diff --git a/src/bench_internal.c b/src/bench_internal.c index 7289d94..82a3eb6 100644 --- a/src/bench_internal.c +++ b/src/bench_internal.c @@ -246,26 +246,6 @@ void bench_group_add_affine_var(void* arg, int iters) { } } -void bench_group_jacobi_var(void* arg, int iters) { - int i, j = 0; - bench_inv *data = (bench_inv*)arg; - - for (i = 0; i < iters; i++) { - j += secp256k1_gej_has_quad_y_var(&data->gej[0]); - /* Vary the Y and Z coordinates of the input (the X coordinate doesn't matter to - secp256k1_gej_has_quad_y_var). Note that the resulting coordinates will - generally not correspond to a point on the curve, but this is not a problem - for the code being benchmarked here. Adding and normalizing have less - overhead than EC operations (which could guarantee the point remains on the - curve). */ - secp256k1_fe_add(&data->gej[0].y, &data->fe[1]); - secp256k1_fe_add(&data->gej[0].z, &data->fe[2]); - secp256k1_fe_normalize_var(&data->gej[0].y); - secp256k1_fe_normalize_var(&data->gej[0].z); - } - CHECK(j <= iters); -} - void bench_group_to_affine_var(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; @@ -273,8 +253,10 @@ void bench_group_to_affine_var(void* arg, int iters) { for (i = 0; i < iters; ++i) { secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]); /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates. - Similar to bench_group_jacobi_var, this approach does not result in - coordinates of points on the curve. */ + Note that the resulting coordinates will generally not correspond to a point + on the curve, but this is not a problem for the code being benchmarked here. + Adding and normalizing have less overhead than EC operations (which could + guarantee the point remains on the curve). */ secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y); secp256k1_fe_add(&data->gej[0].y, &data->fe[2]); secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x); @@ -360,24 +342,6 @@ void bench_context_sign(void* arg, int iters) { } } -#ifndef USE_NUM_NONE -void bench_num_jacobi(void* arg, int iters) { - int i, j = 0; - bench_inv *data = (bench_inv*)arg; - secp256k1_num nx, na, norder; - - secp256k1_scalar_get_num(&nx, &data->scalar[0]); - secp256k1_scalar_order_get_num(&norder); - secp256k1_scalar_get_num(&na, &data->scalar[1]); - - for (i = 0; i < iters; i++) { - j += secp256k1_num_jacobi(&nx, &norder); - secp256k1_num_add(&nx, &nx, &na); - } - CHECK(j <= iters); -} -#endif - int main(int argc, char **argv) { bench_inv data; int iters = get_iters(20000); @@ -401,7 +365,6 @@ int main(int argc, char **argv) { if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10); if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10); if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10); - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, iters); if (have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters); if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters); @@ -414,8 +377,5 @@ int main(int argc, char **argv) { if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 1 + iters/1000); if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 1 + iters/100); -#ifndef USE_NUM_NONE - if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, iters*10); -#endif return 0; } diff --git a/src/field.h b/src/field.h index ee222ee..c58554b 100644 --- a/src/field.h +++ b/src/field.h @@ -104,9 +104,6 @@ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a); * itself. */ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a); -/** Checks whether a field element is a quadratic residue. */ -static int secp256k1_fe_is_quad_var(const secp256k1_fe *a); - /** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be * at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */ static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a); diff --git a/src/field_impl.h b/src/field_impl.h index 7b75e98..70e2398 100644 --- a/src/field_impl.h +++ b/src/field_impl.h @@ -136,31 +136,6 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) { return secp256k1_fe_equal(&t1, a); } -static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) { -#ifndef USE_NUM_NONE - unsigned char b[32]; - secp256k1_num n; - secp256k1_num m; - /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ - static const unsigned char prime[32] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F - }; - - secp256k1_fe c = *a; - secp256k1_fe_normalize_var(&c); - secp256k1_fe_get_b32(b, &c); - secp256k1_num_set_bin(&n, b, 32); - secp256k1_num_set_bin(&m, prime, 32); - return secp256k1_num_jacobi(&n, &m) >= 0; -#else - secp256k1_fe r; - return secp256k1_fe_sqrt(&r, a); -#endif -} - static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); #endif /* SECP256K1_FIELD_IMPL_H */ diff --git a/src/group.h b/src/group.h index 40bf961..e18c040 100644 --- a/src/group.h +++ b/src/group.h @@ -43,12 +43,6 @@ typedef struct { /** Set a group element equal to the point with given X and Y coordinates */ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y); -/** Set a group element (affine) equal to the point with the given X coordinate - * and a Y coordinate that is a quadratic residue modulo p. The return value - * is true iff a coordinate with the given X coordinate exists. - */ -static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x); - /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness * for Y. Return value indicates whether the result is valid. */ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd); @@ -96,9 +90,6 @@ static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a); /** Check whether a group element is the point at infinity. */ static int secp256k1_gej_is_infinity(const secp256k1_gej *a); -/** Check whether a group element's y coordinate is a quadratic residue. */ -static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a); - /** Set r equal to the double of a. Constant time. */ static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a); diff --git a/src/group_impl.h b/src/group_impl.h index b7094c5..1324fad 100644 --- a/src/group_impl.h +++ b/src/group_impl.h @@ -207,18 +207,14 @@ static void secp256k1_ge_clear(secp256k1_ge *r) { secp256k1_fe_clear(&r->y); } -static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) { +static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { secp256k1_fe x2, x3; r->x = *x; secp256k1_fe_sqr(&x2, x); secp256k1_fe_mul(&x3, x, &x2); r->infinity = 0; secp256k1_fe_add(&x3, &secp256k1_fe_const_b); - return secp256k1_fe_sqrt(&r->y, &x3); -} - -static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { - if (!secp256k1_ge_set_xquad(r, x)) { + if (!secp256k1_fe_sqrt(&r->y, &x3)) { return 0; } secp256k1_fe_normalize_var(&r->y); @@ -655,20 +651,6 @@ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { secp256k1_fe_mul(&r->x, &r->x, &beta); } -static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) { - secp256k1_fe yz; - - if (a->infinity) { - return 0; - } - - /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as - * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z - is */ - secp256k1_fe_mul(&yz, &a->y, &a->z); - return secp256k1_fe_is_quad_var(&yz); -} - static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) { #ifdef EXHAUSTIVE_TEST_ORDER secp256k1_gej out; diff --git a/src/tests.c b/src/tests.c index addeb8b..ec0b6e0 100644 --- a/src/tests.c +++ b/src/tests.c @@ -750,74 +750,12 @@ void test_num_mod(void) { CHECK(secp256k1_num_is_zero(&n)); } -void test_num_jacobi(void) { - secp256k1_scalar sqr; - secp256k1_scalar small; - secp256k1_scalar five; /* five is not a quadratic residue */ - secp256k1_num order, n; - int i; - /* squares mod 5 are 1, 4 */ - const int jacobi5[10] = { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1 }; - - /* check some small values with 5 as the order */ - secp256k1_scalar_set_int(&five, 5); - secp256k1_scalar_get_num(&order, &five); - for (i = 0; i < 10; ++i) { - secp256k1_scalar_set_int(&small, i); - secp256k1_scalar_get_num(&n, &small); - CHECK(secp256k1_num_jacobi(&n, &order) == jacobi5[i]); - } - - /** test large values with 5 as group order */ - secp256k1_scalar_get_num(&order, &five); - /* we first need a scalar which is not a multiple of 5 */ - do { - secp256k1_num fiven; - random_scalar_order_test(&sqr); - secp256k1_scalar_get_num(&fiven, &five); - secp256k1_scalar_get_num(&n, &sqr); - secp256k1_num_mod(&n, &fiven); - } while (secp256k1_num_is_zero(&n)); - /* next force it to be a residue. 2 is a nonresidue mod 5 so we can - * just multiply by two, i.e. add the number to itself */ - if (secp256k1_num_jacobi(&n, &order) == -1) { - secp256k1_num_add(&n, &n, &n); - } - - /* test residue */ - CHECK(secp256k1_num_jacobi(&n, &order) == 1); - /* test nonresidue */ - secp256k1_num_add(&n, &n, &n); - CHECK(secp256k1_num_jacobi(&n, &order) == -1); - - /** test with secp group order as order */ - secp256k1_scalar_order_get_num(&order); - random_scalar_order_test(&sqr); - secp256k1_scalar_mul(&sqr, &sqr, &sqr); - /* test residue */ - secp256k1_scalar_get_num(&n, &sqr); - CHECK(secp256k1_num_jacobi(&n, &order) == 1); - /* test nonresidue */ - secp256k1_scalar_mul(&sqr, &sqr, &five); - secp256k1_scalar_get_num(&n, &sqr); - CHECK(secp256k1_num_jacobi(&n, &order) == -1); - /* test multiple of the order*/ - CHECK(secp256k1_num_jacobi(&order, &order) == 0); - - /* check one less than the order */ - secp256k1_scalar_set_int(&small, 1); - secp256k1_scalar_get_num(&n, &small); - secp256k1_num_sub(&n, &order, &n); - CHECK(secp256k1_num_jacobi(&n, &order) == 1); /* sage confirms this is 1 */ -} - void run_num_smalltests(void) { int i; for (i = 0; i < 100*count; i++) { test_num_negate(); test_num_add_sub(); test_num_mod(); - test_num_jacobi(); } } #endif @@ -2959,64 +2897,35 @@ void run_ec_combine(void) { void test_group_decompress(const secp256k1_fe* x) { /* The input itself, normalized. */ secp256k1_fe fex = *x; - secp256k1_fe fez; - /* Results of set_xquad_var, set_xo_var(..., 0), set_xo_var(..., 1). */ - secp256k1_ge ge_quad, ge_even, ge_odd; - secp256k1_gej gej_quad; + /* Results of set_xo_var(..., 0), set_xo_var(..., 1). */ + secp256k1_ge ge_even, ge_odd; /* Return values of the above calls. */ - int res_quad, res_even, res_odd; + int res_even, res_odd; secp256k1_fe_normalize_var(&fex); - res_quad = secp256k1_ge_set_xquad(&ge_quad, &fex); res_even = secp256k1_ge_set_xo_var(&ge_even, &fex, 0); res_odd = secp256k1_ge_set_xo_var(&ge_odd, &fex, 1); - CHECK(res_quad == res_even); - CHECK(res_quad == res_odd); + CHECK(res_even == res_odd); - if (res_quad) { - secp256k1_fe_normalize_var(&ge_quad.x); + if (res_even) { secp256k1_fe_normalize_var(&ge_odd.x); secp256k1_fe_normalize_var(&ge_even.x); - secp256k1_fe_normalize_var(&ge_quad.y); secp256k1_fe_normalize_var(&ge_odd.y); secp256k1_fe_normalize_var(&ge_even.y); /* No infinity allowed. */ - CHECK(!ge_quad.infinity); CHECK(!ge_even.infinity); CHECK(!ge_odd.infinity); /* Check that the x coordinates check out. */ - CHECK(secp256k1_fe_equal_var(&ge_quad.x, x)); CHECK(secp256k1_fe_equal_var(&ge_even.x, x)); CHECK(secp256k1_fe_equal_var(&ge_odd.x, x)); - /* Check that the Y coordinate result in ge_quad is a square. */ - CHECK(secp256k1_fe_is_quad_var(&ge_quad.y)); - /* Check odd/even Y in ge_odd, ge_even. */ CHECK(secp256k1_fe_is_odd(&ge_odd.y)); CHECK(!secp256k1_fe_is_odd(&ge_even.y)); - - /* Check secp256k1_gej_has_quad_y_var. */ - secp256k1_gej_set_ge(&gej_quad, &ge_quad); - CHECK(secp256k1_gej_has_quad_y_var(&gej_quad)); - do { - random_fe_test(&fez); - } while (secp256k1_fe_is_zero(&fez)); - secp256k1_gej_rescale(&gej_quad, &fez); - CHECK(secp256k1_gej_has_quad_y_var(&gej_quad)); - secp256k1_gej_neg(&gej_quad, &gej_quad); - CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad)); - do { - random_fe_test(&fez); - } while (secp256k1_fe_is_zero(&fez)); - secp256k1_gej_rescale(&gej_quad, &fez); - CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad)); - secp256k1_gej_neg(&gej_quad, &gej_quad); - CHECK(secp256k1_gej_has_quad_y_var(&gej_quad)); } }