560 lines
13 KiB
Go

package erasure_code
import "fmt"
func init() {
galoisInit()
}
// Finite fields
// =============
type ZeroDivisionError struct {
}
func (e *ZeroDivisionError) Error() string {
return "division by zero"
}
// should panic with ZeroDivisionError when dividing by zero
type Field interface {
Add(b Field) Field
Sub(b Field) Field
Mul(b Field) Field
Div(b Field) Field
Value() int
Factory() FieldFactory
}
type FieldFactory interface {
Construct(v int) Field
}
// per-byte 2^8 Galois field
// Note that this imposes a hard limit that the number of extended chunks can
// be at most 256 along each dimension
type Galois struct {
v uint8
}
var gexptable [255]uint8
var glogtable [256]uint8
func galoisTpl(a uint8) uint8 {
r := a ^ (a << 1) // a * (x+1)
if (a & (1 << 7)) != 0 {
// would overflow (have an x^8 term); reduce by the AES polynomial,
// x^8 + x^4 + x^3 + x + 1
return r ^ 0x1b
} else {
return r
}
}
func galoisInit() {
var v uint8 = 1
for i := uint8(0); i < 255; i++ {
glogtable[v] = i
gexptable[i] = v
v = galoisTpl(v)
}
}
func (a *Galois) Add(_b Field) Field {
b := _b.(*Galois)
return &Galois{a.v ^ b.v}
}
func (a *Galois) Sub(_b Field) Field {
b := _b.(*Galois)
return &Galois{a.v ^ b.v}
}
func (a *Galois) Mul(_b Field) Field {
b := _b.(*Galois)
if a.v == 0 || b.v == 0 {
return &Galois{0}
}
return &Galois{gexptable[(int(glogtable[a.v])+
int(glogtable[b.v]))%255]}
}
func (a *Galois) Div(_b Field) Field {
b := _b.(*Galois)
if b.v == 0 {
panic(ZeroDivisionError{})
}
if a.v == 0 {
return &Galois{0}
}
return &Galois{gexptable[(int(glogtable[a.v])+255-
int(glogtable[b.v]))%255]}
}
func (a *Galois) Value() int {
return int(a.v)
}
func (a *Galois) String() string {
return fmt.Sprintf("%d",a.v)
}
type galoisFactory struct {
}
func GaloisFactory() FieldFactory {
return &galoisFactory{}
}
func (self *Galois) Factory() FieldFactory {
return GaloisFactory()
}
func (self *galoisFactory) Construct(v int) Field {
return &Galois{uint8(v)}
}
// Modular arithmetic class
type modulo struct {
v uint
n uint // the modulus
}
func (a *modulo) Add(_b Field) Field {
b := _b.(*modulo)
return &modulo{(a.v + b.v) % a.n, a.n}
}
func (a *modulo) Sub(_b Field) Field {
b := _b.(*modulo)
return &modulo{(a.v + a.n - b.v) % a.n, a.n}
}
func (a *modulo) Mul(_b Field) Field {
b := _b.(*modulo)
return &modulo{(a.v * b.v) % a.n, a.n}
}
func powmod(b uint, e uint, m uint) uint {
var r uint = 1
for e > 0 {
if (e & 1) == 1 {
r = (r * b) % m
}
b = (b * b) % m
e >>= 1
}
return r
}
func (a *modulo) Div(_b Field) Field {
b := _b.(*modulo)
return &modulo{(a.v * powmod(b.v, a.n-2, a.n)) % a.n, a.n}
}
func (self *modulo) Value() int {
return int(self.v)
}
type moduloFactory struct {
n uint
}
func (self *modulo) Factory() FieldFactory {
return &moduloFactory{self.n}
}
func (self *moduloFactory) Construct(v int) Field {
return &modulo{uint(v), self.n}
}
func MakeModuloFactory(n uint) FieldFactory {
return &moduloFactory{n}
}
func zero(f FieldFactory) Field {
return f.Construct(0)
}
func one(f FieldFactory) Field {
return f.Construct(1)
}
// Helper functions
// ================
// Evaluates a polynomial p in little-endian form (e.g. x^2 + 3x + 2 is
// represented as [2, 3, 1]) at coordinate x,
func EvalPolyAt(poly []Field, x Field) Field {
arithmetic := x.Factory()
r, xi := zero(arithmetic), one(arithmetic)
for _, ci := range poly {
r = r.Add(xi.Mul(ci))
xi = xi.Mul(x)
}
return r
}
// Given p+1 y values and x values with no errors, recovers the original
// p+1 degree polynomial. For example,
// LagrangeInterp({51.0, 59.0, 66.0}, {1, 3, 4}) = {50.0, 0, 1.0}
// (or it would be, if floats were Fields)
func LagrangeInterp(pieces []Field, xs []Field) []Field {
arithmetic := pieces[0].Factory()
zero, one := zero(arithmetic), one(arithmetic)
// `size` is the number of datapoints; the degree of the result polynomial
// is then `size-1`
size := len(pieces)
root := []Field{one} // initially just the polynomial "1"
// build up the numerator polynomial, `root`, by taking the product of (x-v)
// (implemented as convolving repeatedly with [-v, 1])
for _, v := range xs {
// iterate backward since new root[i] depends on old root[i-1]
for i := len(root) - 1; i >= 0; i-- {
root[i] = root[i].Mul(zero.Sub(v))
if i > 0 {
root[i] = root[i].Add(root[i-1])
}
}
// polynomial is always monic so save an extra multiply by doing this
// after
root = append(root, one)
}
// generate per-value numerator polynomials by dividing the master
// polynomial back by each x coordinate
nums := make([][]Field, size)
for i, v := range xs {
// divide `root` by (x-v) to get a degree size-1 polynomial
// (i.e. with `size` coefficients)
num := make([]Field, size)
// compute the x^0, x^1, ..., x^(p-2) coefficients by long division
last := one
num[len(num)-1] = last // still always a monic polynomial
for j := size - 2; j >= 0; j-- {
last = root[j+1].Add(last.Mul(v))
num[j] = last
}
nums[i] = num
}
// generate denominators by evaluating numerator polys at their x
denoms := make([]Field, size)
for i, x := range xs {
denoms[i] = EvalPolyAt(nums[i], x)
}
// generate output polynomial by taking the sum over i of
// (nums[i] * pieces[i] / denoms[i])
sum := make([]Field, size)
for i := range sum {
sum[i] = zero
}
for i, y := range pieces {
factor := y.Div(denoms[i])
// add nums[i] * factor to sum, as a vector
for j := 0; j < size; j++ {
sum[j] = sum[j].Add(nums[i][j].Mul(factor))
}
}
return sum
}
// Given two linear equations, eliminates the first variable and returns
// the resulting equation.
//
// An equation of the form a_1 x_1 + ... + a_n x_n + b = 0
// is represented as the array [a_1, ..., a_n, b].
func elim(a []Field, b []Field) []Field {
result := make([]Field, len(a)-1)
for i := range result {
result[i] = a[i+1].Mul(b[0]).Sub(b[i+1].Mul(a[0]))
}
return result
}
// Given one homogeneous linear equation and the values of all but the first
// variable, solve for the value of the first variable.
//
// For an equation of the form
// a_1 x_1 + ... + a_n x_n = 0
// pass two arrays, [a_1, ..., a_n] and [x_2, ..., x_n].
func evaluate(coeffs []Field, vals []Field) Field {
total := zero(coeffs[0].Factory())
for i, val := range vals {
total = total.Sub(coeffs[i+1].Mul(val))
}
return total.Div(coeffs[0])
}
// Given an n*n system of inhomogeneous linear equations, solve for the value of
// every variable.
//
// For equations of the form
// a_1,1 x_1 + ... + a_1,n x_n + b_1 = 0
// a_2,1 x_1 + ... + a_2,n x_n + b_2 = 0
// ...
// a_n,1 x_1 + ... + a_n,n x_n + b_n = 0
// pass a two-dimensional array
// [[a_1,1, ..., a_1,n, b_1], ..., [a_n,1, ..., a_n,n, b_n]].
//
// Returns the values of [x_1, ..., x_n].
func SysSolve(eqs [][]Field) []Field {
arithmetic := eqs[0][0].Factory()
backEqs := make([][]Field, 1, len(eqs))
backEqs[0] = eqs[0]
for len(eqs) > 1 {
neweqs := make([][]Field, len(eqs)-1)
for i := 0; i < len(eqs)-1; i++ {
neweqs[i] = elim(eqs[i], eqs[i+1])
}
eqs = neweqs
// find a row with a nonzero first entry
i := 0
for i+1 < len(eqs) && eqs[i][0].Value() == 0 {
i++
}
backEqs = append(backEqs, eqs[i])
}
kvals := make([]Field, len(backEqs)+1)
kvals[len(backEqs)] = one(arithmetic)
// back-substitute in reverse order
// (smallest to largest equation)
for i := len(backEqs) - 1; i >= 0; i-- {
kvals[i] = evaluate(backEqs[i], kvals[i+1:])
}
return kvals[:len(kvals)-1]
}
// Divide two polynomials with nonzero leading terms.
// T should be a field.
func PolyDiv(Q []Field, E []Field) []Field {
if len(Q) < len(E) {
return []Field{}
}
div := make([]Field, len(Q)-len(E)+1)
for i := len(div) - 1; i >= 0; i-- {
factor := Q[len(Q)-1].Div(E[len(E)-1])
div[i] = factor
// subtract factor * E * x^i from Q
Q = Q[:len(Q)-1] // the highest term should cancel
for j := 0; j < len(E)-1; j++ {
Q[i+j] = Q[i+j].Sub(factor.Mul(E[j]))
}
}
return div
}
func trySysSolve(eqs [][]Field) (ret []Field, ok bool) {
defer func() {
err := recover()
if err == nil {
return
}
switch err := err.(type) {
case ZeroDivisionError:
ret = nil
ok = false
default:
panic(err)
}
}()
return SysSolve(eqs), true
}
type NotEnoughData struct { }
func (self *NotEnoughData) Error() string {
return "Not enough data!"
}
type TooManyErrors struct { }
func (self *TooManyErrors) Error() string {
return "Answer doesn't match (too many errors)!"
}
// Given a set of y coordinates and x coordinates, and the degree of the
// original polynomial, determines the original polynomial even if some of the y
// coordinates are wrong. If m is the minimal number of pieces (ie. degree +
// 1), t is the total number of pieces provided, then the algo can handle up to
// (t-m)/2 errors.
func BerlekampWelchAttempt(pieces []Field, xs []Field, masterDegree int) ([]Field, error) {
errorLocatorDegree := (len(pieces) - masterDegree - 1) / 2
arithmetic := pieces[0].Factory()
zero, one := zero(arithmetic), one(arithmetic)
// Set up the equations for y[i]E(x[i]) = Q(x[i])
// degree(E) = errorLocatorDegree
// degree(Q) = masterDegree + errorLocatorDegree - 1
eqs := make([][]Field, 2*errorLocatorDegree+masterDegree+1)
for i := range eqs {
eq := []Field{}
x := xs[i]
piece := pieces[i]
neg_x_j := zero.Sub(one)
for j := 0; j < errorLocatorDegree+masterDegree+1; j++ {
eq = append(eq, neg_x_j)
neg_x_j = neg_x_j.Mul(x)
}
x_j := one
for j := 0; j < errorLocatorDegree+1; j++ {
eq = append(eq, x_j.Mul(piece))
x_j = x_j.Mul(x)
}
eqs[i] = eq
}
// Solve the equations
// Assume the top error polynomial term to be one
errors := errorLocatorDegree
ones := 1
var polys []Field
for errors >= 0 {
if p, ok := trySysSolve(eqs); ok {
for i := 0; i < ones; i++ {
p = append(p, one)
}
polys = p
break
}
// caught ZeroDivisionError
eqs = eqs[:len(eqs)-1]
for i, eq := range eqs {
eq[len(eq)-2] = eq[len(eq)-2].Add(eq[len(eq)-1])
eqs[i] = eq[:len(eq)-1]
}
errors--
ones++
}
if errors < 0 {
return nil, &NotEnoughData{}
}
// divide the polynomials...
split := errorLocatorDegree + masterDegree + 1
div := PolyDiv(polys[:split], polys[split:])
corrects := 0
for i := 0; i < len(xs); i++ {
if EvalPolyAt(div, xs[i]).Value() == pieces[i].Value() {
corrects++
}
}
if corrects < masterDegree+errors {
return nil, &TooManyErrors{}
}
return div, nil
}
// Extends a list of integers in [0 ... 255] (if using Galois arithmetic) by
// adding n redundant error-correction values
func Extend(data []int, n int, arithmetic FieldFactory) ([]int, error) {
size := len(data)
dataF := make([]Field, size)
for i, d := range data {
dataF[i] = arithmetic.Construct(d)
}
xs := make([]Field, size)
for i := range xs {
xs[i] = arithmetic.Construct(i)
}
poly, err := BerlekampWelchAttempt(dataF, xs, size-1)
if err != nil {
return nil, err
}
for i := 0; i < n; i++ {
data = append(data,
int(EvalPolyAt(poly, arithmetic.Construct(size+i)).Value()))
}
return data, nil
}
// Repairs a list of integers in [0 ... 255]. Some integers can be erroneous,
// and you can put -1 in place of an integer if you know that a certain
// value is defective or missing. Uses the Berlekamp-Welch algorithm to
// do error-correction
func Repair(data []int, datasize int, arithmetic FieldFactory) ([]int, error) {
vs := make([]Field, 0, len(data))
xs := make([]Field, 0, len(data))
for i, d := range data {
if d >= 0 {
vs = append(vs, arithmetic.Construct(d))
xs = append(xs, arithmetic.Construct(i))
}
}
poly, err := BerlekampWelchAttempt(vs, xs, datasize-1)
if err != nil {
return nil, err
}
result := make([]int, len(data))
for i := range result {
result[i] = int(EvalPolyAt(poly, arithmetic.Construct(i)).Value())
}
return result, nil
}
func transpose(d [][]int) [][]int {
width := len(d[0])
result := make([][]int, width)
for i := range result {
col := make([]int, len(d))
for j := range col {
col[j] = d[j][i]
}
result[i] = col
}
return result
}
func extractColumn(d [][]int, j int) []int {
result := make([]int, len(d))
for i, row := range d {
result[i] = row[j]
}
return result
}
// Extends a list of bytearrays
// eg. ExtendChunks([map(ord, 'hello'), map(ord, 'world')], 2)
// n is the number of redundant error-correction chunks to add
func ExtendChunks(data [][]int, n int, arithmetic FieldFactory) ([][]int, error) {
width := len(data[0])
o := make([][]int, width)
for i := 0; i < width; i++ {
row, err := Extend(extractColumn(data, i), n, arithmetic)
if err != nil {
return nil, err
}
o[i] = row
}
return transpose(o), nil
}
// Repairs a list of bytearrays. Use an empty array in place of a missing array.
// Individual arrays can contain some missing or erroneous data.
func RepairChunks(data [][]int, datasize int, arithmetic FieldFactory) ([][]int, error) {
var width int
for _, row := range data {
if len(row) > 0 {
width = len(row)
break
}
}
filledData := make([][]int, len(data))
for i, row := range data {
if len(row) == 0 {
filledData[i] = make([]int, width)
for j := range filledData[i] {
filledData[i][j] = -1
}
} else {
filledData[i] = row
}
}
o := make([][]int, width)
for i := range o {
row, err := Repair(extractColumn(data, i), datasize, arithmetic)
if err != nil {
return nil, err
}
o[i] = row
}
return transpose(o), nil
}