mirror of
https://github.com/status-im/secp256k1.git
synced 2025-02-22 18:58:08 +00:00
Merge bitcoin-core/secp256k1#748: Add usage examples
7c9502cece9c9e8d811333f7ab5bb22f4eb01c04 Add a copy of the CC0 license to the examples (Elichai Turkel) 42e03432e6be7f0bf18c7f86130d3930bdf4038d Add usage examples to the readme (Elichai Turkel) 517644eab14ef397e1f0bc2b45f2dff8b1a473ec Optionally compile the examples in autotools, compile+run in travis (Elichai Turkel) 422a7cc86ae86496794c5014028ee249bbe0e072 Add a ecdh shared secret example (Elichai Turkel) b0cfbcc14347ff6b04ff62a0d935638840a37971 Add a Schnorr signing and verifying example (Elichai Turkel) fee7d4bf9e4ea316ea4ff3151bbe52bec1f0745c Add an ECDSA signing and verifying example (Elichai Turkel) Pull request description: ACKs for top commit: real-or-random: ACK 7c9502cece9c9e8d811333f7ab5bb22f4eb01c04 jonasnick: ACK 7c9502cece9c9e8d811333f7ab5bb22f4eb01c04 Tree-SHA512: c475cfd5b324b1e2d7126aa5bb1e7da25183b50adb7357d464c140de83d9097cb1bdc027d09aeadf167dbf9c8afd123235b0a1a742c5795089862418fafa1964
This commit is contained in:
commit
64b34979ed
@ -23,6 +23,8 @@ env:
|
||||
BENCH: yes
|
||||
SECP256K1_BENCH_ITERS: 2
|
||||
CTIMETEST: yes
|
||||
# Compile and run the tests
|
||||
EXAMPLES: yes
|
||||
|
||||
cat_logs_snippet: &CAT_LOGS
|
||||
always:
|
||||
|
5
.gitignore
vendored
5
.gitignore
vendored
@ -6,11 +6,16 @@ exhaustive_tests
|
||||
precompute_ecmult_gen
|
||||
precompute_ecmult
|
||||
valgrind_ctime_test
|
||||
ecdh_example
|
||||
ecdsa_example
|
||||
schnorr_example
|
||||
*.exe
|
||||
*.so
|
||||
*.a
|
||||
*.csv
|
||||
!.gitignore
|
||||
*.log
|
||||
*.trs
|
||||
|
||||
Makefile
|
||||
configure
|
||||
|
35
Makefile.am
35
Makefile.am
@ -63,6 +63,7 @@ noinst_HEADERS += contrib/lax_der_parsing.h
|
||||
noinst_HEADERS += contrib/lax_der_parsing.c
|
||||
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
|
||||
noinst_HEADERS += contrib/lax_der_privatekey_parsing.c
|
||||
noinst_HEADERS += examples/random.h
|
||||
|
||||
PRECOMPUTED_LIB = libsecp256k1_precomputed.la
|
||||
noinst_LTLIBRARIES = $(PRECOMPUTED_LIB)
|
||||
@ -139,6 +140,40 @@ exhaustive_tests_LDFLAGS = -static
|
||||
TESTS += exhaustive_tests
|
||||
endif
|
||||
|
||||
if USE_EXAMPLES
|
||||
noinst_PROGRAMS += ecdsa_example
|
||||
ecdsa_example_SOURCES = examples/ecdsa.c
|
||||
ecdsa_example_CPPFLAGS = -I$(top_srcdir)/include
|
||||
ecdsa_example_LDADD = libsecp256k1.la
|
||||
ecdsa_example_LDFLAGS = -static
|
||||
if BUILD_WINDOWS
|
||||
ecdsa_example_LDFLAGS += -lbcrypt
|
||||
endif
|
||||
TESTS += ecdsa_example
|
||||
if ENABLE_MODULE_ECDH
|
||||
noinst_PROGRAMS += ecdh_example
|
||||
ecdh_example_SOURCES = examples/ecdh.c
|
||||
ecdh_example_CPPFLAGS = -I$(top_srcdir)/include
|
||||
ecdh_example_LDADD = libsecp256k1.la
|
||||
ecdh_example_LDFLAGS = -static
|
||||
if BUILD_WINDOWS
|
||||
ecdh_example_LDFLAGS += -lbcrypt
|
||||
endif
|
||||
TESTS += ecdh_example
|
||||
endif
|
||||
if ENABLE_MODULE_SCHNORRSIG
|
||||
noinst_PROGRAMS += schnorr_example
|
||||
schnorr_example_SOURCES = examples/schnorr.c
|
||||
schnorr_example_CPPFLAGS = -I$(top_srcdir)/include
|
||||
schnorr_example_LDADD = libsecp256k1.la
|
||||
schnorr_example_LDFLAGS = -static
|
||||
if BUILD_WINDOWS
|
||||
schnorr_example_LDFLAGS += -lbcrypt
|
||||
endif
|
||||
TESTS += schnorr_example
|
||||
endif
|
||||
endif
|
||||
|
||||
### Precomputed tables
|
||||
EXTRA_PROGRAMS = precompute_ecmult precompute_ecmult_gen
|
||||
CLEANFILES = $(EXTRA_PROGRAMS)
|
||||
|
@ -69,6 +69,14 @@ libsecp256k1 is built using autotools:
|
||||
$ make check # run the test suite
|
||||
$ sudo make install # optional
|
||||
|
||||
Usage examples
|
||||
-----------
|
||||
Usage examples can be found in the [examples](examples) directory. To compile them you need to configure with `--enable-examples`.
|
||||
For experimental modules, you will also need `--enable-experimental` as well as a flag for each individual module, e.g. `--enable-module-ecdh`.
|
||||
* [ECDSA example](examples/ecdsa.c)
|
||||
* [Schnorr Signatures example](examples/schnorr.c)
|
||||
* [Deriving a shared secret(ECDH) example](examples/ecdh.c)
|
||||
|
||||
Test coverage
|
||||
-----------
|
||||
|
||||
|
@ -19,6 +19,7 @@ valgrind --version || true
|
||||
--with-ecmult-gen-precision="$ECMULTGENPRECISION" \
|
||||
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
|
||||
--enable-module-schnorrsig="$SCHNORRSIG" \
|
||||
--enable-examples="$EXAMPLES" \
|
||||
--with-valgrind="$WITH_VALGRIND" \
|
||||
--host="$HOST" $EXTRAFLAGS
|
||||
|
||||
|
13
configure.ac
13
configure.ac
@ -44,6 +44,8 @@ if test x"$ac_cv_prog_cc_c89" = x"no"; then
|
||||
fi
|
||||
AM_PROG_AS
|
||||
|
||||
build_windows=no
|
||||
|
||||
case $host_os in
|
||||
*darwin*)
|
||||
if test x$cross_compiling != xyes; then
|
||||
@ -67,6 +69,9 @@ case $host_os in
|
||||
fi
|
||||
fi
|
||||
;;
|
||||
cygwin*|mingw*)
|
||||
build_windows=yes
|
||||
;;
|
||||
esac
|
||||
|
||||
# Try if some desirable compiler flags are supported and append them to SECP_CFLAGS.
|
||||
@ -134,6 +139,11 @@ AC_ARG_ENABLE(exhaustive_tests,
|
||||
[use_exhaustive_tests=$enableval],
|
||||
[use_exhaustive_tests=yes])
|
||||
|
||||
AC_ARG_ENABLE(examples,
|
||||
AS_HELP_STRING([--enable-examples],[compile the examples [default=no]]),
|
||||
[use_examples=$enableval],
|
||||
[use_examples=no])
|
||||
|
||||
AC_ARG_ENABLE(module_ecdh,
|
||||
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation]),
|
||||
[enable_module_ecdh=$enableval],
|
||||
@ -392,6 +402,7 @@ AC_SUBST(SECP_CFLAGS)
|
||||
AM_CONDITIONAL([ENABLE_COVERAGE], [test x"$enable_coverage" = x"yes"])
|
||||
AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
|
||||
AM_CONDITIONAL([USE_EXHAUSTIVE_TESTS], [test x"$use_exhaustive_tests" != x"no"])
|
||||
AM_CONDITIONAL([USE_EXAMPLES], [test x"$use_examples" != x"no"])
|
||||
AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
|
||||
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
|
||||
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
|
||||
@ -399,6 +410,7 @@ AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"
|
||||
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
|
||||
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"])
|
||||
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
|
||||
AM_CONDITIONAL([BUILD_WINDOWS], [test "$build_windows" = "yes"])
|
||||
AC_SUBST(LIB_VERSION_CURRENT, _LIB_VERSION_CURRENT)
|
||||
AC_SUBST(LIB_VERSION_REVISION, _LIB_VERSION_REVISION)
|
||||
AC_SUBST(LIB_VERSION_AGE, _LIB_VERSION_AGE)
|
||||
@ -416,6 +428,7 @@ echo " with external callbacks = $use_external_default_callbacks"
|
||||
echo " with benchmarks = $use_benchmark"
|
||||
echo " with tests = $use_tests"
|
||||
echo " with coverage = $enable_coverage"
|
||||
echo " with examples = $use_examples"
|
||||
echo " module ecdh = $enable_module_ecdh"
|
||||
echo " module recovery = $enable_module_recovery"
|
||||
echo " module extrakeys = $enable_module_extrakeys"
|
||||
|
121
examples/EXAMPLES_COPYING
Normal file
121
examples/EXAMPLES_COPYING
Normal file
@ -0,0 +1,121 @@
|
||||
Creative Commons Legal Code
|
||||
|
||||
CC0 1.0 Universal
|
||||
|
||||
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
|
||||
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
|
||||
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
|
||||
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
|
||||
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
|
||||
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
|
||||
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
|
||||
HEREUNDER.
|
||||
|
||||
Statement of Purpose
|
||||
|
||||
The laws of most jurisdictions throughout the world automatically confer
|
||||
exclusive Copyright and Related Rights (defined below) upon the creator
|
||||
and subsequent owner(s) (each and all, an "owner") of an original work of
|
||||
authorship and/or a database (each, a "Work").
|
||||
|
||||
Certain owners wish to permanently relinquish those rights to a Work for
|
||||
the purpose of contributing to a commons of creative, cultural and
|
||||
scientific works ("Commons") that the public can reliably and without fear
|
||||
of later claims of infringement build upon, modify, incorporate in other
|
||||
works, reuse and redistribute as freely as possible in any form whatsoever
|
||||
and for any purposes, including without limitation commercial purposes.
|
||||
These owners may contribute to the Commons to promote the ideal of a free
|
||||
culture and the further production of creative, cultural and scientific
|
||||
works, or to gain reputation or greater distribution for their Work in
|
||||
part through the use and efforts of others.
|
||||
|
||||
For these and/or other purposes and motivations, and without any
|
||||
expectation of additional consideration or compensation, the person
|
||||
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
|
||||
is an owner of Copyright and Related Rights in the Work, voluntarily
|
||||
elects to apply CC0 to the Work and publicly distribute the Work under its
|
||||
terms, with knowledge of his or her Copyright and Related Rights in the
|
||||
Work and the meaning and intended legal effect of CC0 on those rights.
|
||||
|
||||
1. Copyright and Related Rights. A Work made available under CC0 may be
|
||||
protected by copyright and related or neighboring rights ("Copyright and
|
||||
Related Rights"). Copyright and Related Rights include, but are not
|
||||
limited to, the following:
|
||||
|
||||
i. the right to reproduce, adapt, distribute, perform, display,
|
||||
communicate, and translate a Work;
|
||||
ii. moral rights retained by the original author(s) and/or performer(s);
|
||||
iii. publicity and privacy rights pertaining to a person's image or
|
||||
likeness depicted in a Work;
|
||||
iv. rights protecting against unfair competition in regards to a Work,
|
||||
subject to the limitations in paragraph 4(a), below;
|
||||
v. rights protecting the extraction, dissemination, use and reuse of data
|
||||
in a Work;
|
||||
vi. database rights (such as those arising under Directive 96/9/EC of the
|
||||
European Parliament and of the Council of 11 March 1996 on the legal
|
||||
protection of databases, and under any national implementation
|
||||
thereof, including any amended or successor version of such
|
||||
directive); and
|
||||
vii. other similar, equivalent or corresponding rights throughout the
|
||||
world based on applicable law or treaty, and any national
|
||||
implementations thereof.
|
||||
|
||||
2. Waiver. To the greatest extent permitted by, but not in contravention
|
||||
of, applicable law, Affirmer hereby overtly, fully, permanently,
|
||||
irrevocably and unconditionally waives, abandons, and surrenders all of
|
||||
Affirmer's Copyright and Related Rights and associated claims and causes
|
||||
of action, whether now known or unknown (including existing as well as
|
||||
future claims and causes of action), in the Work (i) in all territories
|
||||
worldwide, (ii) for the maximum duration provided by applicable law or
|
||||
treaty (including future time extensions), (iii) in any current or future
|
||||
medium and for any number of copies, and (iv) for any purpose whatsoever,
|
||||
including without limitation commercial, advertising or promotional
|
||||
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
|
||||
member of the public at large and to the detriment of Affirmer's heirs and
|
||||
successors, fully intending that such Waiver shall not be subject to
|
||||
revocation, rescission, cancellation, termination, or any other legal or
|
||||
equitable action to disrupt the quiet enjoyment of the Work by the public
|
||||
as contemplated by Affirmer's express Statement of Purpose.
|
||||
|
||||
3. Public License Fallback. Should any part of the Waiver for any reason
|
||||
be judged legally invalid or ineffective under applicable law, then the
|
||||
Waiver shall be preserved to the maximum extent permitted taking into
|
||||
account Affirmer's express Statement of Purpose. In addition, to the
|
||||
extent the Waiver is so judged Affirmer hereby grants to each affected
|
||||
person a royalty-free, non transferable, non sublicensable, non exclusive,
|
||||
irrevocable and unconditional license to exercise Affirmer's Copyright and
|
||||
Related Rights in the Work (i) in all territories worldwide, (ii) for the
|
||||
maximum duration provided by applicable law or treaty (including future
|
||||
time extensions), (iii) in any current or future medium and for any number
|
||||
of copies, and (iv) for any purpose whatsoever, including without
|
||||
limitation commercial, advertising or promotional purposes (the
|
||||
"License"). The License shall be deemed effective as of the date CC0 was
|
||||
applied by Affirmer to the Work. Should any part of the License for any
|
||||
reason be judged legally invalid or ineffective under applicable law, such
|
||||
partial invalidity or ineffectiveness shall not invalidate the remainder
|
||||
of the License, and in such case Affirmer hereby affirms that he or she
|
||||
will not (i) exercise any of his or her remaining Copyright and Related
|
||||
Rights in the Work or (ii) assert any associated claims and causes of
|
||||
action with respect to the Work, in either case contrary to Affirmer's
|
||||
express Statement of Purpose.
|
||||
|
||||
4. Limitations and Disclaimers.
|
||||
|
||||
a. No trademark or patent rights held by Affirmer are waived, abandoned,
|
||||
surrendered, licensed or otherwise affected by this document.
|
||||
b. Affirmer offers the Work as-is and makes no representations or
|
||||
warranties of any kind concerning the Work, express, implied,
|
||||
statutory or otherwise, including without limitation warranties of
|
||||
title, merchantability, fitness for a particular purpose, non
|
||||
infringement, or the absence of latent or other defects, accuracy, or
|
||||
the present or absence of errors, whether or not discoverable, all to
|
||||
the greatest extent permissible under applicable law.
|
||||
c. Affirmer disclaims responsibility for clearing rights of other persons
|
||||
that may apply to the Work or any use thereof, including without
|
||||
limitation any person's Copyright and Related Rights in the Work.
|
||||
Further, Affirmer disclaims responsibility for obtaining any necessary
|
||||
consents, permissions or other rights required for any use of the
|
||||
Work.
|
||||
d. Affirmer understands and acknowledges that Creative Commons is not a
|
||||
party to this document and has no duty or obligation with respect to
|
||||
this CC0 or use of the Work.
|
127
examples/ecdh.c
Normal file
127
examples/ecdh.c
Normal file
@ -0,0 +1,127 @@
|
||||
/*************************************************************************
|
||||
* Written in 2020-2022 by Elichai Turkel *
|
||||
* To the extent possible under law, the author(s) have dedicated all *
|
||||
* copyright and related and neighboring rights to the software in this *
|
||||
* file to the public domain worldwide. This software is distributed *
|
||||
* without any warranty. For the CC0 Public Domain Dedication, see *
|
||||
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
||||
*************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <secp256k1.h>
|
||||
#include <secp256k1_ecdh.h>
|
||||
|
||||
#include "random.h"
|
||||
|
||||
|
||||
int main(void) {
|
||||
unsigned char seckey1[32];
|
||||
unsigned char seckey2[32];
|
||||
unsigned char compressed_pubkey1[33];
|
||||
unsigned char compressed_pubkey2[33];
|
||||
unsigned char shared_secret1[32];
|
||||
unsigned char shared_secret2[32];
|
||||
unsigned char randomize[32];
|
||||
int return_val;
|
||||
size_t len;
|
||||
secp256k1_pubkey pubkey1;
|
||||
secp256k1_pubkey pubkey2;
|
||||
|
||||
/* The specification in secp256k1.h states that `secp256k1_ec_pubkey_create`
|
||||
* needs a context object initialized for signing, which is why we create
|
||||
* a context with the SECP256K1_CONTEXT_SIGN flag.
|
||||
* (The docs for `secp256k1_ecdh` don't require any special context, just
|
||||
* some initialized context) */
|
||||
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
||||
if (!fill_random(randomize, sizeof(randomize))) {
|
||||
printf("Failed to generate randomness\n");
|
||||
return 1;
|
||||
}
|
||||
/* Randomizing the context is recommended to protect against side-channel
|
||||
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
|
||||
* information about it. This should never fail. */
|
||||
return_val = secp256k1_context_randomize(ctx, randomize);
|
||||
assert(return_val);
|
||||
|
||||
/*** Key Generation ***/
|
||||
|
||||
/* If the secret key is zero or out of range (bigger than secp256k1's
|
||||
* order), we try to sample a new key. Note that the probability of this
|
||||
* happening is negligible. */
|
||||
while (1) {
|
||||
if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
|
||||
printf("Failed to generate randomness\n");
|
||||
return 1;
|
||||
}
|
||||
if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Public key creation using a valid context with a verified secret key should never fail */
|
||||
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey1, seckey1);
|
||||
assert(return_val);
|
||||
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey2, seckey2);
|
||||
assert(return_val);
|
||||
|
||||
/* Serialize pubkey1 in a compressed form (33 bytes), should always return 1 */
|
||||
len = sizeof(compressed_pubkey1);
|
||||
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey1, &len, &pubkey1, SECP256K1_EC_COMPRESSED);
|
||||
assert(return_val);
|
||||
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
|
||||
assert(len == sizeof(compressed_pubkey1));
|
||||
|
||||
/* Serialize pubkey2 in a compressed form (33 bytes) */
|
||||
len = sizeof(compressed_pubkey2);
|
||||
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey2, &len, &pubkey2, SECP256K1_EC_COMPRESSED);
|
||||
assert(return_val);
|
||||
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
|
||||
assert(len == sizeof(compressed_pubkey2));
|
||||
|
||||
/*** Creating the shared secret ***/
|
||||
|
||||
/* Perform ECDH with seckey1 and pubkey2. Should never fail with a verified
|
||||
* seckey and valid pubkey */
|
||||
return_val = secp256k1_ecdh(ctx, shared_secret1, &pubkey2, seckey1, NULL, NULL);
|
||||
assert(return_val);
|
||||
|
||||
/* Perform ECDH with seckey2 and pubkey1. Should never fail with a verified
|
||||
* seckey and valid pubkey */
|
||||
return_val = secp256k1_ecdh(ctx, shared_secret2, &pubkey1, seckey2, NULL, NULL);
|
||||
assert(return_val);
|
||||
|
||||
/* Both parties should end up with the same shared secret */
|
||||
return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
|
||||
assert(return_val == 0);
|
||||
|
||||
printf("Secret Key1: ");
|
||||
print_hex(seckey1, sizeof(seckey1));
|
||||
printf("Compressed Pubkey1: ");
|
||||
print_hex(compressed_pubkey1, sizeof(compressed_pubkey1));
|
||||
printf("\nSecret Key2: ");
|
||||
print_hex(seckey2, sizeof(seckey2));
|
||||
printf("Compressed Pubkey2: ");
|
||||
print_hex(compressed_pubkey2, sizeof(compressed_pubkey2));
|
||||
printf("\nShared Secret: ");
|
||||
print_hex(shared_secret1, sizeof(shared_secret1));
|
||||
|
||||
/* This will clear everything from the context and free the memory */
|
||||
secp256k1_context_destroy(ctx);
|
||||
|
||||
/* It's best practice to try to clear secrets from memory after using them.
|
||||
* This is done because some bugs can allow an attacker to leak memory, for
|
||||
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
||||
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
||||
*
|
||||
* TODO: Prevent these writes from being optimized out, as any good compiler
|
||||
* will remove any writes that aren't used. */
|
||||
memset(seckey1, 0, sizeof(seckey1));
|
||||
memset(seckey2, 0, sizeof(seckey2));
|
||||
memset(shared_secret1, 0, sizeof(shared_secret1));
|
||||
memset(shared_secret2, 0, sizeof(shared_secret2));
|
||||
|
||||
return 0;
|
||||
}
|
137
examples/ecdsa.c
Normal file
137
examples/ecdsa.c
Normal file
@ -0,0 +1,137 @@
|
||||
/*************************************************************************
|
||||
* Written in 2020-2022 by Elichai Turkel *
|
||||
* To the extent possible under law, the author(s) have dedicated all *
|
||||
* copyright and related and neighboring rights to the software in this *
|
||||
* file to the public domain worldwide. This software is distributed *
|
||||
* without any warranty. For the CC0 Public Domain Dedication, see *
|
||||
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
||||
*************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <secp256k1.h>
|
||||
|
||||
#include "random.h"
|
||||
|
||||
|
||||
|
||||
int main(void) {
|
||||
/* Instead of signing the message directly, we must sign a 32-byte hash.
|
||||
* Here the message is "Hello, world!" and the hash function was SHA-256.
|
||||
* An actual implementation should just call SHA-256, but this example
|
||||
* hardcodes the output to avoid depending on an additional library.
|
||||
* See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */
|
||||
unsigned char msg_hash[32] = {
|
||||
0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4,
|
||||
0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64,
|
||||
0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34,
|
||||
0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3,
|
||||
};
|
||||
unsigned char seckey[32];
|
||||
unsigned char randomize[32];
|
||||
unsigned char compressed_pubkey[33];
|
||||
unsigned char serialized_signature[64];
|
||||
size_t len;
|
||||
int is_signature_valid;
|
||||
int return_val;
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
/* The specification in secp256k1.h states that `secp256k1_ec_pubkey_create` needs
|
||||
* a context object initialized for signing and `secp256k1_ecdsa_verify` needs
|
||||
* a context initialized for verification, which is why we create a context
|
||||
* for both signing and verification with the SECP256K1_CONTEXT_SIGN and
|
||||
* SECP256K1_CONTEXT_VERIFY flags. */
|
||||
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
||||
if (!fill_random(randomize, sizeof(randomize))) {
|
||||
printf("Failed to generate randomness\n");
|
||||
return 1;
|
||||
}
|
||||
/* Randomizing the context is recommended to protect against side-channel
|
||||
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
|
||||
* information about it. This should never fail. */
|
||||
return_val = secp256k1_context_randomize(ctx, randomize);
|
||||
assert(return_val);
|
||||
|
||||
/*** Key Generation ***/
|
||||
|
||||
/* If the secret key is zero or out of range (bigger than secp256k1's
|
||||
* order), we try to sample a new key. Note that the probability of this
|
||||
* happening is negligible. */
|
||||
while (1) {
|
||||
if (!fill_random(seckey, sizeof(seckey))) {
|
||||
printf("Failed to generate randomness\n");
|
||||
return 1;
|
||||
}
|
||||
if (secp256k1_ec_seckey_verify(ctx, seckey)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Public key creation using a valid context with a verified secret key should never fail */
|
||||
return_val = secp256k1_ec_pubkey_create(ctx, &pubkey, seckey);
|
||||
assert(return_val);
|
||||
|
||||
/* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */
|
||||
len = sizeof(compressed_pubkey);
|
||||
return_val = secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED);
|
||||
assert(return_val);
|
||||
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
|
||||
assert(len == sizeof(compressed_pubkey));
|
||||
|
||||
/*** Signing ***/
|
||||
|
||||
/* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a
|
||||
* custom nonce function, passing `NULL` will use the RFC-6979 safe default.
|
||||
* Signing with a valid context, verified secret key
|
||||
* and the default nonce function should never fail. */
|
||||
return_val = secp256k1_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL);
|
||||
assert(return_val);
|
||||
|
||||
/* Serialize the signature in a compact form. Should always return 1
|
||||
* according to the documentation in secp256k1.h. */
|
||||
return_val = secp256k1_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig);
|
||||
assert(return_val);
|
||||
|
||||
|
||||
/*** Verification ***/
|
||||
|
||||
/* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */
|
||||
if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) {
|
||||
printf("Failed parsing the signature\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */
|
||||
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) {
|
||||
printf("Failed parsing the public key\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
|
||||
is_signature_valid = secp256k1_ecdsa_verify(ctx, &sig, msg_hash, &pubkey);
|
||||
|
||||
printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
|
||||
printf("Secret Key: ");
|
||||
print_hex(seckey, sizeof(seckey));
|
||||
printf("Public Key: ");
|
||||
print_hex(compressed_pubkey, sizeof(compressed_pubkey));
|
||||
printf("Signature: ");
|
||||
print_hex(serialized_signature, sizeof(serialized_signature));
|
||||
|
||||
|
||||
/* This will clear everything from the context and free the memory */
|
||||
secp256k1_context_destroy(ctx);
|
||||
|
||||
/* It's best practice to try to clear secrets from memory after using them.
|
||||
* This is done because some bugs can allow an attacker to leak memory, for
|
||||
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
||||
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
||||
*
|
||||
* TODO: Prevent these writes from being optimized out, as any good compiler
|
||||
* will remove any writes that aren't used. */
|
||||
memset(seckey, 0, sizeof(seckey));
|
||||
|
||||
return 0;
|
||||
}
|
73
examples/random.h
Normal file
73
examples/random.h
Normal file
@ -0,0 +1,73 @@
|
||||
/*************************************************************************
|
||||
* Copyright (c) 2020-2021 Elichai Turkel *
|
||||
* Distributed under the CC0 software license, see the accompanying file *
|
||||
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
||||
*************************************************************************/
|
||||
|
||||
/*
|
||||
* This file is an attempt at collecting best practice methods for obtaining randomness with different operating systems.
|
||||
* It may be out-of-date. Consult the documentation of the operating system before considering to use the methods below.
|
||||
*
|
||||
* Platform randomness sources:
|
||||
* Linux -> `getrandom(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. http://man7.org/linux/man-pages/man2/getrandom.2.html, https://linux.die.net/man/4/urandom
|
||||
* macOS -> `getentropy(2)`(`sys/random.h`), if not available `/dev/urandom` should be used. https://www.unix.com/man-page/mojave/2/getentropy, https://opensource.apple.com/source/xnu/xnu-517.12.7/bsd/man/man4/random.4.auto.html
|
||||
* FreeBSD -> `getrandom(2)`(`sys/random.h`), if not available `kern.arandom` should be used. https://www.freebsd.org/cgi/man.cgi?query=getrandom, https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4
|
||||
* OpenBSD -> `getentropy(2)`(`unistd.h`), if not available `/dev/urandom` should be used. https://man.openbsd.org/getentropy, https://man.openbsd.org/urandom
|
||||
* Windows -> `BCryptGenRandom`(`bcrypt.h`). https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
|
||||
*/
|
||||
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#include <ntstatus.h>
|
||||
#include <bcrypt.h>
|
||||
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__)
|
||||
#include <sys/random.h>
|
||||
#elif defined(__OpenBSD__)
|
||||
#include <unistd.h>
|
||||
#else
|
||||
#error "Couldn't identify the OS"
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include <limits.h>
|
||||
#include <stdio.h>
|
||||
|
||||
|
||||
/* Returns 1 on success, and 0 on failure. */
|
||||
static int fill_random(unsigned char* data, size_t size) {
|
||||
#if defined(_WIN32)
|
||||
NTSTATUS res = BCryptGenRandom(NULL, data, size, BCRYPT_USE_SYSTEM_PREFERRED_RNG);
|
||||
if (res != STATUS_SUCCESS || size > ULONG_MAX) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
#elif defined(__linux__) || defined(__FreeBSD__)
|
||||
/* If `getrandom(2)` is not available you should fallback to /dev/urandom */
|
||||
ssize_t res = getrandom(data, size, 0);
|
||||
if (res < 0 || (size_t)res != size ) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
#elif defined(__APPLE__) || defined(__OpenBSD__)
|
||||
/* If `getentropy(2)` is not available you should fallback to either
|
||||
* `SecRandomCopyBytes` or /dev/urandom */
|
||||
int res = getentropy(data, size);
|
||||
if (res == 0) {
|
||||
return 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void print_hex(unsigned char* data, size_t size) {
|
||||
size_t i;
|
||||
printf("0x");
|
||||
for (i = 0; i < size; i++) {
|
||||
printf("%02x", data[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
136
examples/schnorr.c
Normal file
136
examples/schnorr.c
Normal file
@ -0,0 +1,136 @@
|
||||
/*************************************************************************
|
||||
* Written in 2020-2022 by Elichai Turkel *
|
||||
* To the extent possible under law, the author(s) have dedicated all *
|
||||
* copyright and related and neighboring rights to the software in this *
|
||||
* file to the public domain worldwide. This software is distributed *
|
||||
* without any warranty. For the CC0 Public Domain Dedication, see *
|
||||
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
||||
*************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <secp256k1.h>
|
||||
#include <secp256k1_extrakeys.h>
|
||||
#include <secp256k1_schnorrsig.h>
|
||||
|
||||
#include "random.h"
|
||||
|
||||
int main(void) {
|
||||
/* Instead of signing the message directly, we must sign a 32-byte hash.
|
||||
* Here the message is "Hello, world!" and the hash function was SHA-256.
|
||||
* An actual implementation should just call SHA-256, but this example
|
||||
* hardcodes the output to avoid depending on an additional library. */
|
||||
unsigned char msg_hash[32] = {
|
||||
0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4,
|
||||
0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64,
|
||||
0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34,
|
||||
0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3,
|
||||
};
|
||||
unsigned char seckey[32];
|
||||
unsigned char randomize[32];
|
||||
unsigned char auxiliary_rand[32];
|
||||
unsigned char serialized_pubkey[32];
|
||||
unsigned char signature[64];
|
||||
int is_signature_valid;
|
||||
int return_val;
|
||||
secp256k1_xonly_pubkey pubkey;
|
||||
secp256k1_keypair keypair;
|
||||
/* The specification in secp256k1_extrakeys.h states that `secp256k1_keypair_create`
|
||||
* needs a context object initialized for signing. And in secp256k1_schnorrsig.h
|
||||
* they state that `secp256k1_schnorrsig_verify` needs a context initialized for
|
||||
* verification, which is why we create a context for both signing and verification
|
||||
* with the SECP256K1_CONTEXT_SIGN and SECP256K1_CONTEXT_VERIFY flags. */
|
||||
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
||||
if (!fill_random(randomize, sizeof(randomize))) {
|
||||
printf("Failed to generate randomness\n");
|
||||
return 1;
|
||||
}
|
||||
/* Randomizing the context is recommended to protect against side-channel
|
||||
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
|
||||
* information about it. This should never fail. */
|
||||
return_val = secp256k1_context_randomize(ctx, randomize);
|
||||
assert(return_val);
|
||||
|
||||
/*** Key Generation ***/
|
||||
|
||||
/* If the secret key is zero or out of range (bigger than secp256k1's
|
||||
* order), we try to sample a new key. Note that the probability of this
|
||||
* happening is negligible. */
|
||||
while (1) {
|
||||
if (!fill_random(seckey, sizeof(seckey))) {
|
||||
printf("Failed to generate randomness\n");
|
||||
return 1;
|
||||
}
|
||||
/* Try to create a keypair with a valid context, it should only fail if
|
||||
* the secret key is zero or out of range. */
|
||||
if (secp256k1_keypair_create(ctx, &keypair, seckey)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Extract the X-only public key from the keypair. We pass NULL for
|
||||
* `pk_parity` as the parity isn't needed for signing or verification.
|
||||
* `secp256k1_keypair_xonly_pub` supports returning the parity for
|
||||
* other use cases such as tests or verifying Taproot tweaks.
|
||||
* This should never fail with a valid context and public key. */
|
||||
return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair);
|
||||
assert(return_val);
|
||||
|
||||
/* Serialize the public key. Should always return 1 for a valid public key. */
|
||||
return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey);
|
||||
assert(return_val);
|
||||
|
||||
/*** Signing ***/
|
||||
|
||||
/* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */
|
||||
if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) {
|
||||
printf("Failed to generate randomness\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Generate a Schnorr signature `noncefp` and `ndata` allows you to pass a
|
||||
* custom nonce function, passing `NULL` will use the BIP-340 safe default.
|
||||
* BIP-340 recommends passing 32 bytes of randomness to the nonce function to
|
||||
* improve security against side-channel attacks. Signing with a valid
|
||||
* context, verified keypair and the default nonce function should never
|
||||
* fail. */
|
||||
return_val = secp256k1_schnorrsig_sign(ctx, signature, msg_hash, &keypair, auxiliary_rand);
|
||||
assert(return_val);
|
||||
|
||||
/*** Verification ***/
|
||||
|
||||
/* Deserialize the public key. This will return 0 if the public key can't
|
||||
* be parsed correctly */
|
||||
if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) {
|
||||
printf("Failed parsing the public key\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
|
||||
is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey);
|
||||
|
||||
|
||||
printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
|
||||
printf("Secret Key: ");
|
||||
print_hex(seckey, sizeof(seckey));
|
||||
printf("Public Key: ");
|
||||
print_hex(serialized_pubkey, sizeof(serialized_pubkey));
|
||||
printf("Signature: ");
|
||||
print_hex(signature, sizeof(signature));
|
||||
|
||||
/* This will clear everything from the context and free the memory */
|
||||
secp256k1_context_destroy(ctx);
|
||||
|
||||
/* It's best practice to try to clear secrets from memory after using them.
|
||||
* This is done because some bugs can allow an attacker to leak memory, for
|
||||
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
||||
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
||||
*
|
||||
* TODO: Prevent these writes from being optimized out, as any good compiler
|
||||
* will remove any writes that aren't used. */
|
||||
memset(seckey, 0, sizeof(seckey));
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user