mirror of
https://github.com/status-im/secp256k1.git
synced 2025-02-24 11:48:18 +00:00
ecmult_impl: eliminate scratch memory used when generating context
This commit is contained in:
parent
7f7a2ed3a8
commit
47045270fa
@ -137,24 +137,107 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p
|
||||
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
|
||||
secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
|
||||
secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
|
||||
secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
|
||||
static void secp256k1_ecmult_odd_multiples_table_storage_var(const int n, secp256k1_ge_storage *pre, const secp256k1_gej *a) {
|
||||
secp256k1_gej d;
|
||||
secp256k1_ge a_ge, d_ge, p_ge;
|
||||
secp256k1_ge last_ge;
|
||||
secp256k1_gej pj;
|
||||
secp256k1_fe zi;
|
||||
secp256k1_fe zr;
|
||||
secp256k1_fe dx_over_dz_squared;
|
||||
int i;
|
||||
|
||||
/* Compute the odd multiples in Jacobian form. */
|
||||
secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
|
||||
/* Convert them in batch to affine coordinates. */
|
||||
secp256k1_ge_set_table_gej_var(prea, prej, zr, n);
|
||||
/* Convert them to compact storage form. */
|
||||
for (i = 0; i < n; i++) {
|
||||
secp256k1_ge_to_storage(&pre[i], &prea[i]);
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
|
||||
secp256k1_gej_double_var(&d, a, NULL);
|
||||
|
||||
/* First, we perform all the additions in an isomorphic curve obtained by multiplying
|
||||
* all `z` coordinates by 1/`d.z`. In these coordinates `d` is affine so we can use
|
||||
* `secp256k1_gej_add_ge_var` to perform the additions. For each addition, we store
|
||||
* the resulting y-coordinate and the z-ratio, since we only have enough memory to
|
||||
* store two field elements. These are sufficient to efficiently undo the isomorphism
|
||||
* and recompute all the `x`s.
|
||||
*/
|
||||
d_ge.x = d.x;
|
||||
d_ge.y = d.y;
|
||||
d_ge.infinity = 0;
|
||||
|
||||
secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
|
||||
pj.x = a_ge.x;
|
||||
pj.y = a_ge.y;
|
||||
pj.z = a->z;
|
||||
pj.infinity = 0;
|
||||
|
||||
zr = d.z;
|
||||
secp256k1_fe_normalize_var(&zr);
|
||||
secp256k1_fe_to_storage(&pre[0].x, &zr);
|
||||
secp256k1_fe_normalize_var(&pj.y);
|
||||
secp256k1_fe_to_storage(&pre[0].y, &pj.y);
|
||||
|
||||
for (i = 1; i < n; i++) {
|
||||
secp256k1_gej_add_ge_var(&pj, &pj, &d_ge, &zr);
|
||||
secp256k1_fe_normalize_var(&zr);
|
||||
secp256k1_fe_to_storage(&pre[i].x, &zr);
|
||||
secp256k1_fe_normalize_var(&pj.y);
|
||||
secp256k1_fe_to_storage(&pre[i].y, &pj.y);
|
||||
}
|
||||
|
||||
free(prea);
|
||||
free(prej);
|
||||
free(zr);
|
||||
/* Map `pj` back to our curve by multiplying its z-coordinate by `d.z`. */
|
||||
secp256k1_fe_mul(&pj.z, &pj.z, &d.z);
|
||||
/* Directly set `pre[n - 1]` to `pj`, saving the inverted z-coordinate so
|
||||
* that we can combine it with the saved z-ratios to compute the other zs
|
||||
* without any more inversions. */
|
||||
secp256k1_fe_inv_var(&zi, &pj.z);
|
||||
secp256k1_ge_set_gej_zinv(&p_ge, &pj, &zi);
|
||||
secp256k1_ge_from_storage(&last_ge, &pre[n - 1]);
|
||||
secp256k1_ge_to_storage(&pre[n - 1], &p_ge);
|
||||
|
||||
/* Compute the actual x-coordinate of D, which will be needed below. */
|
||||
secp256k1_fe_inv_var(&d.z, &d.z);
|
||||
secp256k1_fe_sqr(&dx_over_dz_squared, &d.z);
|
||||
secp256k1_fe_mul(&dx_over_dz_squared, &dx_over_dz_squared, &d.x);
|
||||
|
||||
i = n - 1;
|
||||
while (i > 0) {
|
||||
secp256k1_fe zi2, zi3;
|
||||
i--;
|
||||
/* For the remaining points, we extract the z-ratio from the stored
|
||||
* x-coordinate, compute its z^-1 from that, and compute the full
|
||||
* point from that. The z-ratio for the next iteration is stored in
|
||||
* the x-coordinate at the end of the loop. */
|
||||
secp256k1_fe_mul(&zi, &zi, &last_ge.x);
|
||||
secp256k1_fe_sqr(&zi2, &zi);
|
||||
secp256k1_fe_mul(&zi3, &zi2, &zi);
|
||||
/* To compute the actual x-coordinate, we use the stored z ratio and
|
||||
* y-coordinate, which we obtained from `secp256k1_gej_add_ge_var`
|
||||
* in the loop above, as well as the inverse of the square of its
|
||||
* z-coordinate. We store the latter in the `zi2` variable, which is
|
||||
* computed iteratively starting from the overall Z inverse then
|
||||
* multiplying by each z-ratio in turn.
|
||||
*
|
||||
* Denoting the z-ratio as `rzr` (though the actual variable binding
|
||||
* is `last_ge.x`), we observe that it equal to `h` from the inside
|
||||
* of the above `gej_add_ge_var` call. This satisfies
|
||||
*
|
||||
* rzr = d_x * z^2 - x
|
||||
*
|
||||
* where `d_x` is the x coordinate of `D` and `(x, z)` are Jacobian
|
||||
* coordinates of our desired point.
|
||||
*
|
||||
* Rearranging and dividing by `z^2` to convert to affine, we get
|
||||
*
|
||||
* x = d_x - rzr / z^2
|
||||
* = d_x - rzr * zi2
|
||||
*/
|
||||
secp256k1_fe_mul(&p_ge.x, &last_ge.x, &zi2);
|
||||
secp256k1_fe_negate(&p_ge.x, &p_ge.x, 1);
|
||||
secp256k1_fe_add(&p_ge.x, &dx_over_dz_squared);
|
||||
/* y is stored_y/z^3, as we expect */
|
||||
secp256k1_ge_from_storage(&last_ge, &pre[i]);
|
||||
secp256k1_fe_mul(&p_ge.y, &last_ge.y, &zi3);
|
||||
/* Store */
|
||||
secp256k1_ge_to_storage(&pre[i], &p_ge);
|
||||
}
|
||||
}
|
||||
|
||||
/** The following two macro retrieves a particular odd multiple from a table
|
||||
@ -202,7 +285,7 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const
|
||||
ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
|
||||
|
||||
/* precompute the tables with odd multiples */
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
{
|
||||
@ -216,7 +299,7 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const
|
||||
for (i = 0; i < 128; i++) {
|
||||
secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
|
||||
}
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@ -67,11 +67,6 @@ static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
|
||||
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
|
||||
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);
|
||||
|
||||
/** Set a batch of group elements equal to the inputs given in jacobian
|
||||
* coordinates (with known z-ratios). zr must contain the known z-ratios such
|
||||
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
|
||||
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len);
|
||||
|
||||
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
|
||||
* the same global z "denominator". zr must contain the known z-ratios such
|
||||
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y
|
||||
|
@ -167,24 +167,6 @@ static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) {
|
||||
size_t i = len - 1;
|
||||
secp256k1_fe zi;
|
||||
|
||||
if (len > 0) {
|
||||
/* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
|
||||
secp256k1_fe_inv(&zi, &a[i].z);
|
||||
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
|
||||
|
||||
/* Work out way backwards, using the z-ratios to scale the x/y values. */
|
||||
while (i > 0) {
|
||||
secp256k1_fe_mul(&zi, &zi, &zr[i]);
|
||||
i--;
|
||||
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
|
||||
size_t i = len - 1;
|
||||
secp256k1_fe zs;
|
||||
|
@ -2095,7 +2095,6 @@ void test_ge(void) {
|
||||
/* Test batch gej -> ge conversion with and without known z ratios. */
|
||||
{
|
||||
secp256k1_fe *zr = (secp256k1_fe *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_fe));
|
||||
secp256k1_ge *ge_set_table = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge));
|
||||
secp256k1_ge *ge_set_all = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge));
|
||||
for (i = 0; i < 4 * runs + 1; i++) {
|
||||
/* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */
|
||||
@ -2103,16 +2102,13 @@ void test_ge(void) {
|
||||
secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z);
|
||||
}
|
||||
}
|
||||
secp256k1_ge_set_table_gej_var(ge_set_table, gej, zr, 4 * runs + 1);
|
||||
secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1);
|
||||
for (i = 0; i < 4 * runs + 1; i++) {
|
||||
secp256k1_fe s;
|
||||
random_fe_non_zero(&s);
|
||||
secp256k1_gej_rescale(&gej[i], &s);
|
||||
ge_equals_gej(&ge_set_table[i], &gej[i]);
|
||||
ge_equals_gej(&ge_set_all[i], &gej[i]);
|
||||
}
|
||||
free(ge_set_table);
|
||||
free(ge_set_all);
|
||||
free(zr);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user