Get rid of hex format and some binary conversions

This commit is contained in:
Pieter Wuille 2015-02-23 04:17:37 -08:00
parent 0bada0e2a9
commit 443cd4b8ee
5 changed files with 63 additions and 144 deletions

View File

@ -104,12 +104,6 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
* outputs must not overlap in memory. */ * outputs must not overlap in memory. */
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a); static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Convert a field element to a 64-character hexadecimal string. */
static void secp256k1_fe_get_hex(char *r64, const secp256k1_fe_t *a);
/** Convert a 64-character hexadecimal string to a field element. */
static int secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a64);
/** Convert a field element to the storage type. */ /** Convert a field element to the storage type. */
static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t*); static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t*);

View File

@ -21,47 +21,6 @@
#error "Please select field implementation" #error "Please select field implementation"
#endif #endif
static void secp256k1_fe_get_hex(char *r64, const secp256k1_fe_t *a) {
secp256k1_fe_t b;
int i;
unsigned char tmp[32];
b = *a;
secp256k1_fe_normalize(&b);
secp256k1_fe_get_b32(tmp, &b);
for (i=0; i<32; i++) {
/* Hex character table. */
static const char *c = "0123456789ABCDEF";
r64[2*i] = c[(tmp[i] >> 4) & 0xF];
r64[2*i+1] = c[(tmp[i]) & 0xF];
}
}
static int secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a64) {
int i;
unsigned char tmp[32];
/* Byte to hex value table. */
static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0,
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0};
for (i=0; i<32; i++) {
tmp[i] = (cvt[(unsigned char)a64[2*i]] << 4) + cvt[(unsigned char)a64[2*i+1]];
}
return secp256k1_fe_set_b32(r, tmp);
}
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
secp256k1_fe_t na; secp256k1_fe_t na;
secp256k1_fe_negate(&na, a, 1); secp256k1_fe_negate(&na, a, 1);

View File

@ -17,6 +17,9 @@ typedef struct {
int infinity; /* whether this represents the point at infinity */ int infinity; /* whether this represents the point at infinity */
} secp256k1_ge_t; } secp256k1_ge_t;
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates. */ /** A group element of the secp256k1 curve, in jacobian coordinates. */
typedef struct { typedef struct {
secp256k1_fe_t x; /* actual X: x/z^2 */ secp256k1_fe_t x; /* actual X: x/z^2 */
@ -25,11 +28,16 @@ typedef struct {
int infinity; /* whether this represents the point at infinity */ int infinity; /* whether this represents the point at infinity */
} secp256k1_gej_t; } secp256k1_gej_t;
#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
typedef struct { typedef struct {
secp256k1_fe_storage_t x; secp256k1_fe_storage_t x;
secp256k1_fe_storage_t y; secp256k1_fe_storage_t y;
} secp256k1_ge_storage_t; } secp256k1_ge_storage_t;
#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
/** Set a group element equal to the point at infinity */ /** Set a group element equal to the point at infinity */
static void secp256k1_ge_set_infinity(secp256k1_ge_t *r); static void secp256k1_ge_set_infinity(secp256k1_ge_t *r);
@ -48,9 +56,6 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a);
static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a); static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a);
/** Get a 131-character hex representation of a point. */
static void secp256k1_ge_get_hex(char *r131, const secp256k1_ge_t *a);
/** Set a group element equal to another which is given in jacobian coordinates */ /** Set a group element equal to another which is given in jacobian coordinates */
static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a); static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a);
@ -90,9 +95,6 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
guarantee, and b is allowed to be infinity. */ guarantee, and b is allowed to be infinity. */
static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
/** Get a 131-character hex representation of a point. */
static void secp256k1_gej_get_hex(char *r131, const secp256k1_gej_t *a);
#ifdef USE_ENDOMORPHISM #ifdef USE_ENDOMORPHISM
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a); static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a);

View File

@ -16,17 +16,12 @@
/** Generator for secp256k1, value 'g' defined in /** Generator for secp256k1, value 'g' defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1. * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
*/ */
static const secp256k1_ge_t secp256k1_ge_const_g = { static const secp256k1_ge_t secp256k1_ge_const_g = SECP256K1_GE_CONST(
SECP256K1_FE_CONST(
0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
),
SECP256K1_FE_CONST(
0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
), );
0
};
static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) { static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) {
r->infinity = 1; r->infinity = 1;
@ -48,14 +43,6 @@ static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
secp256k1_fe_negate(&r->y, &r->y, 1); secp256k1_fe_negate(&r->y, &r->y, 1);
} }
static void secp256k1_ge_get_hex(char *r131, const secp256k1_ge_t *a) {
r131[0] = '(';
secp256k1_fe_get_hex(r131 + 1, &a->x);
r131[65] = ',';
secp256k1_fe_get_hex(r131 + 66, &a->y);
r131[130] = ')';
}
static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) { static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) {
secp256k1_fe_t z2, z3; secp256k1_fe_t z2, z3;
r->infinity = a->infinity; r->infinity = a->infinity;
@ -407,12 +394,6 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
r->infinity = infinity; r->infinity = infinity;
} }
static void secp256k1_gej_get_hex(char *r131, const secp256k1_gej_t *a) {
secp256k1_gej_t c = *a;
secp256k1_ge_t t; secp256k1_ge_set_gej(&t, &c);
secp256k1_ge_get_hex(r131, &t);
}
static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) { static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) {
secp256k1_fe_t x, y; secp256k1_fe_t x, y;
VERIFY_CHECK(!a->infinity); VERIFY_CHECK(!a->infinity);

View File

@ -641,9 +641,8 @@ int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) { int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) {
secp256k1_fe_t x; secp256k1_fe_t x;
secp256k1_fe_t one; secp256k1_fe_t one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
secp256k1_fe_mul(&x, a, ai); secp256k1_fe_mul(&x, a, ai);
secp256k1_fe_set_int(&one, 1);
return check_fe_equal(&x, &one); return check_fe_equal(&x, &one);
} }
@ -654,7 +653,6 @@ void run_field_convert(void) {
0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40
}; };
static const char *c64 = "0001020304050607111213141516171822232425262728293334353637383940";
static const secp256k1_fe_storage_t fes = SECP256K1_FE_STORAGE_CONST( static const secp256k1_fe_storage_t fes = SECP256K1_FE_STORAGE_CONST(
0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL, 0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL 0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
@ -665,38 +663,26 @@ void run_field_convert(void) {
); );
secp256k1_fe_t fe2; secp256k1_fe_t fe2;
unsigned char b322[32]; unsigned char b322[32];
char c642[64];
secp256k1_fe_storage_t fes2; secp256k1_fe_storage_t fes2;
/* Check conversions to fe. */ /* Check conversions to fe. */
CHECK(secp256k1_fe_set_b32(&fe2, b32)); CHECK(secp256k1_fe_set_b32(&fe2, b32));
CHECK(secp256k1_fe_equal_var(&fe, &fe2)); CHECK(secp256k1_fe_equal_var(&fe, &fe2));
CHECK(secp256k1_fe_set_hex(&fe2, c64));
CHECK(secp256k1_fe_equal_var(&fe, &fe2));
secp256k1_fe_from_storage(&fe2, &fes); secp256k1_fe_from_storage(&fe2, &fes);
CHECK(secp256k1_fe_equal_var(&fe, &fe2)); CHECK(secp256k1_fe_equal_var(&fe, &fe2));
/* Check conversion from fe. */ /* Check conversion from fe. */
secp256k1_fe_get_b32(b322, &fe); secp256k1_fe_get_b32(b322, &fe);
CHECK(memcmp(b322, b32, 32) == 0); CHECK(memcmp(b322, b32, 32) == 0);
secp256k1_fe_get_hex(c642, &fe);
CHECK(memcmp(c642, c64, 64) == 0);
secp256k1_fe_to_storage(&fes2, &fe); secp256k1_fe_to_storage(&fes2, &fe);
CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0); CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0);
} }
void run_field_misc(void) { void run_field_misc(void) {
const unsigned char f32_5[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05,
};
secp256k1_fe_t x; secp256k1_fe_t x;
secp256k1_fe_t y; secp256k1_fe_t y;
secp256k1_fe_t z; secp256k1_fe_t z;
secp256k1_fe_t q; secp256k1_fe_t q;
secp256k1_fe_t fe5; secp256k1_fe_t fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5);
int i; int i;
CHECK(secp256k1_fe_set_b32(&fe5, f32_5));
for (i = 0; i < 5*count; i++) { for (i = 0; i < 5*count; i++) {
secp256k1_fe_storage_t xs, ys, zs; secp256k1_fe_storage_t xs, ys, zs;
random_fe(&x); random_fe(&x);
@ -956,7 +942,7 @@ void test_ge(void) {
/* Test adding all points together in random order equals infinity. */ /* Test adding all points together in random order equals infinity. */
{ {
secp256k1_gej_t sum; secp256k1_gej_t sum = SECP256K1_GEJ_CONST_INFINITY;
secp256k1_gej_t *gej_shuffled = malloc((4 * runs + 1) * sizeof(secp256k1_gej_t)); secp256k1_gej_t *gej_shuffled = malloc((4 * runs + 1) * sizeof(secp256k1_gej_t));
for (i = 0; i < 4 * runs + 1; i++) { for (i = 0; i < 4 * runs + 1; i++) {
gej_shuffled[i] = gej[i]; gej_shuffled[i] = gej[i];
@ -969,7 +955,6 @@ void test_ge(void) {
gej_shuffled[swap] = t; gej_shuffled[swap] = t;
} }
} }
secp256k1_gej_set_infinity(&sum);
for (i = 0; i < 4 * runs + 1; i++) { for (i = 0; i < 4 * runs + 1; i++) {
secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i]); secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i]);
} }
@ -1001,47 +986,33 @@ void run_ge(void) {
/***** ECMULT TESTS *****/ /***** ECMULT TESTS *****/
void run_ecmult_chain(void) { void run_ecmult_chain(void) {
secp256k1_gej_t a;
secp256k1_gej_t x;
secp256k1_gej_t x2;
secp256k1_fe_t ax;
secp256k1_fe_t ay;
secp256k1_scalar_t xn;
secp256k1_scalar_t gn;
secp256k1_scalar_t xf;
secp256k1_scalar_t gf;
secp256k1_scalar_t ae;
secp256k1_scalar_t ge;
int i;
/* two random initial factors xn and gn */
static const unsigned char xni[32] = {
0x84, 0xcc, 0x54, 0x52, 0xf7, 0xfd, 0xe1, 0xed,
0xb4, 0xd3, 0x8a, 0x8c, 0xe9, 0xb1, 0xb8, 0x4c,
0xce, 0xf3, 0x1f, 0x14, 0x6e, 0x56, 0x9b, 0xe9,
0x70, 0x5d, 0x35, 0x7a, 0x42, 0x98, 0x54, 0x07
};
static const unsigned char gni[32] = {
0xa1, 0xe5, 0x8d, 0x22, 0x55, 0x3d, 0xcd, 0x42,
0xb2, 0x39, 0x80, 0x62, 0x5d, 0x4c, 0x57, 0xa9,
0x6e, 0x93, 0x23, 0xd4, 0x2b, 0x31, 0x52, 0xe5,
0xca, 0x2c, 0x39, 0x90, 0xed, 0xc7, 0xc9, 0xde
};
/* two small multipliers to be applied to xn and gn in every iteration: */
static const unsigned char xfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x13,0x37};
static const unsigned char gfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x71,0x13};
char res[131];
char res2[131];
/* random starting point A (on the curve) */ /* random starting point A (on the curve) */
VERIFY_CHECK(secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004")); secp256k1_gej_t a = SECP256K1_GEJ_CONST(
VERIFY_CHECK(secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f")); 0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3,
secp256k1_gej_set_xy(&a, &ax, &ay); 0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004,
secp256k1_scalar_set_b32(&xn, xni, NULL); 0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f,
secp256k1_scalar_set_b32(&gn, gni, NULL); 0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f
secp256k1_scalar_set_b32(&xf, xfi, NULL); );
secp256k1_scalar_set_b32(&gf, gfi, NULL); /* two random initial factors xn and gn */
secp256k1_scalar_t xn = SECP256K1_SCALAR_CONST(
0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c,
0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407
);
secp256k1_scalar_t gn = SECP256K1_SCALAR_CONST(
0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9,
0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de
);
/* two small multipliers to be applied to xn and gn in every iteration: */
static const secp256k1_scalar_t xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337);
static const secp256k1_scalar_t gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113);
/* accumulators with the resulting coefficients to A and G */ /* accumulators with the resulting coefficients to A and G */
secp256k1_scalar_set_int(&ae, 1); secp256k1_scalar_t ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
secp256k1_scalar_set_int(&ge, 0); secp256k1_scalar_t ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
/* actual points */
secp256k1_gej_t x = a;
secp256k1_gej_t x2;
int i;
/* the point being computed */ /* the point being computed */
x = a; x = a;
for (i = 0; i < 200*count; i++) { for (i = 0; i < 200*count; i++) {
@ -1058,15 +1029,24 @@ void run_ecmult_chain(void) {
/* verify */ /* verify */
if (i == 19999) { if (i == 19999) {
secp256k1_gej_get_hex(res, &x); /* expected result after 19999 iterations */
CHECK(memcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)", 131) == 0); secp256k1_gej_t rp = SECP256K1_GEJ_CONST(
0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE,
0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830,
0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D,
0x3B4F566A, 0xE6580454, 0x07ED6015, 0xEE1B2A88
);
secp256k1_gej_neg(&rp, &rp);
secp256k1_gej_add_var(&rp, &rp, &x);
CHECK(secp256k1_gej_is_infinity(&rp));
} }
} }
/* redo the computation, but directly with the resulting ae and ge coefficients: */ /* redo the computation, but directly with the resulting ae and ge coefficients: */
secp256k1_ecmult(&x2, &a, &ae, &ge); secp256k1_ecmult(&x2, &a, &ae, &ge);
secp256k1_gej_get_hex(res, &x); secp256k1_gej_neg(&x2, &x2);
secp256k1_gej_get_hex(res2, &x2); secp256k1_gej_add_var(&x2, &x2, &x);
CHECK(memcmp(res, res2, 131) == 0); CHECK(secp256k1_gej_is_infinity(&x2));
} }
void test_point_times_order(const secp256k1_gej_t *point) { void test_point_times_order(const secp256k1_gej_t *point) {
@ -1094,8 +1074,11 @@ void test_point_times_order(const secp256k1_gej_t *point) {
void run_point_times_order(void) { void run_point_times_order(void) {
int i; int i;
char c[64]; secp256k1_fe_t x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2);
secp256k1_fe_t x; VERIFY_CHECK(secp256k1_fe_set_hex(&x, "0000000000000000000000000000000000000000000000000000000000000002")); static const secp256k1_fe_t xr = SECP256K1_FE_CONST(
0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C,
0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45
);
for (i = 0; i < 500; i++) { for (i = 0; i < 500; i++) {
secp256k1_ge_t p; secp256k1_ge_t p;
if (secp256k1_ge_set_xo_var(&p, &x, 1)) { if (secp256k1_ge_set_xo_var(&p, &x, 1)) {
@ -1107,8 +1090,8 @@ void run_point_times_order(void) {
} }
secp256k1_fe_sqr(&x, &x); secp256k1_fe_sqr(&x, &x);
} }
secp256k1_fe_get_hex(c, &x); secp256k1_fe_normalize_var(&x);
CHECK(memcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45", 64) == 0); CHECK(secp256k1_fe_equal_var(&x, &xr));
} }
void test_wnaf(const secp256k1_scalar_t *number, int w) { void test_wnaf(const secp256k1_scalar_t *number, int w) {