx, msg32, sig64, &pubkey, 3));
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sig64, 0));
CHECK(!secp256k1_ecdsa_recover(ctx, msg32, &sig, &pubkey));
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sig64, 1));
CHECK(secp256k1_ecdsa_recover(ctx, msg32, &sig, &pubkey));
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sig64, 2));
CHECK(!secp256k1_ecdsa_recover(ctx, msg32, &sig, &pubkey));
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sig64, 3));
CHECK(!secp256k1_ecdsa_recover(ctx, msg32, &sig, &pubkey));
for (recid = 0; recid < 4; recid++) {
int i;
@ -1856,33 +1871,41 @@ void test_ecdsa_edge_cases(void) {
0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E,
0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04
};
CHECK(secp256k1_ecdsa_recover_compact(ctx, msg32, sigb64, &pubkeyb, recid));
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbder, sizeof(sigbder), &pubkeyb) == 1);
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sigb64, recid) == 1);
CHECK(secp256k1_ecdsa_recover(ctx, msg32, &sig, &pubkeyb) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyb) == 1);
for (recid2 = 0; recid2 < 4; recid2++) {
secp256k1_pubkey_t pubkey2b;
CHECK(secp256k1_ecdsa_recover_compact(ctx, msg32, sigb64, &pubkey2b, recid2));
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sigb64, recid2) == 1);
CHECK(secp256k1_ecdsa_recover(ctx, msg32, &sig, &pubkey2b) == 1);
/* Verifying with (order + r,4) should always fail. */
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbderlong, sizeof(sigbderlong), &pubkey2b) != 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderlong, sizeof(sigbderlong)) == 0);
}
/* DER parsing tests. */
/* Zero length r/s. */
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigcder_zr, sizeof(sigcder_zr), &pubkeyb) != 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigcder_zs, sizeof(sigcder_zs), &pubkeyb) != 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zr, sizeof(sigcder_zr)) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder_zs, sizeof(sigcder_zs)) == 0);
/* Leading zeros. */
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbderalt1, sizeof(sigbderalt1), &pubkeyb) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbderalt2, sizeof(sigbderalt2), &pubkeyb) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbderalt3, sizeof(sigbderalt3), &pubkeyb) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbderalt4, sizeof(sigbderalt4), &pubkeyb) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt1, sizeof(sigbderalt1)) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyb) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt2, sizeof(sigbderalt2)) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyb) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyb) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyb) == 1);
sigbderalt3[4] = 1;
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbderalt3, sizeof(sigbderalt3), &pubkeyb) != 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt3, sizeof(sigbderalt3)) == 0);
sigbderalt4[7] = 1;
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbderalt4, sizeof(sigbderalt4), &pubkeyb) != 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbderalt4, sizeof(sigbderalt4)) == 0);
/* Damage signature. */
sigbder[7]++;
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbder, sizeof(sigbder), &pubkeyb) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyb) == 0);
sigbder[7]--;
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbder, 6, &pubkeyb) != 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbder, sizeof(sigbder)-1, &pubkeyb) != 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, 6) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder) - 1) == 0);
for(i = 0; i < 8; i++) {
int c;
unsigned char orig = sigbder[i];
@ -1892,7 +1915,7 @@ void test_ecdsa_edge_cases(void) {
continue;
}
sigbder[i] = c;
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigbder, sizeof(sigbder), &pubkeyb) != 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigbder, sizeof(sigbder)) == 0 || secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyb) == 0);
}
sigbder[i] = orig;
}
@ -1903,15 +1926,15 @@ void test_ecdsa_edge_cases(void) {
secp256k1_gej_t keyj;
secp256k1_ge_t key;
secp256k1_scalar_t msg;
secp256k1_ecdsa_sig_t sig;
secp256k1_scalar_set_int(&sig.s, 1);
secp256k1_scalar_negate(&sig.s, &sig.s);
secp256k1_scalar_inverse(&sig.s, &sig.s);
secp256k1_scalar_set_int(&sig.r, 1);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &keyj, &sig.r);
secp256k1_ecdsa_sig_t s;
secp256k1_scalar_set_int(&s.s, 1);
secp256k1_scalar_negate(&s.s, &s.s);
secp256k1_scalar_inverse(&s.s, &s.s);
secp256k1_scalar_set_int(&s.r, 1);
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &keyj, &s.r);
secp256k1_ge_set_gej(&key, &keyj);
msg = sig.s;
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &sig, &key, &msg) == 0);
msg = s.s;
CHECK(secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &s, &key, &msg) == 0);
}
/* Test r/s equal to zero */
@ -1929,22 +1952,30 @@ void test_ecdsa_edge_cases(void) {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
};
secp256k1_pubkey_t pubkeyc;
CHECK(secp256k1_ecdsa_recover_compact(ctx, msg32, sigc64, &pubkeyc, 0) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigcder, sizeof(sigcder), &pubkeyc) == 1);
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sigc64, 0) == 1);
CHECK(secp256k1_ecdsa_recover(ctx, msg32, &sig, &pubkeyc) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyc) == 1);
sigcder[4] = 0;
sigc64[31] = 0;
CHECK(secp256k1_ecdsa_recover_compact(ctx, msg32, sigc64, &pubkeyb, 0) == 0);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigcder, sizeof(sigcder), &pubkeyc) == 0);
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sigc64, 0) == 1);
CHECK(secp256k1_ecdsa_recover(ctx, msg32, &sig, &pubkeyb) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyc) == 0);
sigcder[4] = 1;
sigcder[7] = 0;
sigc64[31] = 1;
sigc64[63] = 0;
CHECK(secp256k1_ecdsa_recover_compact(ctx, msg32, sigc64, &pubkeyb, 0) == 0);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, sigcder, sizeof(sigcder), &pubkeyc) == 0);
CHECK(secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sigc64, 0) == 1);
CHECK(secp256k1_ecdsa_recover(ctx, msg32, &sig, &pubkeyb) == 0);
CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigcder, sizeof(sigcder)) == 1);
CHECK(secp256k1_ecdsa_verify(ctx, msg32, &sig, &pubkeyc) == 0);
}
/*Signature where s would be zero.*/
{
unsigned char signature[72];
int siglen;
const unsigned char nonce[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
@ -1969,21 +2000,15 @@ void test_ecdsa_edge_cases(void) {
0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62,
0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9,
};
unsigned char sig[72];
int siglen = 72;
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 0);
CHECK(siglen == 0);
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 0);
CHECK(siglen == 0);
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig, key, precomputed_nonce_function, nonce) == 0);
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig, key, precomputed_nonce_function, nonce2) == 0);
msg[31] = 0xaa;
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig, key, precomputed_nonce_function, nonce) == 1);
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig, key, precomputed_nonce_function, nonce2) == 1);
siglen = 72;
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 1);
CHECK(siglen > 0);
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 1);
CHECK(siglen > 0);
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 1);
siglen = 10;
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, precomputed_nonce_function, nonce) != 1);
CHECK(siglen == 0);
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, signature, &siglen, &sig) == 0);
}
/* Nonce function corner cases. */
@ -1992,63 +2017,41 @@ void test_ecdsa_edge_cases(void) {
int i;
unsigned char key[32];
unsigned char msg[32];
unsigned char sig[72];
unsigned char sig2[72];
secp256k1_ecdsa_signature_t sig2;
secp256k1_ecdsa_sig_t s[512];
int siglen = 72;
int siglen2 = 72;
int recid2;
const unsigned char *extra;
extra = t == 0 ? NULL : zero;
memset(msg, 0, 32);
msg[31] = 1;
/* High key results in signature failure. */
memset(key, 0xFF, 32);
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, NULL, extra) == 0);
CHECK(siglen == 0);
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig, key, NULL, extra) == 0);
CHECK(is_empty_signature(&sig));
/* Zero key results in signature failure. */
memset(key, 0, 32);
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, NULL, extra) == 0);
CHECK(siglen == 0);
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig, key, NULL, extra) == 0);
CHECK(is_empty_signature(&sig));
/* Nonce function failure results in signature failure. */
key[31] = 1;
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, nonce_function_test_fail, extra) == 0);
CHECK(siglen == 0);
CHECK(secp256k1_ecdsa_sign_compact(ctx, msg, sig, key, nonce_function_test_fail, extra, &recid) == 0);
CHECK(is_empty_compact_signature(sig));
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig, key, nonce_function_test_fail, extra) == 0);
CHECK(is_empty_signature(&sig));
/* The retry loop successfully makes its way to the first good value. */
siglen = 72;
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, nonce_function_test_retry, extra) == 1);
CHECK(siglen > 0);
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig2, &siglen2, key, nonce_function_rfc6979, extra) == 1);
CHECK(siglen > 0);
CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0));
CHECK(secp256k1_ecdsa_sign_compact(ctx, msg, sig, key, nonce_function_test_retry, extra, &recid) == 1);
CHECK(!is_empty_compact_signature(sig));
CHECK(secp256k1_ecdsa_sign_compact(ctx, msg, sig2, key, nonce_function_rfc6979, extra, &recid2) == 1);
CHECK(!is_empty_compact_signature(sig2));
CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0));
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig, key, nonce_function_test_retry, extra) == 1);
CHECK(!is_empty_signature(&sig));
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig2, key, nonce_function_rfc6979, extra) == 1);
CHECK(!is_empty_signature(&sig2));
CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
/* The default nonce function is determinstic. */
siglen = 72;
siglen2 = 72;
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig, &siglen, key, NULL, extra) == 1);
CHECK(siglen > 0);
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig2, &siglen2, key, NULL, extra) == 1);
CHECK(siglen2 > 0);
CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0));
CHECK(secp256k1_ecdsa_sign_compact(ctx, msg, sig, key, NULL, extra, &recid) == 1);
CHECK(!is_empty_compact_signature(sig));
CHECK(secp256k1_ecdsa_sign_compact(ctx, msg, sig2, key, NULL, extra, &recid2) == 1);
CHECK(!is_empty_compact_signature(sig));
CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0));
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig2, key, NULL, extra) == 1);
CHECK(!is_empty_signature(&sig2));
CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0);
/* The default nonce function changes output with different messages. */
for(i = 0; i < 256; i++) {
int j;
siglen2 = 72;
msg[0] = i;
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig2, &siglen2, key, NULL, extra) == 1);
CHECK(!is_empty_compact_signature(sig));
CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2));
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig2, key, NULL, extra) == 1);
CHECK(!is_empty_signature(&sig2));
secp256k1_ecdsa_signature_load(&s[i], NULL, &sig2);
for (j = 0; j < i; j++) {
CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r));
}
@ -2058,10 +2061,10 @@ void test_ecdsa_edge_cases(void) {
/* The default nonce function changes output with different keys. */
for(i = 256; i < 512; i++) {
int j;
siglen2 = 72;
key[0] = i - 256;
CHECK(secp256k1_ecdsa_sign(ctx, msg, sig2, &siglen2, key, NULL, extra) == 1);
CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2));
CHECK(secp256k1_ecdsa_sign(ctx, msg, &sig2, key, NULL, extra) == 1);
CHECK(!is_empty_signature(&sig2));
secp256k1_ecdsa_signature_load(&s[i], NULL, &sig2);
for (j = 0; j < i; j++) {
CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r));
}