Merge #709: Remove secret-dependant non-constant time operation in ecmult_const.
d567b779fe
Clarify comments about use of rzr on ge functions and abs function. (Gregory Maxwell)2241ae6d14
Remove secret-dependant non-constant time operation in ecmult_const. (Gregory Maxwell) Pull request description: ECMULT_CONST_TABLE_GET_GE was branching on its secret input. Also makes secp256k1_gej_double_var implemented as a wrapper on secp256k1_gej_double_nonzero instead of the other way around. This wasn't a constant time bug but it was fragile and could easily become one in the future if the double_var algorithm is changed. ACKs for top commit: real-or-random: ACKd567b779fe
I read the diff carefully and tested the code with ECDH enabled and various settings, also on valgrind sipa: ACKd567b779fe
Tree-SHA512: f00a921dcc6cc024cfb3ac1a34c1be619b96f1f17ec0ee0f3ff4ea02035ee288e55469491ed3183e2c4e5560cc068c10aafb657dff95a610706e5b9a8cd13966
This commit is contained in:
commit
227a4f2d07
|
@ -15,8 +15,10 @@
|
|||
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
|
||||
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
|
||||
int m; \
|
||||
int abs_n = (n) * (((n) > 0) * 2 - 1); \
|
||||
int idx_n = abs_n / 2; \
|
||||
/* Extract the sign-bit for a constant time absolute-value. */ \
|
||||
int mask = (n) >> (sizeof(n) * CHAR_BIT - 1); \
|
||||
int abs_n = ((n) + mask) ^ mask; \
|
||||
int idx_n = abs_n >> 1; \
|
||||
secp256k1_fe neg_y; \
|
||||
VERIFY_CHECK(((n) & 1) == 1); \
|
||||
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
|
||||
|
@ -172,6 +174,7 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
|||
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
|
||||
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -195,7 +198,7 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
|||
int n;
|
||||
int j;
|
||||
for (j = 0; j < WINDOW_A - 1; ++j) {
|
||||
secp256k1_gej_double_nonzero(r, r, NULL);
|
||||
secp256k1_gej_double_nonzero(r, r);
|
||||
}
|
||||
|
||||
n = wnaf_1[i];
|
||||
|
|
11
src/group.h
11
src/group.h
|
@ -95,14 +95,13 @@ static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
|
|||
/** Check whether a group element's y coordinate is a quadratic residue. */
|
||||
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
|
||||
|
||||
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
|
||||
* a may not be zero. Constant time. */
|
||||
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
|
||||
/** Set r equal to the double of a, a cannot be infinity. Constant time. */
|
||||
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a);
|
||||
|
||||
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */
|
||||
/** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */
|
||||
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
|
||||
|
||||
/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
|
||||
/** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
|
||||
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
|
||||
|
||||
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
|
||||
|
@ -110,7 +109,7 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
|
|||
|
||||
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
|
||||
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
|
||||
guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
|
||||
guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */
|
||||
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
|
||||
|
||||
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
|
||||
|
|
|
@ -303,7 +303,7 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
|
|||
return secp256k1_fe_equal_var(&y2, &x3);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
|
||||
static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a) {
|
||||
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
|
||||
*
|
||||
* Note that there is an implementation described at
|
||||
|
@ -312,29 +312,9 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s
|
|||
* mainly because it requires more normalizations.
|
||||
*/
|
||||
secp256k1_fe t1,t2,t3,t4;
|
||||
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
|
||||
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
|
||||
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
|
||||
*
|
||||
* Having said this, if this function receives a point on a sextic twist, e.g. by
|
||||
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
|
||||
* since -6 does have a cube root mod p. For this point, this function will not set
|
||||
* the infinity flag even though the point doubles to infinity, and the result
|
||||
* point will be gibberish (z = 0 but infinity = 0).
|
||||
*/
|
||||
r->infinity = a->infinity;
|
||||
if (r->infinity) {
|
||||
if (rzr != NULL) {
|
||||
secp256k1_fe_set_int(rzr, 1);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (rzr != NULL) {
|
||||
*rzr = a->y;
|
||||
secp256k1_fe_normalize_weak(rzr);
|
||||
secp256k1_fe_mul_int(rzr, 2);
|
||||
}
|
||||
VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
|
||||
r->infinity = 0;
|
||||
|
||||
secp256k1_fe_mul(&r->z, &a->z, &a->y);
|
||||
secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
|
||||
|
@ -358,9 +338,32 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s
|
|||
secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
|
||||
VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
|
||||
secp256k1_gej_double_var(r, a, rzr);
|
||||
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
|
||||
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
|
||||
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
|
||||
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
|
||||
*
|
||||
* Having said this, if this function receives a point on a sextic twist, e.g. by
|
||||
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
|
||||
* since -6 does have a cube root mod p. For this point, this function will not set
|
||||
* the infinity flag even though the point doubles to infinity, and the result
|
||||
* point will be gibberish (z = 0 but infinity = 0).
|
||||
*/
|
||||
if (a->infinity) {
|
||||
r->infinity = 1;
|
||||
if (rzr != NULL) {
|
||||
secp256k1_fe_set_int(rzr, 1);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (rzr != NULL) {
|
||||
*rzr = a->y;
|
||||
secp256k1_fe_normalize_weak(rzr);
|
||||
secp256k1_fe_mul_int(rzr, 2);
|
||||
}
|
||||
|
||||
secp256k1_gej_double_nonzero(r, a);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
|
||||
|
|
|
@ -142,7 +142,7 @@ void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *gr
|
|||
for (i = 0; i < order; i++) {
|
||||
secp256k1_gej tmp;
|
||||
if (i > 0) {
|
||||
secp256k1_gej_double_nonzero(&tmp, &groupj[i], NULL);
|
||||
secp256k1_gej_double_nonzero(&tmp, &groupj[i]);
|
||||
ge_equals_gej(&group[(2 * i) % order], &tmp);
|
||||
}
|
||||
secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <limits.h>
|
||||
|
||||
typedef struct {
|
||||
void (*fn)(const char *text, void* data);
|
||||
|
|
Loading…
Reference in New Issue