diff --git a/src/tests.c b/src/tests.c index ab981b5..32d9340 100644 --- a/src/tests.c +++ b/src/tests.c @@ -18,6 +18,7 @@ #include "include/secp256k1.h" #include "include/secp256k1_preallocated.h" #include "testrand_impl.h" +#include "util.h" #ifdef ENABLE_OPENSSL_TESTS #include "openssl/bn.h" @@ -32,6 +33,11 @@ void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) #include "contrib/lax_der_parsing.c" #include "contrib/lax_der_privatekey_parsing.c" +#include "modinv32_impl.h" +#ifdef SECP256K1_WIDEMUL_INT128 +#include "modinv64_impl.h" +#endif + static int count = 64; static secp256k1_context *ctx = NULL; @@ -816,8 +822,444 @@ void run_num_smalltests(void) { } #endif +/***** MODINV TESTS *****/ + +/* Compute the modular inverse of (odd) x mod 2^64. */ +uint64_t modinv2p64(uint64_t x) { + /* If w = 1/x mod 2^(2^L), then w*(2 - w*x) = 1/x mod 2^(2^(L+1)). See + * Hacker's Delight second edition, Henry S. Warren, Jr., pages 245-247 for + * why. Start with L=0, for which it is true for every odd x that + * 1/x=1 mod 2. Iterating 6 times gives us 1/x mod 2^64. */ + int l; + uint64_t w = 1; + CHECK(x & 1); + for (l = 0; l < 6; ++l) w *= (2 - w*x); + return w; +} + +/* compute out = (a*b) mod m; if b=NULL, treat b=1. + * + * Out is a 512-bit number (represented as 32 uint16_t's in LE order). The other + * arguments are 256-bit numbers (represented as 16 uint16_t's in LE order). */ +void mulmod256(uint16_t* out, const uint16_t* a, const uint16_t* b, const uint16_t* m) { + uint16_t mul[32]; + uint64_t c = 0; + int i, j; + int m_bitlen = 0; + int mul_bitlen = 0; + + if (b != NULL) { + /* Compute the product of a and b, and put it in mul. */ + for (i = 0; i < 32; ++i) { + for (j = i <= 15 ? 0 : i - 15; j <= i && j <= 15; j++) { + c += (uint64_t)a[j] * b[i - j]; + } + mul[i] = c & 0xFFFF; + c >>= 16; + } + CHECK(c == 0); + + /* compute the highest set bit in mul */ + for (i = 511; i >= 0; --i) { + if ((mul[i >> 4] >> (i & 15)) & 1) { + mul_bitlen = i; + break; + } + } + } else { + /* if b==NULL, set mul=a. */ + memcpy(mul, a, 32); + memset(mul + 16, 0, 32); + /* compute the highest set bit in mul */ + for (i = 255; i >= 0; --i) { + if ((mul[i >> 4] >> (i & 15)) & 1) { + mul_bitlen = i; + break; + } + } + } + + /* Compute the highest set bit in m. */ + for (i = 255; i >= 0; --i) { + if ((m[i >> 4] >> (i & 15)) & 1) { + m_bitlen = i; + break; + } + } + + /* Try do mul -= m<= 0; --i) { + uint16_t mul2[32]; + int64_t cs; + + /* Compute mul2 = mul - m<= 0 && bitpos < 256) { + sub |= ((m[bitpos >> 4] >> (bitpos & 15)) & 1) << p; + } + } + /* Add mul[j]-sub to accumulator, and shift bottom 16 bits out to mul2[j]. */ + cs += mul[j]; + cs -= sub; + mul2[j] = (cs & 0xFFFF); + cs >>= 16; + } + /* If remainder of subtraction is 0, set mul = mul2. */ + if (cs == 0) { + memcpy(mul, mul2, sizeof(mul)); + } + } + /* Sanity check: test that all limbs higher than m's highest are zero */ + for (i = (m_bitlen >> 4) + 1; i < 32; ++i) { + CHECK(mul[i] == 0); + } + memcpy(out, mul, 32); +} + +/* Convert a 256-bit number represented as 16 uint16_t's to signed30 notation. */ +void uint16_to_signed30(secp256k1_modinv32_signed30* out, const uint16_t* in) { + int i; + memset(out->v, 0, sizeof(out->v)); + for (i = 0; i < 256; ++i) { + out->v[i / 30] |= (int32_t)(((in[i >> 4]) >> (i & 15)) & 1) << (i % 30); + } +} + +/* Convert a 256-bit number in signed30 notation to a representation as 16 uint16_t's. */ +void signed30_to_uint16(uint16_t* out, const secp256k1_modinv32_signed30* in) { + int i; + memset(out, 0, 32); + for (i = 0; i < 256; ++i) { + out[i >> 4] |= (((in->v[i / 30]) >> (i % 30)) & 1) << (i & 15); + } +} + +/* Randomly mutate the sign of limbs in signed30 representation, without changing the value. */ +void mutate_sign_signed30(secp256k1_modinv32_signed30* x) { + int i; + for (i = 0; i < 16; ++i) { + int pos = secp256k1_testrand_int(8); + if (x->v[pos] > 0 && x->v[pos + 1] <= 0x3fffffff) { + x->v[pos] -= 0x40000000; + x->v[pos + 1] += 1; + } else if (x->v[pos] < 0 && x->v[pos + 1] >= 0x3fffffff) { + x->v[pos] += 0x40000000; + x->v[pos + 1] -= 1; + } + } +} + +/* Test secp256k1_modinv32{_var}, using inputs in 16-bit limb format, and returning inverse. */ +void test_modinv32_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod) { + uint16_t tmp[16]; + secp256k1_modinv32_signed30 x; + secp256k1_modinv32_modinfo m; + int i, vartime, nonzero; + + uint16_to_signed30(&x, in); + nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4] | x.v[5] | x.v[6] | x.v[7] | x.v[8]) != 0; + uint16_to_signed30(&m.modulus, mod); + mutate_sign_signed30(&m.modulus); + + /* compute 1/modulus mod 2^30 */ + m.modulus_inv30 = modinv2p64(m.modulus.v[0]) & 0x3fffffff; + CHECK(((m.modulus_inv30 * m.modulus.v[0]) & 0x3fffffff) == 1); + + for (vartime = 0; vartime < 2; ++vartime) { + /* compute inverse */ + (vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m); + + /* produce output */ + signed30_to_uint16(out, &x); + + /* check if the inverse times the input is 1 (mod m), unless x is 0. */ + mulmod256(tmp, out, in, mod); + CHECK(tmp[0] == nonzero); + for (i = 1; i < 16; ++i) CHECK(tmp[i] == 0); + + /* invert again */ + (vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m); + + /* check if the result is equal to the input */ + signed30_to_uint16(tmp, &x); + for (i = 0; i < 16; ++i) CHECK(tmp[i] == in[i]); + } +} + +#ifdef SECP256K1_WIDEMUL_INT128 +/* Convert a 256-bit number represented as 16 uint16_t's to signed62 notation. */ +void uint16_to_signed62(secp256k1_modinv64_signed62* out, const uint16_t* in) { + int i; + memset(out->v, 0, sizeof(out->v)); + for (i = 0; i < 256; ++i) { + out->v[i / 62] |= (int64_t)(((in[i >> 4]) >> (i & 15)) & 1) << (i % 62); + } +} + +/* Convert a 256-bit number in signed62 notation to a representation as 16 uint16_t's. */ +void signed62_to_uint16(uint16_t* out, const secp256k1_modinv64_signed62* in) { + int i; + memset(out, 0, 32); + for (i = 0; i < 256; ++i) { + out[i >> 4] |= (((in->v[i / 62]) >> (i % 62)) & 1) << (i & 15); + } +} + +/* Randomly mutate the sign of limbs in signed62 representation, without changing the value. */ +void mutate_sign_signed62(secp256k1_modinv64_signed62* x) { + static const int64_t M62 = (int64_t)(UINT64_MAX >> 2); + int i; + for (i = 0; i < 8; ++i) { + int pos = secp256k1_testrand_int(4); + if (x->v[pos] > 0 && x->v[pos + 1] <= M62) { + x->v[pos] -= (M62 + 1); + x->v[pos + 1] += 1; + } else if (x->v[pos] < 0 && x->v[pos + 1] >= -M62) { + x->v[pos] += (M62 + 1); + x->v[pos + 1] -= 1; + } + } +} + +/* Test secp256k1_modinv64{_var}, using inputs in 16-bit limb format, and returning inverse. */ +void test_modinv64_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod) { + static const int64_t M62 = (int64_t)(UINT64_MAX >> 2); + uint16_t tmp[16]; + secp256k1_modinv64_signed62 x; + secp256k1_modinv64_modinfo m; + int i, vartime, nonzero; + + uint16_to_signed62(&x, in); + nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4]) != 0; + uint16_to_signed62(&m.modulus, mod); + mutate_sign_signed62(&m.modulus); + + /* compute 1/modulus mod 2^62 */ + m.modulus_inv62 = modinv2p64(m.modulus.v[0]) & M62; + CHECK(((m.modulus_inv62 * m.modulus.v[0]) & M62) == 1); + + for (vartime = 0; vartime < 2; ++vartime) { + /* compute inverse */ + (vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m); + + /* produce output */ + signed62_to_uint16(out, &x); + + /* check if the inverse times the input is 1 (mod m), unless x is 0. */ + mulmod256(tmp, out, in, mod); + CHECK(tmp[0] == nonzero); + for (i = 1; i < 16; ++i) CHECK(tmp[i] == 0); + + /* invert again */ + (vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m); + + /* check if the result is equal to the input */ + signed62_to_uint16(tmp, &x); + for (i = 0; i < 16; ++i) CHECK(tmp[i] == in[i]); + } +} +#endif + +/* test if a and b are coprime */ +int coprime(const uint16_t* a, const uint16_t* b) { + uint16_t x[16], y[16], t[16]; + int i; + int iszero; + memcpy(x, a, 32); + memcpy(y, b, 32); + + /* simple gcd loop: while x!=0, (x,y)=(y%x,x) */ + while (1) { + iszero = 1; + for (i = 0; i < 16; ++i) { + if (x[i] != 0) { + iszero = 0; + break; + } + } + if (iszero) break; + mulmod256(t, y, NULL, x); + memcpy(y, x, 32); + memcpy(x, t, 32); + } + + /* return whether y=1 */ + if (y[0] != 1) return 0; + for (i = 1; i < 16; ++i) { + if (y[i] != 0) return 0; + } + return 1; +} + +void run_modinv_tests(void) { + /* Fixed test cases. Each tuple is (input, modulus, output), each as 16x16 bits in LE order. */ + static const uint16_t CASES[][3][16] = { + /* Test case known to need 713 divsteps */ + {{0x1513, 0x5389, 0x54e9, 0x2798, 0x1957, 0x66a0, 0x8057, 0x3477, + 0x7784, 0x1052, 0x326a, 0x9331, 0x6506, 0xa95c, 0x91f3, 0xfb5e}, + {0x2bdd, 0x8df4, 0xcc61, 0x481f, 0xdae5, 0x5ca7, 0xf43b, 0x7d54, + 0x13d6, 0x469b, 0x2294, 0x20f4, 0xb2a4, 0xa2d1, 0x3ff1, 0xfd4b}, + {0xffd8, 0xd9a0, 0x456e, 0x81bb, 0xbabd, 0x6cea, 0x6dbd, 0x73ab, + 0xbb94, 0x3d3c, 0xdf08, 0x31c4, 0x3e32, 0xc179, 0x2486, 0xb86b}}, + /* Test case known to need 589 divsteps, reaching delta=-140 and + delta=141. */ + {{0x3fb1, 0x903b, 0x4eb7, 0x4813, 0xd863, 0x26bf, 0xd89f, 0xa8a9, + 0x02fe, 0x57c6, 0x554a, 0x4eab, 0x165e, 0x3d61, 0xee1e, 0x456c}, + {0x9295, 0x823b, 0x5c1f, 0x5386, 0x48e0, 0x02ff, 0x4c2a, 0xa2da, + 0xe58f, 0x967c, 0xc97e, 0x3f5a, 0x69fb, 0x52d9, 0x0a86, 0xb4a3}, + {0x3d30, 0xb893, 0xa809, 0xa7a8, 0x26f5, 0x5b42, 0x55be, 0xf4d0, + 0x12c2, 0x7e6a, 0xe41a, 0x90c7, 0xebfa, 0xf920, 0x304e, 0x1419}}, + /* Test case known to need 650 divsteps, and doing 65 consecutive (f,g/2) steps. */ + {{0x8583, 0x5058, 0xbeae, 0xeb69, 0x48bc, 0x52bb, 0x6a9d, 0xcc94, + 0x2a21, 0x87d5, 0x5b0d, 0x42f6, 0x5b8a, 0x2214, 0xe9d6, 0xa040}, + {0x7531, 0x27cb, 0x7e53, 0xb739, 0x6a5f, 0x83f5, 0xa45c, 0xcb1d, + 0x8a87, 0x1c9c, 0x51d7, 0x851c, 0xb9d8, 0x1fbe, 0xc241, 0xd4a3}, + {0xcdb4, 0x275c, 0x7d22, 0xa906, 0x0173, 0xc054, 0x7fdf, 0x5005, + 0x7fb8, 0x9059, 0xdf51, 0x99df, 0x2654, 0x8f6e, 0x070f, 0xb347}}, + /* Test case with the group order as modulus, needing 635 divsteps. */ + {{0x95ed, 0x6c01, 0xd113, 0x5ff1, 0xd7d0, 0x29cc, 0x5817, 0x6120, + 0xca8e, 0xaad1, 0x25ae, 0x8e84, 0x9af6, 0x30bf, 0xf0ed, 0x1686}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x1631, 0xbf4a, 0x286a, 0x2716, 0x469f, 0x2ac8, 0x1312, 0xe9bc, + 0x04f4, 0x304b, 0x9931, 0x113b, 0xd932, 0xc8f4, 0x0d0d, 0x01a1}}, + /* Test case with the field size as modulus, needing 637 divsteps. */ + {{0x9ec3, 0x1919, 0xca84, 0x7c11, 0xf996, 0x06f3, 0x5408, 0x6688, + 0x1320, 0xdb8a, 0x632a, 0x0dcb, 0x8a84, 0x6bee, 0x9c95, 0xe34e}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x18e5, 0x19b6, 0xdf92, 0x1aaa, 0x09fb, 0x8a3f, 0x52b0, 0x8701, + 0xac0c, 0x2582, 0xda44, 0x9bcc, 0x6828, 0x1c53, 0xbd8f, 0xbd2c}}, + /* Test case with the field size as modulus, needing 935 divsteps with + broken eta handling. */ + {{0x1b37, 0xbdc3, 0x8bcd, 0x25e3, 0x1eae, 0x567d, 0x30b6, 0xf0d8, + 0x9277, 0x0cf8, 0x9c2e, 0xecd7, 0x631d, 0xe38f, 0xd4f8, 0x5c93}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x1622, 0xe05b, 0xe880, 0x7de9, 0x3e45, 0xb682, 0xee6c, 0x67ed, + 0xa179, 0x15db, 0x6b0d, 0xa656, 0x7ccb, 0x8ef7, 0xa2ff, 0xe279}}, + /* Test case with the group size as modulus, needing 981 divsteps with + broken eta handling. */ + {{0xfeb9, 0xb877, 0xee41, 0x7fa3, 0x87da, 0x94c4, 0x9d04, 0xc5ae, + 0x5708, 0x0994, 0xfc79, 0x0916, 0xbf32, 0x3ad8, 0xe11c, 0x5ca2}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0f12, 0x075e, 0xce1c, 0x6f92, 0xc80f, 0xca92, 0x9a04, 0x6126, + 0x4b6c, 0x57d6, 0xca31, 0x97f3, 0x1f99, 0xf4fd, 0xda4d, 0x42ce}}, + /* Test case with the field size as modulus, input = 0. */ + {{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, + /* Test case with the field size as modulus, input = 1. */ + {{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, + /* Test case with the field size as modulus, input = 2. */ + {{0x0002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0xfe18, 0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x7fff}}, + /* Test case with the field size as modulus, input = field - 1. */ + {{0xfc2e, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0xfc2e, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}}, + /* Test case with the group size as modulus, input = 0. */ + {{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, + /* Test case with the group size as modulus, input = 1. */ + {{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, + /* Test case with the group size as modulus, input = 2. */ + {{0x0002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x20a1, 0x681b, 0x2f46, 0xdfe9, 0x501d, 0x57a4, 0x6e73, 0x5d57, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x7fff}}, + /* Test case with the group size as modulus, input = group - 1. */ + {{0x4140, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x4140, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}} + }; + + int i, j, ok; + + /* Test known inputs/outputs */ + for (i = 0; (size_t)i < sizeof(CASES) / sizeof(CASES[0]); ++i) { + uint16_t out[16]; + test_modinv32_uint16(out, CASES[i][0], CASES[i][1]); + for (j = 0; j < 16; ++j) CHECK(out[j] == CASES[i][2][j]); +#ifdef SECP256K1_WIDEMUL_INT128 + test_modinv64_uint16(out, CASES[i][0], CASES[i][1]); + for (j = 0; j < 16; ++j) CHECK(out[j] == CASES[i][2][j]); +#endif + } + + for (i = 0; i < 100 * count; ++i) { + /* 256-bit numbers in 16-uint16_t's notation */ + static const uint16_t ZERO[16] = {0}; + uint16_t xd[16]; /* the number (in range [0,2^256)) to be inverted */ + uint16_t md[16]; /* the modulus (odd, in range [3,2^256)) */ + uint16_t id[16]; /* the inverse of xd mod md */ + + /* generate random xd and md, so that md is odd, md>1, xd