Merge #849: Convert Sage code to Python 3 (as used by Sage >= 9)
13c88efed0
Convert Sage code to Python 3 (as used by Sage >= 9) (Frédéric Chapoton) Pull request description: ACKs for top commit: jonasnick: ACK13c88efed0
Tree-SHA512: 6b8a32c35554b7e881841c17fe21323035014d25003f14e399f03ec017ea1bae1c68eee18a4d0315fc0f3b40d8252b5c8790f6c355d7d074a8ebc5e1ca832795
This commit is contained in:
commit
3a106966aa
|
@ -65,7 +65,7 @@ class fastfrac:
|
|||
return self.top in I and self.bot not in I
|
||||
|
||||
def reduce(self,assumeZero):
|
||||
zero = self.R.ideal(map(numerator, assumeZero))
|
||||
zero = self.R.ideal(list(map(numerator, assumeZero)))
|
||||
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
|
||||
|
||||
def __add__(self,other):
|
||||
|
@ -100,7 +100,7 @@ class fastfrac:
|
|||
"""Multiply something else with a fraction."""
|
||||
return self.__mul__(other)
|
||||
|
||||
def __div__(self,other):
|
||||
def __truediv__(self,other):
|
||||
"""Divide two fractions."""
|
||||
if parent(other) == ZZ:
|
||||
return fastfrac(self.R,self.top,self.bot * other)
|
||||
|
@ -108,6 +108,11 @@ class fastfrac:
|
|||
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
|
||||
return NotImplemented
|
||||
|
||||
# Compatibility wrapper for Sage versions based on Python 2
|
||||
def __div__(self,other):
|
||||
"""Divide two fractions."""
|
||||
return self.__truediv__(other)
|
||||
|
||||
def __pow__(self,other):
|
||||
"""Compute a power of a fraction."""
|
||||
if parent(other) == ZZ:
|
||||
|
@ -175,7 +180,7 @@ class constraints:
|
|||
|
||||
def conflicts(R, con):
|
||||
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
|
||||
zero = R.ideal(map(numerator, con.zero))
|
||||
zero = R.ideal(list(map(numerator, con.zero)))
|
||||
if 1 in zero:
|
||||
return True
|
||||
# First a cheap check whether any of the individual nonzero terms conflict on
|
||||
|
@ -195,7 +200,7 @@ def conflicts(R, con):
|
|||
|
||||
def get_nonzero_set(R, assume):
|
||||
"""Calculate a simple set of nonzero expressions"""
|
||||
zero = R.ideal(map(numerator, assume.zero))
|
||||
zero = R.ideal(list(map(numerator, assume.zero)))
|
||||
nonzero = set()
|
||||
for nz in map(numerator, assume.nonzero):
|
||||
for (f,n) in nz.factor():
|
||||
|
@ -208,7 +213,7 @@ def get_nonzero_set(R, assume):
|
|||
|
||||
def prove_nonzero(R, exprs, assume):
|
||||
"""Check whether an expression is provably nonzero, given assumptions"""
|
||||
zero = R.ideal(map(numerator, assume.zero))
|
||||
zero = R.ideal(list(map(numerator, assume.zero)))
|
||||
nonzero = get_nonzero_set(R, assume)
|
||||
expl = set()
|
||||
ok = True
|
||||
|
@ -250,7 +255,7 @@ def prove_zero(R, exprs, assume):
|
|||
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
|
||||
if not r:
|
||||
return (False, map(lambda x: "Possibly zero denominator: %s" % x, e))
|
||||
zero = R.ideal(map(numerator, assume.zero))
|
||||
zero = R.ideal(list(map(numerator, assume.zero)))
|
||||
nonzero = prod(x for x in assume.nonzero)
|
||||
expl = []
|
||||
for expr in exprs:
|
||||
|
@ -265,8 +270,8 @@ def describe_extra(R, assume, assumeExtra):
|
|||
"""Describe what assumptions are added, given existing assumptions"""
|
||||
zerox = assume.zero.copy()
|
||||
zerox.update(assumeExtra.zero)
|
||||
zero = R.ideal(map(numerator, assume.zero))
|
||||
zeroextra = R.ideal(map(numerator, zerox))
|
||||
zero = R.ideal(list(map(numerator, assume.zero)))
|
||||
zeroextra = R.ideal(list(map(numerator, zerox)))
|
||||
nonzero = get_nonzero_set(R, assume)
|
||||
ret = set()
|
||||
# Iterate over the extra zero expressions
|
||||
|
|
|
@ -175,24 +175,24 @@ laws_jacobian_weierstrass = {
|
|||
def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
|
||||
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
|
||||
F = Integers(p)
|
||||
print "Formula %s on Z%i:" % (name, p)
|
||||
print("Formula %s on Z%i:" % (name, p))
|
||||
points = []
|
||||
for x in xrange(0, p):
|
||||
for y in xrange(0, p):
|
||||
for x in range(0, p):
|
||||
for y in range(0, p):
|
||||
point = affinepoint(F(x), F(y))
|
||||
r, e = concrete_verify(on_weierstrass_curve(A, B, point))
|
||||
if r:
|
||||
points.append(point)
|
||||
|
||||
for za in xrange(1, p):
|
||||
for zb in xrange(1, p):
|
||||
for za in range(1, p):
|
||||
for zb in range(1, p):
|
||||
for pa in points:
|
||||
for pb in points:
|
||||
for ia in xrange(2):
|
||||
for ib in xrange(2):
|
||||
for ia in range(2):
|
||||
for ib in range(2):
|
||||
pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
|
||||
pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
|
||||
for branch in xrange(0, branches):
|
||||
for branch in range(0, branches):
|
||||
assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
|
||||
pC.X = F(pC.X)
|
||||
pC.Y = F(pC.Y)
|
||||
|
@ -206,13 +206,13 @@ def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
|
|||
r, e = concrete_verify(assumeLaw)
|
||||
if r:
|
||||
if match:
|
||||
print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity)
|
||||
print(" multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity))
|
||||
else:
|
||||
match = True
|
||||
r, e = concrete_verify(require)
|
||||
if not r:
|
||||
print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e)
|
||||
print
|
||||
print(" failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e))
|
||||
print()
|
||||
|
||||
|
||||
def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
|
||||
|
@ -242,9 +242,9 @@ def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
|
|||
for key in laws_jacobian_weierstrass:
|
||||
res[key] = []
|
||||
|
||||
print ("Formula " + name + ":")
|
||||
print("Formula " + name + ":")
|
||||
count = 0
|
||||
for branch in xrange(branches):
|
||||
for branch in range(branches):
|
||||
assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
|
||||
pC.X = lift(pC.X)
|
||||
pC.Y = lift(pC.Y)
|
||||
|
@ -255,10 +255,10 @@ def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
|
|||
res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch))
|
||||
|
||||
for key in res:
|
||||
print " %s:" % key
|
||||
print(" %s:" % key)
|
||||
val = res[key]
|
||||
for x in val:
|
||||
if x[0] is not None:
|
||||
print " branch %i: %s" % (x[1], x[0])
|
||||
print(" branch %i: %s" % (x[1], x[0]))
|
||||
|
||||
print
|
||||
print()
|
||||
|
|
Loading…
Reference in New Issue