mirror of
https://github.com/status-im/research.git
synced 2025-01-15 01:25:31 +00:00
258 lines
8.4 KiB
Python
258 lines
8.4 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Requirements:
|
|
- I/O bound: cycles spent on I/O ≫ cycles spent in cpu
|
|
- no sharding: impossible to implement data locality strategy
|
|
- easy verification
|
|
|
|
Thoughts:
|
|
|
|
Efficient implementations will not switch context (threading) when waiting for data.
|
|
But they would leverage all fill buffers and have concurrent memory accesses.
|
|
It can be assumed, that code can be written in a way to calculate N (<10)
|
|
nonces in parallel (on a single core).
|
|
|
|
So, after all maybe memory bandwidth rather than latency is the actual bottleneck.
|
|
Can this be solved in a way that aligns with hashing nonces and allows
|
|
for a quick verification? Probably not.
|
|
|
|
Loop unrolling:
|
|
Initially proposed dagger sets offer data locality which allows to scale the algo
|
|
on multiple cores/l2chaches. 320MB / 40sets = 8MB (< L2 cache)
|
|
A solution is to make accessed mem location depended on the value of the
|
|
previous access.
|
|
|
|
Partitial Memory:
|
|
If a users only keeps e.g. one third of each DAG in memory (i.e. to
|
|
have in L3 cache), he still can answer ~0.5**k of accesses by substituting
|
|
them through previous node lookups.
|
|
This can be mitigated by
|
|
a) making each node deterministically depend on the value of at
|
|
least one close high memory node. Optionally for quick validation, select
|
|
the 2nd dependency for the lower (cached) memory. see produce_dag_k2dr
|
|
b) for DAG creation, using a hashing function which needs more cycles
|
|
than multiple memory lookups would - even for GPUs/FPGAs/ASICs.
|
|
"""
|
|
|
|
|
|
import time
|
|
|
|
from pyethereum import utils
|
|
|
|
|
|
def decode_int(s):
|
|
o = 0
|
|
for i in range(len(s)):
|
|
o = o * 256 + ord(s[i])
|
|
return o
|
|
|
|
|
|
def encode_int(x):
|
|
o = ''
|
|
for _ in range(64):
|
|
o = chr(x % 256) + o
|
|
x //= 256
|
|
return o
|
|
|
|
|
|
def sha3(x):
|
|
return decode_int(utils.sha3(x))
|
|
|
|
|
|
def cantor_pair(x, y, p):
|
|
return ((x+y) * (x+y+1) / 2 + y) % p
|
|
|
|
|
|
def get_daggerset(params, seedset):
|
|
return [produce_dag(params, i) for i in seedset]
|
|
|
|
|
|
def update_daggerset(params, daggerset, seedset, seed):
|
|
idx = decode_int(seed) % len(daggerset)
|
|
seedset[idx] = seed
|
|
daggerset[idx] = produce_dag(params, seed)
|
|
|
|
|
|
def produce_dag(params, seed):
|
|
k, hk, w, hw, n, p, t = params.k, params.hk, params.w, \
|
|
params.hw, params.dag_size, params.p, params.h_threshold
|
|
print 'Producing dag of size %d (%d memory)' % (n, n * params.wordsz)
|
|
o = [sha3(seed)]
|
|
init = o[0]
|
|
picker = 1
|
|
for i in range(1, n):
|
|
x = 0
|
|
picker = (picker * init) % p
|
|
curpicker = picker
|
|
if i < t:
|
|
for j in range(k): # can be flattend if params are known
|
|
x ^= o[curpicker % i]
|
|
curpicker >>= 10
|
|
else:
|
|
for j in range(hk):
|
|
x ^= o[curpicker % t]
|
|
curpicker >>= 10
|
|
o.append(pow(x, w if i < t else hw, p)) # use any "hash function" here
|
|
return o
|
|
|
|
|
|
def quick_calc(params, seed, pos, known=None):
|
|
k, hk, w, hw, p, t = params.k, params.hk, params.w, \
|
|
params.hw, params.p, params.h_threshold
|
|
init = sha3(seed) % p
|
|
if known is None:
|
|
known = {}
|
|
known[0] = init
|
|
|
|
def calc(i):
|
|
if i not in known:
|
|
curpicker = pow(init, i, p)
|
|
x = 0
|
|
if i < t:
|
|
for j in range(k):
|
|
x ^= calc(curpicker % i)
|
|
curpicker >>= 10
|
|
known[i] = pow(x, w, p)
|
|
else:
|
|
for j in range(hk):
|
|
x ^= calc(curpicker % t)
|
|
curpicker >>= 10
|
|
known[i] = pow(x, hw, p)
|
|
return known[i]
|
|
o = calc(pos)
|
|
print 'Calculated index %d in %d lookups' % (pos, len(known))
|
|
return o
|
|
|
|
|
|
def hashimoto(params, daggerset, header, nonce):
|
|
"""
|
|
Requirements:
|
|
- I/O bound: cycles spent on I/O ≫ cycles spent in cpu
|
|
- no sharding: impossible to implement data locality strategy
|
|
|
|
# I/O bound:
|
|
e.g. lookups = 16
|
|
sha3: 12 * 32 ~384 cycles
|
|
lookups: 16 * 160 ~2560 cycles # if zero cache
|
|
loop: 16 * 3 ~48 cycles
|
|
I/O / cpu = 2560/432 = ~ 6/1
|
|
|
|
# no sharding
|
|
lookups depend on previous lookup results
|
|
impossible to route computation/lookups based on the initial sha3
|
|
"""
|
|
rand = sha3(header + encode_int(nonce)) % params.p
|
|
mix = rand
|
|
# loop, that can not be unrolled
|
|
# dag and dag[pos] depended on previous lookup
|
|
for i in range(params.lookups):
|
|
v = mix if params.is_serial else rand >> i
|
|
dag = daggerset[v % params.num_dags] # modulo
|
|
pos = v % params.dag_size # modulo
|
|
mix ^= dag[pos] # xor
|
|
# print v % params.num_dags, pos, dag[pos]
|
|
print header, nonce, mix
|
|
return mix
|
|
|
|
|
|
def light_hashimoto(params, seedset, header, nonce):
|
|
rand = sha3(header + encode_int(nonce)) % params.p
|
|
mix = rand
|
|
|
|
for i in range(params.lookups):
|
|
v = mix if params.is_serial else rand >> i
|
|
seed = seedset[v % len(seedset)]
|
|
pos = v % params.dag_size
|
|
qc = quick_calc(params, seed, pos)
|
|
# print v % params.num_dags, pos, qc
|
|
mix ^= qc
|
|
print 'Calculated %d lookups' % \
|
|
(params.lookups)
|
|
print header, nonce, mix
|
|
return mix
|
|
|
|
|
|
def light_verify(params, seedset, header, nonce):
|
|
h = light_hashimoto(params, seedset, header, nonce)
|
|
return h <= 256**params.wordsz / params.diff
|
|
|
|
|
|
def mine(daggerset, params, header, nonce=0):
|
|
orignonce = nonce
|
|
origtime = time.time()
|
|
while 1:
|
|
h = hashimoto(params, daggerset, header, nonce)
|
|
if h <= 256**params.wordsz / params.diff:
|
|
noncediff = nonce - orignonce
|
|
timediff = time.time() - origtime
|
|
print 'Found nonce: %d, tested %d nonces in %.2f seconds (%d per sec)' % \
|
|
(nonce, noncediff, timediff, noncediff / timediff)
|
|
return nonce
|
|
nonce += 1
|
|
|
|
|
|
class params(object):
|
|
"""
|
|
=== tuning ===
|
|
memory: memory requirements ≫ L2/L3/L4 cache sizes
|
|
lookups: hashes_per_sec(lookups=0) ≫ hashes_per_sec(lookups_mem_hard)
|
|
k: ?
|
|
d: higher values enfore memory availability but require more quick_calcs
|
|
num_dags: so that a dag can be updated in reasonable time
|
|
"""
|
|
p = (2 ** 256 - 4294968273)**2 # prime modulus
|
|
wordsz = 64 # word size
|
|
memory = 10 * 1024**2 # memory usage
|
|
num_dags = 2 # number of dags
|
|
dag_size = memory/num_dags/wordsz # num 64byte values per dag
|
|
lookups = 40 # memory lookups per hash
|
|
diff = 2**14 # higher is harder
|
|
k = 2 # num dependecies of each dag value
|
|
hk = 8 # dependencies for final nodes
|
|
d = 8 # max distance of first dependency (1/d=fraction of size)
|
|
w = 2 # work factor on node generation
|
|
hw = 8 # work factor on final node generation
|
|
h_threshold = dag_size*2/5 # cutoff between final and nonfinal nodes
|
|
is_serial = False # hashimoto is serial
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print dict((k, v) for k, v in params.__dict__.items()
|
|
if isinstance(v, int))
|
|
|
|
# odds of a partitial storage attack
|
|
missing_mem = 0.01
|
|
P_partitial_mem_success = (1-missing_mem) ** params.lookups
|
|
print 'P success per hash with %d%% mem missing: %d%%' % \
|
|
(missing_mem*100, P_partitial_mem_success*100)
|
|
|
|
# which actually only results in a slower mining,
|
|
# as more hashes must be tried
|
|
slowdown = 1 / P_partitial_mem_success
|
|
print 'x%.1f speedup required to offset %d%% missing mem' % \
|
|
(slowdown, missing_mem*100)
|
|
|
|
# create set of DAGs
|
|
st = time.time()
|
|
seedset = [str(i) for i in range(params.num_dags)]
|
|
daggerset = get_daggerset(params, seedset)
|
|
print 'daggerset with %d dags' % len(daggerset), 'size:', \
|
|
64*params.dag_size*params.num_dags / 1024**2, 'MB'
|
|
print 'creation took %.2fs' % (time.time() - st)
|
|
|
|
# update DAG
|
|
st = time.time()
|
|
update_daggerset(params, daggerset, seedset, seed='qwe')
|
|
print 'updating 1 dag took %.2fs' % (time.time() - st)
|
|
|
|
# Mine
|
|
for i in range(1):
|
|
header = 'test%d' % i
|
|
print '\nmining', header
|
|
nonce = mine(daggerset, params, header)
|
|
# verify
|
|
st = time.time()
|
|
assert light_verify(params, seedset, header, nonce)
|
|
print 'verification took %.2fs' % (time.time() - st)
|